5 A Dynamic Model of the Phytoplankton Population in the
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
Sacramento-San Joaquin Delta D O M I N I C M . D I TORO, D O N A L D J . O'CONNOR, and ROBERT V. T H O M A N N Environmental Engineering and Science Program, Manhattan College, Bronx, Ν. Y. 10471 The by
quality the
of natural
growth
population
and
waters
development
of nutrients
resulting
esses. The resulting inorganic
nutrients
is commonly
kinetic
plankton with
two
Joaquin
of phytoplankton
This
determined
data. The resulting
problems.
and
by an analysis equations portion
This
are
as a The
is based
The growth
phytoplankton
the tidal
proc ample
investiga
populations
of mass.
of the
years of data from River,
growth.
model of this phenomenon
of conservation
are empirically
ing experimental
or natural
of eutrophication
formulations
addition
more than
to as eutrophication.
in the solution
on the principle
provides
whose
by the
for excessive phytoplankton
referred
influenced
phytoplankton,
from man's activities fertilization
model of the dynamics death
of
can be accelerated
tion presents a mathematical component
can be markedly
distribution
and zoo-
of exist compared
of the
San
California.
' " I ^ h e q u a l i t y of n a t u r a l waters c a n b e m a r k e d l y i n f l u e n c e d b y the g r o w t h A
a n d d i s t r i b u t i o n of p h y t o p l a n k t o n . U t i l i z i n g r a d i a n t energy,
these
m i c r o s c o p i c p l a n t s a s s i m i l a t e i n o r g a n i c c h e m i c a l s a n d c o n v e r t t h e m to c e l l m a t e r i a l w h i c h , i n t u r n , is c o n s u m e d b y the v a r i o u s a n i m a l species i n the next t r o p i c l e v e l . T h e p h y t o p l a n k t o n , therefore, are the base of the f o o d c h a i n i n n a t u r a l w a t e r s , a n d t h e i r existence is essential to a l l a q u a t i c life. T h e q u a l i t y of a b o d y of w a t e r c a n be a d v e r s e l y affected i f the p o p u l a t i o n of p h y t o p l a n k t o n b e c o m e s so large as to i n t e r f e r e w i t h either w a t e r 131 Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
132
NONEQUILIBRIUM
SYSTEMS
IN
NATURAL
WATERS
use o r the h i g h e r forms of a q u a t i c life. I n p a r t i c u l a r , h i g h concentrations of a l g a l biomass cause large d i u r n a l v a r i a t i o n s i n d i s s o l v e d o x y g e n w h i c h c a n b e f a t a l to fish life. A l s o , the g r o w t h s c a n b e nuisances i n themselves, e s p e c i a l l y w h e n t h e y d e c a y a n d e i t h e r settle to the b o t t o m or a c c u m u l a t e i n w i n d r o w s o n the shoreline. P h y t o p l a n k t o n c a n cause taste a n d o d o r p r o b l e m s i n w a t e r s u p p l i e s a n d , i n a d d i t i o n , c o n t r i b u t e to filter c l o g g i n g i n the w a t e r treatment p l a n t . T h e d e v e l o p m e n t of l a r g e p o p u l a t i o n s of p h y t o p l a n k t o n a n d , i n some cases, l a r g e r a q u a t i c p l a n t s c a n b e a c c e l e r a t e d b y the a d d i t i o n of n u t r i e n t s
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
w h i c h result f r o m man's activities or n a t u r a l processes.
T h e resulting
f e r t i l i z a t i o n p r o v i d e s m o r e t h a n a m p l e i n o r g a n i c n u t r i e n t s , w i t h the r e s u l t i n g d e v e l o p m e n t of excessive p h y t o p l a n k t o n . T h i s sequence of events is c o m m o n l y r e f e r r e d to as e u t r o p h i c a t i o n . G e n e r a l l y , the m a n a g e m e n t of w a t e r systems s u b j e c t e d to a c c e l e r a t e d e u t r o p h i c a t i o n because of w a s t e discharges has b e e n l a r g e l y subjective. E x t e n s i v e p r o g r a m s of n u t r i e n t r e m o v a l h a v e b e e n c a l l e d for, w i t h l i t t l e or no q u a n t i t a t i v e p r e d i c t i o n of the effects of s u c h treatment p r o g r a m s . A q u a n t i t a t i v e m e t h o d o l o g y is r e q u i r e d to estimate the effect of p r o p o s e d treatment p r o g r a m s that are p l a n n e d to restore w a t e r q u a l i t y or to p r e d i c t t h e effects of e x p e c t e d
f u t u r e n u t r i e n t discharges.
This
methodology
s h o u l d i n c l u d e a m o d e l of the p h y t o p l a n k t o n p o p u l a t i o n w h i c h a p p r o x i mates the b e h a v i o r of the p h y t o p l a n k t o n i n the w a t e r b o d y of interest a n d , therefore, c a n b e u s e d to test the effects of t h e v a r i o u s c o n t r o l p r o cedures a v a i l a b l e . I n this w a y , r a t i o n a l p l a n n i n g a n d w a t e r q u a l i t y m a n agement c a n b e i n s t i t u t e d w i t h at least some degree of confidence that the p l a n n e d results a c t u a l l y w i l l b e a c h i e v e d . T h i s p a p e r presents a p h y t o p l a n k t o n p o p u l a t i o n m o d e l i n n a t u r a l w a t e r s , c o n s t r u c t e d o n the basis of t h e p r i n c i p l e of c o n s e r v a t i o n of mass. T h i s is a n e l e m e n t a r y p h y s i c a l l a w w h i c h is satisfied b y n a t u r a l systems.
macroscopic
T h e use of this p r i n c i p l e is d i c t a t e d p r i m a r i l y b y the
l a c k of a n y m o r e specific p h y s i c a l l a w s w h i c h c a n b e a p p l i e d to these b i o l o g i c a l systems.
A n alternate c o n s e r v a t i o n l a w , that of c o n s e r v a t i o n
of energy, c a n also be used. H o w e v e r , the details of h o w mass is t r a n s f e r r e d f r o m species to species are better u n d e r s t o o d t h a n the c o r r e s p o n d i n g e n e r g y transformations.
T h e mass i n t e r a c t i o n s are r e l a t e d , a m o n g
other factors, to the k i n e t i c s of the p o p u l a t i o n s , a n d i t is this t h a t the b u l k of the p a p e r is d e v o t e d to e x p l o r i n g . C o n s e r v a t i o n of mass has b e e n successfully a p p l i e d to the m o d e l i n g of the d i s s o l v e d o x y g e n d i s t r i b u t i o n i n n a t u r a l waters as w e l l as t h e d i s t r i b u t i o n of s a l i n i t y a n d other d i s s o l v e d substances. T h e r e s u l t i n g m o d e l s have proved useful i n guiding engineering and management
decisions
c o n c e r n e d w i t h the efficient u t i l i z a t i o n of w a t e r resources a n d the p r o t e c t i o n of t h e i r q u a l i t y . It is felt t h a t the p h y t o p l a n k t o n m o d e l p r e s e n t e d
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
Di TORO E T A L .
Phytoplankton
133
IPopulation
h e r e i n c a n serve a s i m i l a r p u r p o s e b y p r o v i d i n g a basis for p r e d i c t i n g the effects of n u t r i e n t c o n t r o l p r o g r a m s o n the e u t r o p h i c a t i o n of n a t u r a l waters. T h u s , the p r i m a r y p u r p o s e of this p a p e r is to i n t r o d u c e a q u a n t i t a t i v e m o d e l of p h y t o p l a n k t o n p o p u l a t i o n d y n a m i c s i n n a t u r a l waters.
I t is
w i t h i n this p r o b l e m context that the s i m p l i f i c a t i o n s , a s s u m p t i o n s , a n d g e n e r a l l y the structure of the m o d e l is f o r m u l a t e d . A n a t t e m p t is m a d e to m a k e the equations representative of t h e b i o l o g i c a l m e c h a n i s m s w h i l e s t i l l r e t a i n i n g a sufficient s i m p l i c i t y so that the result is t r a c t a b l e a n d
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
useful. Review of Previous Models T h e i n i t i a l attempts to m o d e l the d y n a m i c s of a p h y t o p l a n k t o n p o p u l a t i o n w e r e b a s e d o n a v e r s i o n of the l a w of c o n s e r v a t i o n of mass i n w h i c h the h y d r o d y n a m i c transport of mass is a s s u m e d to b e insignificant. L e t P(t)
b e the c o n c e n t r a t i o n of p h y t o p l a n k t o n mass at t i m e t i n a s u i t a b l y
chosen r e g i o n of w a t e r .
T h e p r i n c i p l e of c o n s e r v a t i o n of mass c a n
be
expressed as a d i f f e r e n t i a l e q u a t i o n dP
ς
w h e r e S is the net source or sink of p h y t o p l a n k t o n mass w i t h i n t h e r e g i o n . I f h y d r o d y n a m i c t r a n s p o r t is not i n c l u d e d , t h e n the rate at w h i c h Ρ i n creases or decreases d e p e n d s o n l y o n the i n t e r n a l sources a n d sinks of p h y t o p l a n k t o n i n the r e g i o n of interest. T h e f o r m of the i n t e r n a l sources a n d sinks of p h y t o p l a n k t o n is d i c t a t e d b y t h e m e c h a n i s m s w h i c h are a s s u m e d to g o v e r n the g r o w t h a n d d e a t h of p h y t o p l a n k t o n .
F l e m i n g ( 1 9 3 9 ) , as d e s c r i b e d b y R i l e y
p o s t u l a t e d that s p r i n g d i a t o m
flowering
(I),
i n the E n g l i s h C h a n n e l is d e
s c r i b e d b y the e q u a t i o n ^
= [a -
(b +
ct))P
w h e r e Ρ is the p h y t o p l a n k t o n c o n c e n t r a t i o n , α is a constant g r o w t h rate, a n d (b +
ct)
is a d e a t h rate r e s u l t i n g f r o m the g r a z i n g of z o o p l a n k t o n .
T h e z o o p l a n k t o n p o p u l a t i o n , w h i c h is i n c r e a s i n g o w i n g to its g r a z i n g , results i n a n i n c r e a s i n g d e a t h r a t e w h i c h is a p p r o x i m a t e d b y t h e l i n e a r increase of the d e a t h rate as a f u n c t i o n of t i m e . A less e m p i r i c a l m o d e l has b e e n p r o p o s e d b y R i l e y ( 1946) ( I ) b a s e d o n the e q u a t i o n f
=
[P -R-G]P k
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
134
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
w h e r e P is the p h o t o s y n t h e t i c g r o w t h rate, R is t h e e n d o g e n o u s r e s p i r a h
t i o n rate of the p h y t o p l a n k t o n , a n d G is the d e a t h rate o w i n g to z o o p l a n k t o n g r a z i n g . A m a j o r i m p r o v e m e n t i n R i l e y ' s e q u a t i o n is t h e a t t e m p t to r e l a t e the g r o w t h rate, t h e r e s p i r a t i o n rate, a n d t h e g r a z i n g to
more
f u n d a m e n t a l e n v i r o n m e n t a l v a r i a b l e s s u c h as i n c i d e n t solar r a d i a t i o n , t e m p e r a t u r e , e x t i n c t i o n coefficient, a n d o b s e r v e d n u t r i e n t a n d z o o p l a n k ton concentration.
A s a c o n s e q u e n c e , t h e coefficients of the e q u a t i o n s
are t i m e - v a r i a b l e since t h e e n v i r o n m e n t a l p a r a m e t e r s v a r y t h r o u g h o u t t h e year. T h i s p r e c l u d e s a n a n a l y t i c a l s o l u t i o n to the e q u a t i o n , a n d n u -
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
m e r i c a l i n t e g r a t i o n m e t h o d s m u s t b e u s e d . T h r e e separate a p p l i c a t i o n s ( 2 , 3, 4)
of these e q u a t i o n s to t h e near-shore o c e a n e n v i r o n m e n t h a v e
b e e n m a d e , a n d the r e s u l t i n g a g r e e m e n t w i t h o b s e r v e d d a t a is q u i t e encouraging. A c o m p l e x set of e q u a t i o n s , p r o p o s e d b y R i l e y , S t o m m e l , a n d B u m p u s (1949) (5)
first
i n t r o d u c e d the s p a t i a l v a r i a t i o n of the p h y t o p l a n k t o n
w i t h respect to d e p t h i n t o t h e c o n s e r v a t i o n of mass e q u a t i o n . I n a d d i t i o n , a c o n s e r v a t i o n of mass e q u a t i o n for a n u t r i e n t ( p h o s p h a t e ) w a s also i n t r o d u c e d , as w e l l as s i m p l i f i e d e q u a t i o n s for t h e h e r b i v o r o u s a n d c a r n i v o r o u s z o o p l a n k t o n concentrations.
T h e phytoplankton and nutrient
e q u a t i o n s w e r e a p p l i e d to 20 v o l u m e elements w h i c h e x t e n d e d f r o m the surface to w e l l b e l o w the e u p h o t i c zone. I n o r d e r to s i m p l i f y the c a l c u lations, a t e m p o r a l steady-state w a s a s s u m e d to exist i n e a c h v o l u m e element.
T h u s , the equations a p p l y to those p e r i o d s of the y e a r d u r i n g
w h i c h the d e p e n d e n t v a r i a b l e s are not c h a n g i n g s i g n i f i c a n t l y i n t i m e . S u c h c o n d i t i o n s u s u a l l y p r e v a i l d u r i n g the s u m m e r m o n t h s . T h e results of these c a l c u l a t i o n s w e r e c o m p a r e d w i t h o b s e r v e d d a t a , a n d a g a i n the results w e r e e n c o u r a g i n g . Steele ( 1 9 5 6 ) (6)
f o u n d t h a t the steady-state a s s u m p t i o n d i d not
a p p l y to t h e seasonal v a r i a t i o n of the p h y t o p l a n k t o n p o p u l a t i o n . I n s t e a d , h e u s e d t w o v o l u m e segments to represent the u p p e r a n d l o w e r w a t e r levels a n d k e p t the t i m e d e r i v a t i v e s i n the equations. T h u s , b o t h t e m p o r a l a n d spatial variations were considered. I n addition, the differential equations for p h y t o p l a n k t o n a n d z o o p l a n k t o n c o n c e n t r a t i o n w e r e c o u p l e d so t h a t t h e i n t e r a c t i o n s of the p o p u l a t i o n s c o u l d b e s t u d i e d , as w e l l as the nutrient-phytoplankton dependence.
T h e coefficients
of the equations
w e r e not f u n c t i o n s of t i m e , h o w e v e r , so that the effects of t i m e - v a r y i n g solar r a d i a t i o n i n t e n s i t y a n d t e m p e r a t u r e w e r e not i n c l u d e d . T h e e q u a tions w e r e n u m e r i c a l l y i n t e g r a t e d a n d the results c o m p a r e d w i t h t h e o b s e r v e d d i s t r i b u t i o n . Steele
a p p l i e d similar equations
d i s t r i b u t i o n of c h l o r o p h y l l i n the G u l f of M e x i c o
to
the vertical
(7).
T h e m o d e l s p r o p o s e d b y R i l e y et al. a n d Steele are b a s i c a l l y s i m i l a r . E a c h c o n s i d e r the p r i m a r y d e p e n d e n t v a r i a b l e s to b e the p h y t o p l a n k t o n , z o o p l a n k t o n , a n d n u t r i e n t c o n c e n t r a t i o n . A c o n s e r v a t i o n of mass e q u a -
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
Phytoplankton
DI TORO E T A L .
135
Population
t i o n is w r i t t e n f o r e a c h species, a n d the s p a t i a l v a r i a t i o n is i n c o r p o r a t e d b y c o n s i d e r i n g finite v o l u m e elements w h i c h i n t e r a c t b e c a u s e o f v e r t i c a l eddy diffusion a n d d o w n w a r d advective transport of the phytoplankton. T h e i r e q u a t i o n s differ i n some details ( f o r e x a m p l e , the g r o w t h coefficients that w e r e u s e d a n d t h e assumptions o f s t e a d y state) b u t t h e p r i n c i p l e is t h e same. I n a d d i t i o n , these e q u a t i o n s w e r e a p p l i e d b y t h e authors t o a c t u a l m a r i n e situations a n d t h e i r solutions c o m p a r e d w i t h o b s e r v e d d a t a . T h i s is a c r u c i a l p a r t o f a n y i n v e s t i g a t i o n d i s c u s s i o n w h e r e i n t h e a s s u m p tions t h a t a r e m a d e a n d t h e a p p r o x i m a t i o n s t h a t a r e u s e d a r e difficult
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
to justify a priori. T h e m o d e l s o f b o t h R i l e y a n d Steele h a v e b e e n r e v i e w e d i n greater detail b y R i l e y ( I ) i n a discussion of their a p p l i c a b i l i t y a n d possible future development.
T h e difficulties e n c o u n t e r e d i n f o r m u l a t i n g s i m p l e
FLOW
ZOOPLANKTON
PREY
GRAZING
TEMPERATURE PHYTOPLANKTON
-ι
M. NUTRIENT LIMITATION
SOLAR RADIATION
NUTRIENTS
MAN —'
Figure
1.
NUTRIENT USE
MADE
INPUTS
Interactions of environmental variables and the phyto plankton, zooplankton, and nutrient systems
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
136
NONEQUILIBRIUM
SYSTEMS
IN
NATURAL
WATERS
t h e o r e t i c a l m o d e l s of p h y t o p l a n k t o n - z o o p l a n k t o n p o p u l a t i o n models w e r e discussed b y Steele
(8).
O t h e r m o d e l s have b e e n p r o p o s e d w h i c h f o l l o w the outlines of the equations a l r e a d y discussed.
E q u a t i o n s w i t h parameters that v a r y as a
f u n c t i o n of t e m p e r a t u r e , s u n l i g h t , a n d n u t r i e n t c o n c e n t r a t i o n h a v e b e e n presented b y D a v i d s o n a n d C l y m e r (9) a n d simulated b y C o l e (10).
A
set of equations w h i c h m o d e l the p o p u l a t i o n of p h y t o p l a n k t o n , z o o p l a n k t o n , a n d a species of fish i n a large l a k e h a v e b e e n p r e s e n t e d b y P a r k e r (11).
T h e a p p l i c a t i o n of the t e c h n i q u e s of p h y t o p l a n k t o n m o d e l i n g
to
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
the p r o b l e m of e u t r o p h i c a t i o n i n rivers a n d estuaries has b e e n p r o p o s e d b y C h e n (12).
T h e interrelations b e t w e e n
the n i t r o g e n c y c l e a n d the
p h y t o p l a n k t o n p o p u l a t i o n i n the P o t o m a c E s t u a r y has b e e n i n v e s t i g a t e d using a feed-forward-feed-back
m o d e l of the d e p e n d e n t v a r i a b l e s , w h i c h
interact l i n e a r l y f o l l o w i n g first o r d e r k i n e t i c s
(13).
T h e f o r m u l a t i o n s a n d equations p r e s e n t e d i n the subsequent
sections
are modifications a n d extensions of p r e v i o u s l y presented equations w h i c h i n c o r p o r a t e some a d d i t i o n a l p h y s i o l o g i c a l i n f o r m a t i o n o n the of p h y t o p l a n k t o n a n d z o o p l a n k t o n p o p u l a t i o n s .
behavior
I n contrast to the m a -
j o r i t y of the a p p l i c a t i o n s of p h y t o p l a n k t o n m o d e l s w h i c h have b e e n m a d e p r e v i o u s l y , the equations presented i n the subsequent sections are a p p l i e d to a r e l a t i v e l y s h a l l o w r e a c h of the S a n J o a q u i n R i v e r a n d the estuary further downstream.
T h e m o t i v a t i o n for this a p p l i c a t i o n is a n i n v e s t i g a -
t i o n of the p o s s i b i l i t y of excessive p h y t o p l a n k t o n g r o w t h s as e n v i r o n m e n t a l c o n d i t i o n s a n d n u t r i e n t l o a d i n g s are c h a n g e d i n this area. T h u s , t h e p r i m a r y thrust of this i n v e s t i g a t i o n is to p r o d u c e a n e n g i n e e r i n g t o o l w h i c h c a n be u s e d i n the s o l u t i o n of e n g i n e e r i n g p r o b l e m s to protect the w a t e r q u a l i t y of the r e g i o n of interest.
Phytoplankton
System Interactions
T h e major obstacle to a rigorous q u a n t i t a t i v e t h e o r y of p h y t o p l a n k t o n p o p u l a t i o n d y n a m i c s is the enormous
c o m p l e x i t y of the b i o l o g i c a l a n d
p h y s i c a l p h e n o m e n a w h i c h influence the p o p u l a t i o n . It is necessary, therefore, to i d e a l i z e a n d s i m p l i f y the c o n c e p t u a l m o d e l so that the result is a m a n a g e a b l e set of d e p e n d e n t systems or v a r i a b l e s a n d t h e i r interrelations. T h e m o d e l c o n s i d e r e d i n the f o l l o w i n g sections is f o r m u l a t e d o n the basis of three p r i m a r y d e p e n d e n t systems: the p h y t o p l a n k t o n p o p u l a t i o n , w h o s e b e h a v i o r is the object of c o n c e r n ; the h e r b i v o r o u s z o o p l a n k t o n
popula-
t i o n , w h i c h are the predators of the p h y t o p l a n k t o n , u t i l i z i n g the a v a i l a b l e p h y t o p l a n k t o n as a f o o d s u p p l y ; a n d the n u t r i e n t system, w h i c h r e p r e sents the n u t r i e n t s , p r i m a r i l y i n o r g a n i c substances, that are r e q u i r e d b y the phytoplankton d u r i n g growth.
T h e s e three systems are affected
not
o n l y b y t h e i r interactions, b u t also b y e x t e r n a l e n v i r o n m e n t a l v a r i a b l e s .
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
Di
TORO
E T
AL.
Phytoplankton
137
Population
T h e three p r i n c i p a l v a r i a b l e s c o n s i d e r e d i n this analysis are t e m p e r a t u r e , w h i c h influences a l l b i o l o g i c a l a n d c h e m i c a l reactions, d i s p e r s i o n a n d a d v e c t i v e flow, w h i c h are the p r i m a r y mass t r a n s p o r t m e c h a n i s m s i n a n a t u r a l b o d y of w a t e r , a n d solar r a d i a t i o n , the energy source for the p h o t o s y n t h e t i c g r o w t h of the p h y t o p l a n k t o n . I n a d d i t i o n to these e x t e r n a l v a r i a b l e s , the effect of man's a c t i v i t i e s o n the system is felt p r e d o m i n a t e l y i n the n u t r i e n t system. Sources of the necessary n u t r i e n t s m a y b e the r e s u l t of, for e x a m p l e , i n p u t s of w a s t e w a t e r f r o m m u n i c i p a l a n d i n d u s t r i a l discharges or a g r i c u l t u r a l runoff.
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
T h e m a n - m a d e w a s t e loads are i n most cases the p r i m a r y c o n t r o l v a r i a b l e s w h i c h are a v a i l a b l e t o affect changes i n the p h y t o p l a n k t o n a n d z o o p l a n k t o n systems. A s c h e m a t i c r e p r e s e n t a t i o n of these systems a n d t h e i r i n t e r relations is p r e s e n t e d i n F i g u r e 1. I n a d d i t i o n to the c o n c e p t u a l m o d e l w h i c h isolates the m a j o r i n t e r a c t i n g systems, a f u r t h e r i d e a l i z a t i o n is r e q u i r e d w h i c h sets the l o w e r a n d u p p e r l i m i t s of t h e t e m p o r a l a n d s p a t i a l scales b e i n g
considered.
W i t h i n the context of the p r o b l e m of e u t r o p h i c a t i o n a n d its c o n t r o l , the seasonal d i s t r i b u t i o n of the p h y t o p l a n k t o n is of m a j o r i m p o r t a n c e , so that the l o w e r l i m i t of the t e m p o r a l scale is o n the o r d e r of days. T h e s p a t i a l scale is set b y the h y d r o d y n a m i c s of the w a t e r b o d y b e i n g c o n s i d e r e d . F o r e x a m p l e , i n a t i d a l estuary, the s p a t i a l scale is o n the o r d e r of m i l e s whereas i n a s m a l l l a k e i t is l i k e l y a g o o d d e a l s m a l l e r . T h e u p p e r l i m i t s for the t e m p o r a l a n d s p a t i a l extent of the m o d e l are d i c t a t e d p r i m a r i l y b y p r a c t i c a l considerations s u c h as the l e n g t h o f t i m e for w h i c h a d e q u a t e i n f o r m a t i o n is a v a i l a b l e a n d the size of the c o m p u t e r b e i n g u s e d for t h e calculations. T h e s e s i m p l i f y i n g assumptions are m a d e p r i m a r i l y o n the basis of a n i n t u i t i v e assessment of the i m p o r t a n t features of the systems b e i n g c o n s i d e r e d a n d the experience g a i n e d b y p r e v i o u s a t t e m p t s to address these a n d r e l a t e d p r o b l e m s i n n a t u r a l b o d i e s of w a t e r . T h e b a s i c p r i n c i p l e to b e a p p l i e d to this c o n c e p t u a l m o d e l , w h i c h c a n t h e n b e t r a n s l a t e d i n t o m a t h e m a t i c a l terms, is t h a t of c o n s e r v a t i o n of mass. Conservation of Mass T h e p r i n c i p l e of c o n s e r v a t i o n of mass is the basis u p o n w h i c h the mathematical development
is s t r u c t u r e d . A l t e r n a t e f o r m u l a t i o n s , s u c h
as those b a s e d o n the c o n s e r v a t i o n of energy, h a v e b e e n p r o p o s e d .
How-
ever, c o n s e r v a t i o n of mass has p r o v e d a u s e f u l s t a r t i n g p o i n t for m a n y m o d e l s of the n a t u r a l e n v i r o n m e n t . T h e p r i n c i p l e of c o n s e r v a t i o n of mass s i m p l y states that the mass of the substances b e i n g c o n s i d e r e d w i t h i n a n a r b i t r a r i l y selected
volume
m u s t b e a c c o u n t e d for b y e i t h e r mass t r a n s p o r t i n t o a n d out of the v o l u m e
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
138
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
o r as mass p r o d u c e d or r e m o v e d w i t h i n the v o l u m e .
T h e t r a n s p o r t of
mass i n a n a t u r a l w a t e r system arises p r i m a r i l y f r o m t w o
phenomena:
d i s p e r s i o n , w h i c h is c a u s e d b y t i d a l a c t i o n , d e n s i t y differences, t u r b u l e n t d i f f u s i o n , w i n d a c t i o n , etc.; a n d a d v e c t i o n o w i n g to a u n i d i r e c t i o n a l flow — f o r e x a m p l e , the fresh w a t e r flow i n a r i v e r or estuary or the p r e v a i l i n g c u r r e n t s i n a b a y or a near-shore e n v i r o n m e n t . T h e d i s t i n c t i o n b e t w e e n t h e t w o p h e n o m e n a is that, over the t i m e scale o f interest, d i s p e r s i v e mass t r a n s p o r t mixes adjacent v o l u m e s of w a t e r so t h a t a p o r t i o n of the w a t e r i n adjacent v o l u m e elements is i n t e r c h a n g e d , a n d the mass t r a n s
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
p o r t is p r o p o r t i o n a l to the difference i n concentrations of mass i n adjacent volumes.
A d v e c t i v e t r a n s p o r t , h o w e v e r , is transport i n t h e d i r e c t i o n of
t h e a d v e c t i v e flow o n l y .
I n a d d i t i o n to the mass t r a n s p o r t p h e n o m e n a ,
mass i n the v o l u m e c a n increase r e s u l t i n g f r o m sources w i t h i n the v o l u m e . T h e s e sources represent t h e rate of a d d i t i o n or r e m o v a l of mass p e r u n i t t i m e p e r u n i t v o l u m e b y c h e m i c a l a n d b i o l o g i c a l processes. A m a t h e m a t i c a l expression of c o n s e r v a t i o n of mass w h i c h i n c l u d e s t h e terms to d e s c r i b e the mass t r a n s p o r t p h e n o m e n a a n d t h e source t e r m is a p a r t i a l d i f f e r e n t i a l e q u a t i o n of the f o l l o w i n g f o r m =
V
· EVP
-
V
· QP + S
w h e r e Ρ (x, y, ζ, t) is the c o n c e n t r a t i o n of the substance of phytoplankton biomass—as
(1)
P
interest—e.g.,
a f u n c t i o n of p o s i t i o n a n d t i m e ; Ε is the
d i a g o n a l m a t r i x of d i s p e r s i o n coefficients; Q is t h e a d v e c t i v e
flow
rate
v e c t o r ; S ρ is t h e v e c t o r w h o s e terms are the rate of mass a d d i t i o n b y the sources a n d s i n k s ; a n d V is t h e g r a d i e n t operator. t i a l e q u a t i o n is too
T h i s partial differen
g e n e r a l to b e s o l v e d a n a l y t i c a l l y , a n d n u m e r i c a l
t e c h n i q u e s are u s e d i n its s o l u t i o n . A n effective a p p r o x i m a t i o n to E q u a t i o n 1 is o b t a i n e d b y s e g m e n t i n g t h e w a t e r b o d y of interest i n t o η v o l u m e elements of v o l u m e V , a n d r e p r e s e n t i n g the d e r i v a t i v e s i n E q u a t i o n 1 b y differences. η χ
η d i a g o n a l m a t r i x of v o l u m e s V ; A, the η χ ;
L e t V be
the
η m a t r i x of d i s p e r s i v e
a n d a d v e c t i v e t r a n s p o r t t e r m s ; S , t h e η v e c t o r of source terms S , P
Pj
aver
a g e d over the v o l u m e V,·; a n d P, the η v e c t o r of concentrations P , w h i c h ;
are the concentrations i n the v o l u m e s . T h e n the finite difference e q u a t i o n s c a n b e expressed as a v e c t o r d i f f e r e n t i a l e q u a t i o n VP
= AP
+
(2)
VS
P
w h e r e the d o t denotes a t i m e d e r i v a t i v e . T h e details of the a p p l i c a t i o n of this v e r s i o n of the d i s p e r s i o n a d v e c t i o n e q u a t i o n to n a t u r a l b o d i e s of w a t e r has b e e n p r e s e n t e d b y T h o m a n n (14) etal.
and reviewed by O'Connor
(15).
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
DI
TORO
E T
Phytoplankton
A L .
139
Population
T h e m a i n interest i n this r e p o r t is c e n t e r e d o n the source terms
S
Pj
f o r the p a r t i c u l a r a p p l i c a t i o n of these equations to t h e p h y t o p l a n k t o n p o p u l a t i o n i n n a t u r a l w a t e r bodies. t e r m of p h y t o p l a n k t o n , S
It is c o n v e n i e n t to express the source
as a difference b e t w e e n the g r o w t h rate,
Pj>
of p h y t o p l a n k t o n a n d t h e i r d e a t h rate, D , S
Pj
where G
Pj
and D
Pj
=
-
(G
Pj
h a v e units [ d a y ] . 1
G, Pj
i n the v o l u m e V ; . T h a t is
Pj
(3)
D )Pj Pj
T h e s u b s c r i p t Ρ identifies the
q u a n t i t i e s as r e f e r r i n g to p h y t o p l a n k t o n ; the s u b s c r i p t / refers to the v o l Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
ume element being considered.
T h e b a l a n c e b e t w e e n the m a g n i t u d e of
the g r o w t h rate a n d d e a t h rate d e t e r m i n e s the rate at w h i c h p h y t o p l a n k t o n mass is c r e a t e d or d e s t r o y e d i n the v o l u m e element V ; . T h u s , the f o r m of the g r o w t h a n d d e a t h rates as f u n c t i o n s of e n v i r o n m e n t a l p a r a m eters a n d d e p e n d e n t
v a r i a b l e s is a n i m p o r t a n t element i n a successful
phytoplankton population model. Phytoplankton
Growth
Rate
T h e g r o w t h rate of a p o p u l a t i o n of p h y t o p l a n k t o n i n a n a t u r a l e n v i r o n m e n t is a c o m p l i c a t e d
f u n c t i o n of the species of
phytoplankton
present a n d t h e i r d i f f e r i n g reactions to solar r a d i a t i o n , t e m p e r a t u r e , a n d the b a l a n c e b e t w e e n
nutrient availability and phytoplankton require
ments. T h e c o m p l e x a n d often c o n f l i c t i n g d a t a p e r t i n e n t to this p r o b l e m have been reviewed recently b y H u t c h i n s o n (1967)
(16),
Strickland
(1965) (17), L u n d (1965) ( I S ) , and Raymont (1963) (19).
The avail
a b l e i n f o r m a t i o n is not sufficiently d e t a i l e d to s p e c i f y the g r o w t h k i n e t i c s for i n d i v i d u a l p h y t o p l a n k t o n species i n n a t u r a l e n v i r o n m e n t s .
Hence,
i n o r d e r to a c c o m p l i s h the task of c o n s t r u c t i n g a g r o w t h rate f u n c t i o n , a s i m p l i f i e d a p p r o a c h is f o l l o w e d .
T h e p r o b l e m of different species a n d
t h e i r associated n u t r i e n t a n d e n v i r o n m e n t a l r e q u i r e m e n t s is not addressed. I n s t e a d , the p o p u l a t i o n is c h a r a c t e r i z e d as a w h o l e b y a m e a s u r e m e n t of the biomass of p h y t o p l a n k t o n present.
T y p i c a l q u a n t i t i e s u s e d are the
c h l o r o p h y l l c o n c e n t r a t i o n of the p o p u l a t i o n , the n u m b e r of organisms p e r u n i t v o l u m e , or the d r y w e i g h t of the p h y t o p l a n k t o n p e r u n i t v o l u m e (20).
W i t h a c h o i c e of biomass u n i t s e s t a b l i s h e d , the g r o w t h rate ex
presses the rate of p r o d u c t i o n of biomass as a f u n c t i o n of the i m p o r t a n t e n v i r o n m e n t a l v a r i a b l e s . T h e e n v i r o n m e n t a l v a r i a b l e s to be
considered
b e l o w are l i g h t , t e m p e r a t u r e , a n d the v a r i o u s nutrients w h i c h are neces sary for p h y t o p l a n k t o n g r o w t h . Light and Temperature.
C o n s i d e r a p o p u l a t i o n of p h y t o p l a n k t o n ,
either a n a t u r a l association or a single species c u l t u r e , a n d assume that the o p t i m u m or s a t u r a t i n g l i g h t i n t e n s i t y for m a x i m u m g r o w t h rate of biomass is present a n d i l l u m i n a t e s a l l the cells, a n d f u r t h e r that a l l the
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
140
NONEQUILIBRIUM
SYSTEMS
IN NATURAL
WATERS
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
4.0
0
5
10
15
20
25
30
TEMPERATURE °C
Figure
2.
Phytopknkton saturated growth rate (base e) as a function of temperature
necessary n u t r i e n t s are present i n sufficient q u a n t i t y so t h a t n o n u t r i e n t is i n short s u p p l y . F o r this c o n d i t i o n , t h e g r o w t h rate t h a t i s o b s e r v e d is c a l l e d the m a x i m u m o r s a t u r a t e d g r o w t h rate, K'. M e a s u r e m e n t s of K ' ( b a s e e ) as a f u n c t i o n of t e m p e r a t u r e are s h o w n i n F i g u r e 2 a n d l i s t e d i n T a b l e I . T h e e x p e r i m e n t a l c o n d i t i o n s u n d e r w h i c h these d a t a w e r e c o l l e c t e d a p p e a r t o meet the r e q u i r e m e n t s of o p t i m u m l i g h t i n t e n s i t y a n d sufficient n u t r i e n t s u p p l y . T h e d a t a presented a r e selected f r o m l a r g e r g r o u p s o f r e p o r t e d values, a n d t h e y represent t h e m a x i m u m o f these r e p o r t e d g r o w t h rates. T h e p r e s u m p t i o n is that these large values reflect the m a x i m u m g r o w t h rates a c h i e v a b l e . F r o m a n e c o l o g i c a l p o i n t of v i e w , i t is necessary t o c o n s i d e r the species most a b l e t o c o m p e t e , a n d , i n terms of g r o w t h rate, i t is t h e species w i t h t h e largest g r o w t h rate w h i c h w i l l predominate.
A s t r a i g h t - l i n e fit to this d a t a appears t o b e a c r u d e b u t
r e a s o n a b l e a p p r o x i m a t i o n o f t h e d a t a r e l a t i n g s a t u r a t e d g r o w t h rate K' to t e m p e r a t u r e , Τ Κ'
X
w h e r e K has values i n the range 0.10 ± 0.025 d a y " x
(4)
= KT 1
°C
_ 1
. T h i s coefficient
i n d i c a t e s a n a p p r o x i m a t e d o u b l i n g o f t h e s a t u r a t e d g r o w t h rate f o r a t e m p e r a t u r e c h a n g e f r o m 10° t o 20 ° C , i n a c c o r d a n c e w i t h t h e g e n e r a l l y reported temperature-dependence
of b i o l o g i c a l g r o w t h rates. T h e o p t i
m u m temperature for algal growth appears to b e i n the range
between
20° a n d 2 5 ° C , a l t h o u g h t h e r m o p h i l i c strains a r e k n o w n t o exist (27). A t h i g h e r temperatures, there is u s u a l l y a s u p p r e s s i o n o f t h e saturated g r o w t h rate, a n d t h e s t r a i g h t - l i n e a p p r o x i m a t i o n i s n o l o n g e r v a l i d .
It should
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
Di TORO E T A L .
Phytoplankton
141
Population
also b e n o t e d that t h e scatter i n the d a t a i n F i g u r e 2 is sufficiently large so that t h e l i n e a r d e p e n d e n c e o n t e m p e r a t u r e a n d also the m a g n i t u d e of K' c a n v a r y c o n s i d e r a b l y i n p a r t i c u l a r situations. I n t h e n a t u r a l e n v i r o n m e n t , the l i g h t i n t e n s i t y t o w h i c h the p h y t o p l a n k t o n are exposed is not u n i f o r m l y at the o p t i m u m v a l u e b u t i t varies as a f u n c t i o n of d e p t h because of the n a t u r a l t u r b i d i t y present a n d as a f u n c t i o n of t i m e over the d a y .
T h u s , the p h y t o p l a n k t o n i n t h e l o w e r
layers are exposed to intensities b e l o w the o p t i m u m a n d those at the surface m a y b e exposed to intensities a b o v e the o p t i m u m so that t h e i r
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
g r o w t h rate w o u l d b e i n h i b i t e d . F i g u r e 3 b , c , d f r o m R y t h e r (28)
are
plots of the photosynthesis rate n o r m a l i z e d b y the photosynthesis rate at the o p t i m u m or s a t u r a t i n g l i g h t i n t e n s i t y vs. t h e l i g h t i n t e n s i t y , I, i n c i d e n t o n the p o p u l a t i o n s . F i g u r e 3a is a p l o t of f u n c t i o n (5) for I
8
=
2000 ft-candles, p r o p o s e d b y Steele (8)
to d e s c r i b e the l i g h t -
d e p e n d e n c e of the g r o w t h rate of p h y t o p l a n k t o n . T h e s i m i l a r i t y b e t w e e n this f u n c t i o n a n d d a t a f r o m R y t h e r is sufficient to w a r r a n t the use of this expression to express the influence of n o n o p t i m u m l i g h t i n t e n s i t y o n the g r o w t h rate of p h y t o p l a n k t o n . w o r k e r s h a v e suggested Table I. Ref. 21 22 23
5 2^ 24 25 25 25 25 26
Other
different forms for this r e l a t i o n s h i p (29,
Maximum G r o w t h Rates as a Function of Organism
Chlorella ellipsoidea (green alga) Nannochloris atomus (marine flagellate) Nitzschia closterium (marine d i a t o m )
N a t u r a l association Chlorella pyrenoidosa Scenedesmus quadricauda Chlorella pyrenoidosa Chlorella vulgaris Scenedesmus obliquus Chlamydomonas reinhardti Chlorella pyrenoidosa (synchronized culture) (high-temperature strain)
Temperature, 25 15 20 10 27 19 15.5 10 4 2.6 25 25 25 25 25 25 10 15 20 25
30).
Temperature
Saturated Growth Rate, K'(Base , Day- ) 1
e
3.14 1.2 2.16 1.54 1.75 1.55 1.19 0.67 0.63 0.51 1.96 2.02 2.15 1.8 1.52 2.64 0.2 1.1 2.4 3.9
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
142
NONEQUILIBRIUM SYSTEMS I N N A T U R A L WATERS
0
1
2
LIGHT
3
4
5
INTENSITY
6
7
8
9
10
(FOOT CANDLES χ Ι Ο ) 3
Limnology and Oceanography
Figure 3. Normalized rate of photosynthesis vs. incident light intensity: (a) Theoretical curve after Steele (8); (b,c,d) Data after Ryther (28) T h e s e v a r i a t i o n s a p p r o x i m a t e l y f o l l o w the shape o f E q u a t i o n 5 f o r l o w l i g h t intensities b u t differ f o r the r e g i o n o f h i g h l i g h t intensities, u s u a l l y b y not d e c r e a s i n g after some o p t i m u m i n t e n s i t y is r e a c h e d . I n p a r t i c u l a r , T a m i y a et al. (21) h a v e i n v e s t i g a t e d the g r o w t h rate o f ChloreUa soidea
t o v a r i o u s l i g h t a n d t e m p e r a t u r e regimes.
ellip-
T h e saturated growth
rates as a f u n c t i o n o f t e m p e r a t u r e are i n c l u d e d i n F i g u r e 2. T h e influence o f v a r y i n g l i g h t i n t e n s i t y fits the f u n c t i o n F(I)
=
(6)
I + K'/a
w h e r e K' is the saturated g r o w t h rate a n d α is a constant ( a = 0.45 d a y "
1
k i l o l u x ' ) . H o w e v e r , since K' i s a f u n c t i o n o f t e m p e r a t u r e , t h e s a t u r a t i n g 1
l i g h t i n t e n s i t y f o r E q u a t i o n 6 is also a f u n c t i o n o f t e m p e r a t u r e .
Similar
d a t a o b t a i n e d b y S o r o k i n et al. (26) u s i n g a h i g h - t e m p e r a t u r e s t r a i n o f Chlorella
pyrenoidosa
s u p p o r t the t e m p e r a t u r e - d e p e n d e n c e
o f the s a t u -
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
5.
DI
TORO
E T
Phytopfonkton
AL.
143
Population
r a t i n g l i g h t i n t e n s i t y f o r c h l o r e l l a . T h e r e f o r e , i n u s i n g E q u a t i o n 5, a temperature-dependent light saturation intensity m a y be warranted. A t this p o i n t i n the analysis, the effect of the n a t u r a l e n v i r o n m e n t o n the l i g h t a v a i l a b l e to the p h y t o p l a n k t o n m u s t b e i n c l u d e d . E q u a t i o n 5 expresses the r e d u c t i o n i n the g r o w t h rate c a u s e d b y n o n o p t i m u m l i g h t intensity. T h i s expression c a n therefore b e u s e d to c a l c u l a t e the r e d u c t i o n i n g r o w t h rate to b e e x p e c t e d at a n y i n t e n s i t y . H o w e v e r , this is
too
d e t a i l e d a d e s c r i p t i o n for c o n s e r v a t i o n of mass equations w h i c h d e a l w i t h h o m o g e n e o u s v o l u m e elements, Vj, a n d the g r o w t h rate w i t h i n these
Downloaded by UNIV OF PITTSBURGH on May 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch005
elements.
W h a t is r e q u i r e d is averages of the g r o w t h r a t e o v e r the v o l
u m e elements. I n o r d e r to c a l c u l a t e the l i g h t i n t e n s i t y w h i c h is present i n the v o l u m e V , the l i g h t p e n e t r a t i o n at the d e p t h of w a t e r w h e r e Vj is l o c a t e d }
m u s t be e v a l u a t e d . T h e rate at w h i c h l i g h t is a t t e n u a t e d w i t h respect to d e p t h is g i v e n b y the e x t i n c t i o n coefficient, k .
T h a t is, at a d e p t h z, t h e
e
i n t e n s i t y at that d e p t h , I(z),
is r e l a t e d to the surface i n t e n s i t y , I , b y the 0
formula I{z) where ζ =
= I
0
exp ( -
(7)
k z) e
0 is the w a t e r surface a n d ζ is p o s i t i v e d o w n w a r d . T h u s , the
r e d u c t i o n of the s a t u r a t e d g r o w t h rate at a n y d e p t h ζ r e s u l t i n g f r o m the n o n o p t i m u m l i g h t i n t e n s i t y present is g i v e n b y E q u a t i o n 7, s u b s t i t u t e d i n t o E q u a t i o n 5. (8) T o a p p l y this e q u a t i o n to the finite v o l u m e elements, w i t h i n w h i c h i t is a s s u m e d that the p h y t o p l a n k t o n c o n c e n t r a t i o n is u n i f o r m , i t is necessary to average this r e d u c t i o n factor t h r o u g h o u t the d e p t h of the e l e m e n t Vj.
Let Hj
and Η
0
volume
be the depths of the surface a n d b o t t o m ,
υ
r e s p e c t i v e l y , of the v o l u m e e l e m e n t Vj.
F o r e x a m p l e , i f the v o l u m e ele
m e n t Vj extends f r o m the w a t e r surface to t h e b o t t o m of the w a t e r b o d y , then H ; = 0
0 and Η
υ
is the w a t e r d e p t h at the l o c a t i o n of Vj.
sake of s i m p l i c i t y , i t is a s s u m e d t h a t this is the case. If H
oj
F o r the
Φ 0, a s t r a i g h t
f o r w a r d g e n e r a l i z a t i o n of the f o l l o w i n g average is r e q u i r e d . I n a d d i t i o n to a n average o v e r d e p t h , i t is also e x p e d i e n t to average the p h y t o p l a n k t o n g r o w t h rate o v e r a t i m e i n t e r v a l . S i n c e the t i m e scale w i t h i n w h i c h this analysis is a d d r e s s e d is the w e e k - t o - w e e k c h a n g e i n the p o p u l a t i o n o v e r a y e a r , a d a i l y average is a p p r o p r i a t e . F o r s i m p l i c i t y , it is a s s u m e d t h a t the i n c i d e n t solar r a d i a t i o n as a f u n c t i o n of t i m e o v e r a d a y is g i v e n b y the f u n c t i o n
Io(t)
=
I
0
/·(