Noncovalent PEGylation via Sulfonatocalix[4]arene – a

2 days ago - Noncovalent or supramolecular PEGylation, in combination with site of administration, has great potential to increase the half-life of th...
0 downloads 0 Views 752KB Size
Subscriber access provided by Kaohsiung Medical University

Communication

Noncovalent PEGylation via Sulfonatocalix[4]arene – a Crystallographic Proof Sreenivasu Mummidivarapu, Martin Rennie, Aishling Doolan, and Peter B. Crowley Bioconjugate Chem., Just Accepted Manuscript • DOI: 10.1021/ acs.bioconjchem.8b00769 • Publication Date (Web): 16 Nov 2018 Downloaded from http://pubs.acs.org on November 19, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Bioconjugate Chemistry

Noncovalent PEGylation via Sulfonatocalix[4]arene – a Crystallographic Proof V. V. Sreenivasu Mummidivarapu, Martin L. Rennie, Aishling M. Doolan and Peter B. Crowley* School of Chemistry, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland Correspondence [email protected] +353 91 49 24 80

1 ACS Paragon Plus Environment

Bioconjugate Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Abstract Noncovalent or supramolecular PEGylation, in combination with site of administration, has great potential to increase the half-life of therapeutic proteins. To date, a variety of noncovalent PEGylation strategies have been devised. However, questions remain concerning the nature of the protein-PEG interaction. Here, we report structural analyses of a model system that comprised the lysine-rich cytochrome c and two PEGylated variants of sulfonatocalix[4]arene. Complex formation was characterized in solution by NMR spectroscopy. It was found that mono- or di-PEGylated sulfonatocalix[4]arene bound the protein similar to the parent calixarene. X-ray crystal structures at 2 M) of this ion in the crystallization solution. In a lysozyme - sclx4 crystal grown in 100 mM MgCl2, a Mg2+ ion was observed to complex PEG and calixarene.24 These observations suggest the possibility to control sclx4-PEGn self-encapsulation by the presence of counter-ions. Similar to the sclx4-PEG1 structure only a small portion of the PEG chains was modelled, suggesting that the PEG was mostly disordered. This conclusion is supported by the NMR analysis, in which similar chemical shift perturbations, with respect to the parent sclx4, were observed for both PEGylated forms.

Figure 4. The partial cone sclx4-PEG1 binding site (see Figure 3B) occurs at a three-fold symmetry interface. Symmetry-related calixarenes are shown in blue, and yellow, respectively. Noncovalent PEGylation is a topic of increasing importance.4,6-21 Here, we have demonstrated the potential of (supramolecular) calixarene-mediated noncovalent PEGylation. Solution state NMR and solid state crystallographic studies reveal that sclx4-PEG1 and sclx4-PEG2 recognise surface arginines and lysines similar to the parent compound sclx4 and with comparable affinity. The affinity of this system is modest (mM), however, tighter binding can be achieved by dimethylation of lysine residues25 or by employing larger calixarenes hosts.27,31 Complex formation between the cationic 7 ACS Paragon Plus Environment

Bioconjugate Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

protein and the anionic ligand occurred in the solid state despite the high ionic strength of the crystallization condition. The crystal structures provided clear evidence for protein complexation by the PEGylated calixarenes. Interestingly, the calixarenes were self-encapsulated with a fragment of PEG occupying the cavity. Furthermore, there was no evidence of protein-PEG interactions in the crystal structures. The absence of electron density suggests that the PEG chains were disordered. In contrast, PEG fragments are often refined in protein crystal structures where PEG was the precipitant.48 While it may be that the resolution of the sclx4-PEGn structures prevented detection of such interactions we assume that the PEG chains were water-solvated random coils. Previously, it was observed that a protein-PEG conjugate with 5 kDa PEG yielded a porous crystal lattice.36 Here, with shorter PEG chains (550 Da) there was no apparent impact on crystal porosity. Further experiments, including testing the site of administration, are required to develop the biological application of these and related compounds. As the parent molecule (sclx4) has negligible toxicity49 it is likely that the PEGylated compounds will also be biocompatible. The straightforward synthesis of sclx4-PEGn is further conducive to biopharmaceutical applications. Acknowledgements This research was supported by NUI Galway, Irish Research Council (grant GOIPD/2016/542 to VVSM) and Science Foundation Ireland (grants 13/ERC/B2912 and 13/CDA/2168 to PBC). We thank A. R. Khan, SOLEIL synchrotron (Paris) and Advanced Photon Source (Argonne National Laboratory) for beam-time allocation, and the staff at beamlines Proxima2A (Soleil) and 24-ID-C (APS) for their assistance with data collection. The Pilatus 6M detector on 24-ID-C beam line is funded by a NIH-ORIP HEI grant (S10 RR029205). Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: … Complete experimental procedures for ligand synthesis / characterization, NMR binding studies as well as protein-ligand co-crystallization and X-ray structure determination (PDF).

8 ACS Paragon Plus Environment

Page 8 of 13

Page 9 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Bioconjugate Chemistry

References 1. Knop, K., Hoogenboom, R., Fischer D., and Schubert, U. S. (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308. 2. Kontos, S., and Hubbell, J. A. (2012) Drug development: longer-lived proteins. Chem. Soc. Rev. 41, 2686−2695. 3. Gong, Y., Leroux J. C., and Gauthier, M. A. (2015) Releasable Conjugation of Polymers to Proteins. Bioconjug. Chem. 26, 1172-1181. 4. Finbloom, J. A., and Francis, M. B. (2018) Supramolecular strategies for protein immobilization and modification. Curr. Opin. Chem. Biol. 46, 91-98. 5. Johansson, G., and Joelsson, M. (1986) Specifically increased solubility of enzymes in polyethylene glycol solutions using polymer-bound triazine dyes. Anal. Biochem. 158, 104−110. 6. Wurm, F., Klos, J., Rader H. J., and Frey, H. (2009) Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) α,ωn-telechelics. J. Am. Chem. Soc. 131, 7954−7955. 7. Vinogradova, M. V., Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R., Mendelson, R. A., and Fletterick, R. J. (2005) Ca2+-regulated structural changes in troponin. Proc. Natl. Acad. Sci. 102, 5038-5043. 8. Castelletto, V., Krysmann, M., Kelarakis A., and Jauregi, P. (2007) Complex formation of bovine serum albumin with a poly(ethylene glycol) lipid conjugate. Biomacromolecules 8, 2244-2249. 9. Zhao, C., Deng, H., Xu, J., Li, S., Zhong, L., Shao, L., Wu, Y., and Liang, X.-J. (2016) “Sheddable” PEGlipid to balance the contradiction of PEGylation between long circulation and poor uptake. Nanoscale 8, 10832–10842. 10. Mueller, C., Capelle, M. A. H., Seyrek, E., Martel, S., Carrupt, P.–A., Arvinte, T., and Borchard, G. (2012) Noncovalent PEGylation: Different effects of dansyl-, l-tryptophan–, phenylbutylamino-, benzyl- and cholesteryl-PEGs on the aggregation of salmon calcitonin and lysozyme. J. Pharm. Sci. 101, 1995–2008. 11. Asayama, S., Nagashima, K., Negishi, Y., Kawakami, H. (2018) Byproduct-free intact modification of insulin by cholesterol end-modified poly(ethylene glycol) for in vivo protein delivery. Bioconjug. Chem. 29, 67-73. 12. Ambrosio, E., Podmore, A., Gomes dos Santos, A. L., Magarkar, A., Bunker, A., Caliceti, P., Mastrotto, F., van der Walle, C. F., Salmaso, S. (2018) Control of peptide aggregation and fibrillation by physical PEGylation. Biomacromolecules 19, 3958-3969. 13. Khondee, S., Olsen, C. M., Zeng, Y., Middaugh, C. R., and Berkland, C. (2011) Noncovalent PEGylation by polyanion complexation as a means to stabilize keratinocyte growth factor-2. Biomacromolecules 12, 3880−3894.

9 ACS Paragon Plus Environment

Bioconjugate Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

14. Kurinomaru, T., and Shiraki, K. (2015) Noncovalent PEGylation of L-asparaginase using PEGylated polyelectrolyte. J. Pharm. Sci. 104, 587-592. 15. Kurinomaru, T., Kuwada, K., Tomita, S., Kameda, T., and Shiraki, K. (2017) Noncovalent PEGylation through protein-polyelectrolyte interaction: Kinetic experiment and molecular dynamics simulation. J. Phys. Chem. B 121, 6785-6791. 16. Andrianov, A. K., Marin, A., Martinez, A. P., Weidman, J. L., and Fuerst, T. R. (2018) Hydrolytically degradable PEGylated polyelectrolyte nanocomplexes for protein delivery. Biomacromolecules 19, 3467-3478. 17. Kim, T. H., Swierczewska, M., Oh, Y., Kim, A., Jo, D. G., Park, J. H., Byun, Y., Sadegh-Nasseri, S., Pomper, M. G., Lee K. C., et al. (2013) Mix to validate: A facile, reversible PEGylation for fast screening of potential therapeutic proteins in vivo. Angew. Chem. Int. Ed. 52, 6880−6884. 18. Antonik, P. M., Eissa, A. M., Round, A. R., Cameron N. R., and Crowley, P. B. (2016) Noncovalent PEGylation via lectin–glycopolymer interactions. Biomacromolecules 17, 2719−2725. 19. Biedermann, F., Rauwald, U., Zayed J. M., and Scherman, O. A. (2011) A supramolecular route for reversible protein-polymer conjugation. Chem. Sci. 2, 279–286. 20. Webber, M. J., Appel, E. A., Vinciguerra, B., Cortinas, A. B., Thapa, L. S., Jhunjhunwala, S., Isaacs, L., Langer, R. and Anderson, D. G. (2016) Supramolecular PEGylation of biopharmaceuticals. Proc. Natl. Acad. Sci. 113, 14189-14194. 21. Hirotsu, T., Higashi, T., Abu Hashim, I. I., Misumi, S., Wada, K., Motoyama, K., Arima, H. (2017) Selfassembly PEGylation retaining activity (SPRA) technology via a host-guest interaction surpassing conventional PEGylation methods of proteins. Mol. Pharm. 14, 368-376. 22. Chinai, J. M., Taylor, A. B., Ryno, L. M., Hargreaves, N. D., Morris, C. A., Hart, P. J., and Urbach, A. R. (2011) Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 88108813. 23. McGovern, R. E., Fernandes, H., Khan, A. R., Power, N. P. and Crowley, P. B. (2012) Protein camouflage in cytochrome c-calixarene complexes. Nat. Chem. 4, 527–533. 24. McGovern, R. E., McCarthy, A. A., and Crowley, P. B. (2014) Protein assembly mediated by sulfonatocalix[4]arene. Chem. Commun. 50, 10412-10415. 25. McGovern, R. E., Snarr, B. D., Lyons, J. A., McFarlane, J., Whiting, A. L., Paci, I., Hof, F., and Crowley, P. B. (2015) Structural study of a small molecule receptor bound to dimethyllysine in lysozyme. Chem. Sci. 6, 442-449. 26. Mallon, M., Dutt, S., Schrader, T., and Crowley, P. B. (2016) Protein camouflage: supramolecular anion recognition by ubiquitin. ChemBioChem 17, 774-783.

10 ACS Paragon Plus Environment

Page 10 of 13

Page 11 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Bioconjugate Chemistry

27. Rennie, M. L., Doolan, A. M., Raston, C. L., and Crowley, P. B. (2017) Protein dimerization on a phosphonated calix[6]arene disc. Angew. Chem. Int. Ed. 56, 5517-5521. 28. Hogeweg, A., Sowislok, A., Schrader, T., and Beuck, C. (2017) An NMR method to pinpoint supramolecular ligand binding to basic residues on proteins. Angew. Chem. Int. Ed. 56, 1475814762. 29. Doolan, A. M., Rennie, M. L., and Crowley, P. B. (2018) Protein recognition by functionalized sulfonatocalix[4]arenes. Chem. Eur. J. 24, 984-991. 30. Alex, J. M., Rennie, M. L., Volpi, S., Sansone, F., Casnati, A., and Crowley, P. B. (2018) Phosphonated calixarene as a “molecular glue” for protein crystallization. Cryst. Growth Des. 18, 2467-2473. 31. Rennie, M. L., Fox, G. C., Pérez, J., and Crowley, P. B. (2018) Auto-regulated protein assembly on a supramolecular scaffold. Angew. Chem. Int. Ed. 57, 13764-13769. 32. Giuliani, M., Morbioli, I., Sansone, F., and Casnati, A. (2015) Moulding calixarenes for biomacromolecule targeting. Chem. Commun. 51, 14140-14159. 33. Colston, M. J., Hailes, H. C., Stavropoulos, E., Hervé, A. C., Hervé, G., Goodworth, K. J., Hill, A. M., Jenner, P., Hart, P. D., and Tascon, R. E. (2004) Antimycobacterial calixarenes enhance innate defense mechanisms in murine macrophages and induce control of Mycobacterium tuberculosis infection in mice. Infect. Immun. 72, 6318-6323. 34. Tu, C., Zhu, L., Li, P., Chen, Y., Su, Y., Yan, D., Zhu, X., and Zhou, G. (2011) Supramolecular polymeric micelles by the host–guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chem. Commun. 47, 6063-6065. 35. Pisagatti, I., Barbera, L., Gattuso, G., Patanè, S., Parisi, M. F., and Notti, A. (2018) Novel PEGylated calix[5]arenes as carriers for Rose Bengal. Supramol. Chem. 30, 658-663. 36. Cattani, G., Vogeley, L., and Crowley, P. B. (2015) Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nat. Chem. 7, 823-828. 37. Svergun, D. I., Ekström, F., Vandegriff, K. D., Malavalli, A., Baker, D. A., Nilsson, C. and Winslow, R. M. (2008) Solution structure of poly(ethylene) glycol-conjugated hemoglobin revealed by smallangle X-ray scattering: implications for a new oxygen therapeutic. Biophys. J. 94, 173-181. 38. He, L., Wang, H., Garamus, V. M., Hanley, T., Lensch, M., Gabius, H.-J., Fee, C. J. and Middelberg, A. (2010) Analysis of monoPEGylated human galectin-2 by small-angle X-ray and neutron scattering: concentration dependence of PEG conformation in the conjugate. Biomacromolecules 11, 3504–3510.

11 ACS Paragon Plus Environment

Bioconjugate Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

39. Pai, S. S., Hammouda, B., Hong, K., Pozzo, D. C., Przybycien, T. M. and Tilton, R. D. (2011) The conformation of the poly(ethylene glycol) chain in mono-PEGylated lysozyme and monoPEGylated human growth hormone. Bioconjug. Chem. 22, 2317-2323. 40. Le Cœur, C., Combet, S., Carrot, G., Busch, P., Teixeira, J., and Longeville, S. (2015) Conformation of the poly(ethylene glycol) chains in diPEGylated hemoglobin specifically probed by SANS: Correlation with PEG length and in vivo efficiency. Langmuir 31, 8402–8410. 41. Chao, S.-H., Schaefer, J., and Gruebele, M. (2017) The surface of protein λ6-85 can act as a template for recurring poly(ethylene glycol) structure. Biochemistry 56, 5671-5678. 42. Lee, P. W., Isarov, S. A., Wallat, J. D., Molugu, S. K., Shukla, S., Sun, J. E. P., Zhang, J., Zheng, Y., Dougherty, M. L., Konkolewicz, D., et al. (2017) Polymer structure and conformation alter the antigenicity of virus-like particle-polymer conjugates. J. Am. Chem. Soc. 139, 3312-3315. 43. Gokarn, Y. R., McLean, M., and Laue, T. M. (2012) Effect of PEGylation on protein hydrodynamics. Mol. Pharm. 9, 762-73. 44. Sakai, F., Yang, G., Weiss, M. S., Liu, Y., Chen, G., and Jiang, M. (2014) Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat. Commun. 5, 4634. 45. Yilmaz, E., Bier, D., Guillory, X., Briels, J., Ruiz-Blanco, Y. B., Sanchez-Garcia, E., Ottmann, C., and Kaiser, M. (2018) Mono- and bivalent 14-3-3 inhibitors for characterizing supramolecular "lysine wrapping" of oligoethylene glycol (OEG) moieties in proteins. Chem. Eur. J. 24, 13807-13814. 46. Arena, G., Casnati, A., Contino, A., Gulino, F. G., Sciotto, D., and Ungaro, R. (2000) Entropic origin of the sulfonate groups’ electrostatic assistance in the complexation of quaternary ammonium cations by water soluble calix[4]arenes. J. Chem. Soc., Perkin Trans. 2, 419-423. 47. Dalgarno, S. J., Fisher, J., and Raston, C. L. (2006) Interplay of p-sulfonatocalix[4]arene and crown ethers en route to molecular capsules and “Russian dolls”. Chem. Eur. J. 12, 2772-2777. 48. Lee, C. C., Maestre-Reyna, M., Hsu, K. C., Wang, H. C., Liu, C. I., Jeng, W. Y., Lin, L. L., Wood, R., Chou, C. C., Yang, J. M., et al. (2014) Crowning proteins: modulating the protein surface properties using crown ethers. Angew. Chem. Int. Ed. 53, 13054-13058. 49. Coleman, A. W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D., and Moulin, M. (2008) Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J. Chem. 32, 780-782.

12 ACS Paragon Plus Environment

Page 12 of 13

Page 13 of 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Bioconjugate Chemistry

TOC Graphic

13 ACS Paragon Plus Environment