4 Silica Variation in Stream Water with Time and Discharge V A N C E C. K E N N E D Y
Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
U . S. Geological Survey, Menlo Park, Calif. 94025
Silica
concentration
fornia
varies in a consistent
in the
water from various concentrated surface Thus,
during
than
which
a stream
increases
as subsurface With
an increasing
concentration
flow
rise, silica
flow comprises
of streamflow.
of northern
during
much flow
or
Silica the
in
decreases
decreasing proportion
soil
groundwater
of streamflow, Correlation
between
or specific
conductance
is poor
storm
from
Data
is present
variation
other
streams
observed
suggest
in the
be-
and
decreases.
of silica
then
component
slowly
runoff.
while
and
and stream discharge pattern
(sub-
initially
the major
discharge,
as
is more
groundwater.
of the streamflow
becomes
Cali-
storm runoff
seeps through
in overland
overland
comes
River
manner
sources enters the stream.
in water
flow)
Mattole
silica silica during
that
Mattole
the River
elsewhere.
S i l i c a comprises a significant f r a c t i o n of the d i s s o l v e d solids i n s t r e a m ^
w a t e r s ; h o w e v e r , there is r e l a t i v e l y l i t t l e d e t a i l e d i n f o r m a t i o n o n the
variations i n s i l i c a c o n c e n t r a t i o n w i t h t i m e a n d s t r e a m d i s c h a r g e , a n d f e w attempts h a v e b e e n m a d e to e x p l a i n s u c h t i m e - d e p e n d e n t v a r i a t i o n s as h a v e b e e n o b s e r v e d .
T h e c o n c e n t r a t i o n of most d i s s o l v e d constituents
i n s t r e a m w a t e r decreases w i t h i n c r e a s i n g d i s c h a r g e b u t , as D a v i s
(J)
has p o i n t e d out, the s i l i c a content is less v a r i a b l e t h a n t h a t of a n y o t h e r of the m a j o r d i s s o l v e d constituents. T h i s means t h a t the p r o p o r t i o n of s i l i c a i n the d i s s o l v e d solids b e c o m e s greater w i t h i n c r e a s i n g d i s c h a r g e a n d i m p l i e s that the rate of s i l i c a release f r o m soils increases m o r e r a p i d l y t h a n t h a t o f the other d i s s o l v e d solids d u r i n g s t o r m runoff. T h e f a c t t h a t s i l i c a shows l i t t l e or no c o r r e l a t i o n w i t h d i s c h a r g e or specific c o n d u c t a n c e suggests that the controls of s i l i c a c o n c e n t r a t i o n i n stream w a t e r are 94 Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4.
KENNEDY
complex.
Silica Variation
in Stream
95
Water
C h e m i c a l - e q u i l i b r i u m m o d e l s a p p e a r i n a d e q u a t e to e x p l a i n the
b e h a v i o r of s i l i c a i n n a t u r a l w a t e r s d u r i n g s t o r m periods. T h i s r e p o r t presents d e t a i l e d i n f o r m a t i o n o n the v a r i a t i o n of s i l i c a w i t h t i m e , changes i n stream d i s c h a r g e , a n d specific c o n d u c t a n c e i n t h e w a t e r of the M a t t o l e R i v e r of n o r t h e r n C a l i f o r n i a a n d gives results of s o i l l e a c h i n g studies t h a t h e l p i n u n d e r s t a n d i n g the s i l i c a v a r i a t i o n s i n the M a t t o l e R i v e r . T h e s e results a n d d a t a f r o m other streams i n d i c a t e t h a t s i l i c a v a r i a t i o n s d u r i n g the w e t season m a y b e r e l a t e d to v a r y i n g rates of c h e m i c a l reactions i n the s o i l zone. S i l i c a c o n c e n t r a t i o n i n subsurface runoff waters is r e l a t e d to the l e n g t h of t i m e of contact w i t h the s o i l , the s o i l : w a t e r r a t i o , a n d the r a i n f a l l h i s t o r y p r i o r to the t i m e of s a m p l i n g . Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
P r e v i o u s W o r k . I n f o r m a t i o n p e r t i n e n t to this i n v e s t i g a t i o n has b e e n d r a w n f r o m three types of d a t a : the large b o d y of p u b l i s h e d s t r e a m - w a t e r analyses, the b a s i c w o r k o n s o l u b i l i t i e s of c r y s t a l l i n e a n d a m o r p h o u s s i l i c a a n d of v a r i o u s silicates, a n d a g r o u p of recent reports o n d i s s o l v e d s i l i c a i n s o i l waters. P a l m e r (2)
t h o u g h t that the m o r e a l k a l i n e waters f a v o r e d the r e t e n -
t i o n of s i l i c a i n s o l u t i o n i n streams of the P i e d m o n t P l a t e a u a n d G u l f C o a s t . H e also n o t e d that the p r o p o r t i o n of s i l i c a i n the d i s s o l v e d solids was h e l p f u l i n c o m p a r i n g the c h e m i s t r y of v a r i o u s s t r e a m waters. H e n d rickson and Krieger (3)
c o n c l u d e d that s i l i c a a n d specific c o n d u c t a n c e
w e r e p o o r l y r e l a t e d for several streams i n K e n t u c k y . D a v i s ( I )
made a
c o m p r e h e n s i v e s t u d y of silica i n g r o u n d a n d surface w a t e r s , u s i n g m a n y h u n d r e d s of p u b l i s h e d analyses. F r o m these he c o n c l u d e d that s i l i c a i n g r o u n d w a t e r — a n d , h e n c e , that i n stream w a t e r at l o w stages—is
pri-
m a r i l y r e l a t e d to the rocks a n d m i n e r a l s c o n t a c t i n g the w a t e r . H e f o u n d no m a r k e d influence of p H , s a l i n i t y , c l i m a t i c regions, v e g e t a t i o n , temperature on silica concentration.
or
S t o r m runoff a p p e a r e d to a c q u i r e
most of its silica w i t h i n a f e w days. E v i d e n c e for this w a s the fact t h a t s i l i c a concentrations i n stream w a t e r r e m a i n e d r e l a t i v e l y constant d u r i n g p e r i o d s of h i g h d i s c h a r g e despite the decrease i n d i s s o l v e d solids.
He
mentions several possible explanations for this, one of w h i c h w a s t h a t w a t e r t r a v e l l i n g t h r o u g h the u p p e r p a r t of the s o i l profile m i g h t c o n t a i n a p p r e c i a b l e s i l i c a l e a c h e d f r o m the s o i l a n d c o m p r i s e m u c h of the runoff d u r i n g a n d s h o r t l y after storms.
H o w e v e r , he felt that this m e t h o d
of
o b t a i n i n g s i l i c a r e q u i r e d that s i l i c a b e l e a c h e d f r o m the s o i l w h i l e other constituents w e r e d i s s o l v e d less r a p i d l y . A n e x p l a n a t i o n of this process p o s e d difficulties. I n a later s t u d y , D a v i s ( 4 )
f o u n d that surface runoff
f r o m r a i n c a n a c q u i r e 1-3 m g / l i t e r s i l i c a d u r i n g the first f e w m i n u t e s after r a i n contacts the soil. F e t h a n d others ( 5 )
also s h o w e d that s i l i c a
is released r a p i d l y ( t h a t is, i n a f e w days or so) to p e r c o l a t i n g , s l i g h t l y a c i d i c , s n o w m e l t waters w h i c h s u p p l y e p h e m e r a l springs i n the h i g h Sierra N e v a d a .
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
96
NONEQUILIBRIUM
SYSTEMS
IN
NATURAL
WATERS
O n e a p p r o a c h to i n t e r p r e t i n g the s i l i c a content of n a t u r a l waters is to d e t e r m i n e the rate of s o l u t i o n a n d s o l u b i l i t y of v a r i o u s m i n e r a l s w h i c h m i g h t b e the source of the d i s s o l v e d s i l i c a . K r a u s k o p f (6)
summarized
p r e v i o u s w o r k a n d p o i n t e d out that s i l i c i c a c i d ( s i l i c a ) is v i r t u a l l y u n d i s sociated b e l o w p H 9 a n d t h a t s i l i c a i n n a t u r a l waters is p r e d o m i n a n t l y i n true s o l u t i o n as H S i 0 , m o n o m e r i c s i l i c i c a c i d . I n a d d i t i o n , h e p e r 4
4
f o r m e d n e w experiments w h i c h i n d i c a t e d that the s o l u b i l i t y of a m o r p h o u s s i l i c a i n d i s t i l l e d w a t e r a n d sea w a t e r is o n the o r d e r of 120 m g / l i t e r at 2 5 ° C . T i m e for e q u i l i b r a t i o n was a p p r o x i m a t e l y 40 days for s i l i c a g e l o r c o l l o i d a l s i l i c a b u t w a s greater t h a n t w o m o n t h s for o p a l .
Siever
(7)
c o n f i r m e d K r a u s k o p f s w o r k o n s o l u b i l i t y of a m o r p h o u s s i l i c a as b e i n g Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
120-140 m g / l i t e r and estimated from higher-temperature data that quartz solubility was about
10.8 m g / l i t e r at 2 5 ° C , a l t h o u g h , e x p e r i m e n t a l l y ,
q u a r t z samples s h o w e d n o m e a s u r a b l e d i s s o l u t i o n at 25 ° C after three years. M o r e y et al. (8)
r e p o r t e d q u a r t z s o l u b i l i t y at 2 5 ° C as 6 m g / l i t e r .
Stober ( 9 ) s t u d i e d the s o l u b i l i t y of v a r i o u s f o r m s of s i l i c a a n d c o n c l u d e d that after i n i t i a l release of s i l i c a f r o m the s o l i d , a l a y e r of a d s o r b e d s i l i c a forms a n d controls the final c o n c e n t r a t i o n of s i l i c a i n s o l u t i o n . W o r k has also b e e n d o n e o n the rate of release of s i l i c a f r o m s i l i c a t e m i n e r a l s a n d o n e q u i l i b r i u m concentrations of s i l i c a i n solutions i n c o n tact w i t h n a t u r a l l y - o c c u r r i n g silicates.
Garrels and Christ
(10)
have
i n d i c a t e d that, c o n s i d e r i n g the p H a n d a l u m i n u m concentrations present, the s i l i c a concentrations i n most g r o u n d a n d s t r e a m waters ( 6 - 6 0
mg/
l i t e r ) are i n the range that m i g h t b e e x p e c t e d f r o m e q u i l i b r i u m w i t h kaolinite.
P o l z e r a n d H e m (11)
f o u n d that s i l i c a concentrations
were
s t i l l i n c r e a s i n g after t w o years i n a d i l u t e suspension of i m p u r e k a o l i n i t e at p H 3.3-3.7. A t the e n d of the experiments, t h e s i l i c a c o n c e n t r a t i o n w a s 8 - 1 0 m g / l i t e r . P a r t of the d i s s o l v e d s i l i c a w a s a t t r i b u t e d to s o l u t i o n of a free s i l i c a i m p u r i t y . M a c k e n z i e a n d G a r r e l s (12)
and Mackenzie
et al. ( 13 ) s h o w e d that a p p r e c i a b l e amounts of s i l i c a w e r e released to sea w a t e r f r o m v a r i o u s c l a y m i n e r a l s w i t h i n a 10-day p e r i o d a n d c o n c l u d e d that the s i l i c a release w a s g o v e r n e d b y a n a l u m i n o u s r e s i d u e o n minerals.
C o r r e n s a n d v o n E n g e l h a r d t (14),
a n d G a r r e l s a n d H o w a r d (16)
Nash and Marshall
the (15),
i n s t u d y i n g release of Κ f r o m K - f e l d s p a r s
a l l v i s u a l i z e the d e v e l o p m e n t of a r e a c t i o n film o n the g r a i n surface w h i c h is d e p l e t e d i n Κ ( h e n c e , r e l a t i v e l y h i g h i n s i l i c a ) a n d t h r o u g h w h i c h Κ ions m u s t diffuse as t h e y go f r o m the m i n e r a l i n t o solution. W o l l a s t
(17)
s t u d i e d the k i n e t i c s of s i l i c a release f r o m K - f e l d s p a r a n d stated t h a t " t h e w e a t h e r i n g of f e l d s p a r u n d e r n a t u r a l c o n d i t i o n s c a n b e d e s c r i b e d as a diffusion m e c h a n i s m of H S i 0 4
4
through a residual layer, constituted b y
s l i g h t l y s o l u b l e A l ( O H ) a n d subsequent r e a c t i o n of these t w o substances H
to f o r m a h y d r a t e d a l u m i n o - s i l i c a t e .
,,
L u c e (18)
f o u n d solid-state d i f
f u s i o n to be the r a t e - c o n t r o l l i n g step for b o t h s i l i c a a n d m a g n e s i u m d u r i n g
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4.
Silica Variation
KENNEDY
in Stream
97
Water
e a r l y stages of l e a c h i n g of m a g n e s i u m silicates. I n s u m m a r i z i n g controls o n s i l i c a c o n c e n t r a t i o n i n s o i l w a t e r s , K i t t r i c k (19)
l i s t e d the f o l l o w i n g
factors: rate of d i s s o l u t i o n of u n s t a b l e silicates, rate of p r e c i p i t a t i o n of stable silicates, rate of m o v e m e n t of s i l i c a - b e a r i n g solutions out of the system, a n d rate of p l a n t u p t a k e . S o i l - l e a c h i n g studies i n d i c a t e t h a t some s i l i c a is r e l e a s e d f r o m s o i l rather r a p i d l y . M c K e a g u e a n d C l i n e (20)
have shown that i n soil-water
m i x t u r e s at 1 0 0 % w a t e r s a t u r a t i o n , the s i l i c a i n s o l u t i o n after 5 m i n u t e s was a p p r o x i m a t e l y h a l f as great as t h a t after 10 d a y s . A f t e r t h e first d a y or t w o the s i l i c a c o n c e n t r a t i o n i n c r e a s e d v e r y s l o w l y . T h e y also d e m o n strated t h a t p H has a m a r k e d effect o n s i l i c a concentrations i n s o i l s o l u Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
tions (21).
T h e s e authors a t t r i b u t e d the c o n t r o l of s i l i c a c o n c e n t r a t i o n
to p H - d e p e n d e n t
a d s o r p t i o n a n d i n d i c a t e d t h a t , of the c o m m o n
soil
m i n e r a l s , i r o n a n d a l u m i n u m oxides h a v e a p p r e c i a b l e a d s o r p t i o n c a p a c i t y . Jones a n d H a n d r e c k (22,
23)
s t u d i e d the effects of i r o n a n d a l u m i n u m
oxides o n s i l i c a concentrations i n s o i l solutions a n d c o n c l u d e d t h a t b o t h c a u s e d a significant r e d u c t i o n i n d i s s o l v e d s i l i c a , w i t h a l u m i n u m oxides b e i n g most effective.
M i n i m u m s i l i c a concentrations
occurred
9 - 1 0 i n solutions i n contact w i t h i r o n a n d a l u m i n u m oxides. F l e h m i g (24)
at p H
Harder and
r e p o r t e d that the h y d r o x i d e s of i r o n , a l u m i n u m , a n d other
elements c o u l d r e m o v e s i l i c a f r o m solutions c o n t a i n i n g as l i t t l e as 0.5 mg/liter Si0 . 2
B r i c k e r a n d G o d f r e y ( 2 5 ) f o u n d t h a t o n l y a f e w h o u r s to a f e w d a y s w e r e n e e d e d for the s i l i c a c o n c e n t r a t i o n to a c h i e v e a constant v a l u e i n w a t e r r e c y c l e d t h r o u g h a s o i l c o l u m n . T h e same s i l i c a c o n c e n t r a t i o n w a s a t t a i n e d s t a r t i n g w i t h w a t e r c o n t a i n i n g either m o r e or less s i l i c a t h a n that at " e q u i l i b r i u m . " S i m i l a r conclusions r e g a r d i n g the s t a b i l i z i n g effect of s o i l o n d i s s o l v e d s i l i c a w e r e r e a c h e d b y M i l l e r
(26).
T h e w o r k d e s c r i b e d a b o v e shows t h a t s i l i c a c a n b e r e l e a s e d o r t a k e n u p r a p i d l y — t h a t is, w i t h i n a f e w m i n u t e s or h o u r s — a n d t h a t the m e c h a n i s m is not s i m p l y one of s o l u b i l i t y . Methods of Sample Treatment
and
Analysis
W a t e r samples o b t a i n e d i n this s t u d y w e r e c o l l e c t e d n e a r m i d s t r e a m i n p o l y e t h y l e n e bottles a n d filtered t h r o u g h 0 . 4 5 - m i c r o n m e m b r a n e as soon as possible
after c o l l e c t i o n u s i n g c o m p r e s s e d
filters
air. N o r m a l l y ,
samples of 4 - 8 liters w e r e passed t h r o u g h a 4 - i n c h ( 1 0 . 1 6 - c m ) d i a m e t e r filter,
a n d the first 1-1.5 liters w e r e d i s c a r d e d . E x c e p t u n d e r c o n d i t i o n s
of u n u s u a l l y clear w a t e r , the filter w a s p a r t i a l l y c l o g g e d b y
sediment
b e f o r e a n y filtrate w a s r e t a i n e d , so the effective p o r e size of the
filter
was p r o b a b l y less t h a n 0.2 m i c r o n for most samples a n d less t h a n 0.1 m i c r o n for samples c o l l e c t e d d u r i n g l a r g e r flows w h e n s e d i m e n t
concen-
trations w e r e h i g h . W h e n samples c o n t a i n i n g m o r e t h a n 5000 m g / l i t e r
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
98
NONEQUILIBRIUM
of s u s p e n d e d s e d i m e n t w e r e
filtered,
SYSTEMS
the t i m e for
IN
NATURAL
filtration
occasionally
exceeded 6 hours but c o m m o n l y 2-4 hours were required. After 4 m l of reagent g r a d e c o n c e n t r a t e d H N 0 filtrate,
3
WATERS
filtration,
was a d d e d to e a c h g a l l o n of
w h i c h was stored i n a polyethylene bottle u n t i l it was analyzed
f o r m a j o r constituents. S u s p e n d e d - s e d i m e n t s a m p l e s w e r e o b t a i n e d at l o w
flow
by
com-
p o s i t i n g w a t e r samples c o l l e c t e d at three points i n the cross section. U n d e r h i g h e r flow c o n d i t i o n s , s a m p l i n g w a s d o n e at five p o i n t s e q u a l l y s p a c e d i n the cross section. T h e s a m p l i n g d e v i c e , a D H - 5 9 h a n d s a m p l e r ( 2 7 ) , w a s p a s s e d t h r o u g h the w a t e r c o l u m n at the same rate at e a c h s a m p l i n g p o i n t so t h a t the w a t e r c o l l e c t e d r e p r e s e n t e d the i n t e g r a t e d Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
effect of s t r e a m v e l o c i t y a n d d e p t h .
T h u s , a l l five samples c o u l d
be
c o m p o s i t e d to represent the average s e d i m e n t c o n c e n t r a t i o n i n the s t r e a m as a w h o l e . U n d e r v e r y h i g h flow c o n d i t i o n s , w h e n w a t e r v e l o c i t i e s n e a r the surface a p p r o a c h e d 15 feet (4.5 m e t e r s ) p e r s e c o n d ( 2 8 ) , o n l y s a m ples o f the u p p e r 2 feet ( 0.5 m e t e r ) of flow c o u l d b e o b t a i n e d .
However,
the extreme t u r b u l e n c e u n d e r s u c h c o n d i t i o n s s h o u l d h a v e c a u s e d suffic i e n t v e r t i c a l m i x i n g that the samples t r u l y r e p r e s e n t e d the average c o n c e n t r a t i o n of t r a n s p o r t e d s e d i m e n t of m e d i u m s a n d size a n d
finer.
The
s i z e a b l e l o a d of coarse s a n d a n d g r a v e l m o v i n g near the s t r e a m b e d w a s not s a m p l e d .
Suspended-sediment
samples w e r e a l w a y s t a k e n w i t h i n
1 5 - 2 0 m i n u t e s of the c o l l e c t i o n of w a t e r samples. S i l i c a analyses w e r e m a d e o n a n a u t o m a t i c a n a l y z e r u s i n g a m o d i f i c a t i o n of the m e t h o d of M u l l i n a n d R i l e y ( 2 9 ) .
C h l o r i d e analyses w e r e
also m a d e o n the a u t o m a t i c a n a l y z e r , u s i n g the m e t h o d of O ' B r i e n
(30).
C o n d u c t i v i t y measurements u s u a l l y w e r e m a d e o n the pressure-filtered
Figure
1.
Index map of River Basin
Mattole
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4.
Silica Variation
KENNEDY
samples.
in Stream
99
Water
E n o u g h d e t e r m i n a t i o n s w e r e m a d e to e s t a b l i s h that n o
change
i n c o n d u c t i v i t y c o u l d b e d e t e c t e d b e t w e e n filtered a n d u n f i l t e r e d samples. T h e specific c o n d u c t a n c e w a s u s e d as a n i n d e x of the c o n c e n t r a t i o n of d i s s o l v e d electrolytes i n the w a t e r a n d w a s d e t e r m i n e d for e v e r y s a m p l e collected.
C a , M g , N a , and Κ were determined using an atomic absorp
t i o n spectrophotometer.
Mattole
Drainage
Basin
T h e M a t t o l e b a s i n is i n n o r t h e r n C a l i f o r n i a ( F i g u r e 1 ) , a n d a n area of a b o u t 240 square m i l e s lies u p s t r e a m f r o m the s a m p l i n g p o i n t u s e d i n Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
this s t u d y .
R a n c h i n g a n d t i m b e r sales h a v e b e e n the m a j o r source
of
i n c o m e b u t a little f a r m i n g is d o n e o n s u i t a b l e areas a l o n g the r i v e r . T h e towns g e n e r a l l y consist of just a f e w r a t h e r o l d b u i l d i n g s w i t h some other homes i n the v i c i n i t y . A v e r a g e p o p u l a t i o n is p r o b a b l y less t h a n t w o persons p e r square m i l e . Topography and Geology.
T o p o g r a p h y is m a t u r e w i t h a m a x i m u m
relief of a p p r o x i m a t e l y 3500 feet a n d a n average r e l i e f of p e r h a p s feet.
1500
T h e rocks i n the b a s i n are m a i n l y f o l d e d g r a y w a c k e , shale, a n d
conglomerate
(31).
A n o r t h w e s t strike of the f o l d e d a n d f a u l t e d s e d i
m e n t a r y rocks causes
the n o r t h w e s t t r e n d of the stream b a s i n .
The
d o w n s t r e a m h a l f of the b a s i n is c h a r a c t e r i z e d i n p a r t b y steep grassy slopes w i t h shrubs a n d second g r o w t h trees l o c a t e d a l o n g some d r a i n a g e lines a n d c o v e r i n g some w h o l e t r i b u t a r y basins ( F i g u r e 2 ). T h e u p s t r e a m h a l f of the b a s i n contains l a r g e areas of s e c o n d - g r o w t h
timber
with
scattered grasslands i n a n area of s o m e w h a t gentler t o p o g r a p h y . Soils a n d Sediments. Soils i n the M a t t o l e b a s i n r a n g e f r o m g r a v e l l y to c l a y l o a m (32)
a n d are a c i d w i t h a p H g e n e r a l l y i n the range 4.6-6.0.
I n one 9-foot profile of u p l a n d s o i l s a m p l e d i n this s t u d y , the p H r a n g e d f r o m 4.8-5.2.
W h e r e r e l a t i v e l y l i t t l e recent erosion has o c c u r r e d ,
the
soils are 10 feet or m o r e i n d e p t h . H o w e v e r , i n the last 20 years there has been extensive l o g g i n g a n d r o a d - b u i l d i n g a c t i v i t y , a n d this has b e e n a factor i n the d i s t u r b a n c e a n d r e s u l t i n g erosion of the s o i l .
A t present,
erosion i n the b a s i n is r a p i d , a n d a l o n g d r a i n a g e lines o n some of the slopes the s o i l has b e e n c o m p l e t e l y r e m o v e d to b e d r o c k .
T h i s erosion
has c a u s e d a g g r a d a t i o n of the r i v e r b e d , a n d s u s p e n d e d - s e d i m e n t centrations i n the r i v e r n o w exceed 10,000 m g / l i t e r d u r i n g h i g h
con
flows.
X - r a y d i f f r a c t i o n analyses of the < 2 - m i c r o n size f r a c t i o n of s u s p e n d e d s e d i m e n t a n d soils f r o m t h e M a t t o l e b a s i n i n d i c a t e that k a o l i n i t e , v e r m i c u l i t e , a n d a l u m i n u m - i n t e r l a y e r e d v e r m i c u l i t e c o m p r i s e the m a i n c l a y m i n e r a l s . M u c h s m a l l e r amounts of i l l i t e c o m m o n l y are present. C h l o r i t e is detectable i n a f e w s u s p e n d e d - s e d i m e n t
samples.
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
100
NONEQUILIBRIUM
Figure
2.
SYSTEMS
IN
NATURAL
WATERS
View of lower Mattole River basin showing bridge from sampling was done
which
V e r m i c u l i t e i d e n t i f i c a t i o n is b a s e d u p o n the presence of a m i n e r a l h a v i n g a 14-Â d - s p a c i n g w i t h M g s a t u r a t i o n a n d g l y c o l s o l v a t i o n w h i c h collapses to 10.5 Â w i t h Κ s a t u r a t i o n a n d a i r d r y i n g ( 3 3 ) . e x p a n s i o n a b o v e 14 Â w h e n m a g n e s i u m - s a t u r a t e d
T h e r e is l i t t l e
c l a y is s o l v a t e d w i t h
ethylene
g l y c o l , w h i c h i n d i c a t e s that little, i f a n y , m o n t m o r i l l o n i t e
present.
W h e n h e a t e d to 5 5 0 ° C , o n l y c l a y w i t h a b o u t a 10-Â
r e m a i n s i n most samples, b u t a s m a l l a m o u n t of c h l o r i t e i n a f e w samples is i n d i c a t e d b y the presence of 14-Â s p a c i n g ( 3 4 ) . aluminum-interlayered vermiculite
(or
possibly
is
(f-spacing sediment
E v i d e n c e for
aluminum-interlayered
m o n t m o r i l l o n i t e ) is the presence of a 14-Â m i n e r a l i n M g - s a t u r a t e d s a m ples w h i c h fails to collapse to a b o u t 10 Â o n Κ s a t u r a t i o n ( 3 5 ) b u t w h i c h is n e i t h e r m o n t m o r i l l o n i t e n o r c h l o r i t e , based o n g l y c o l l a t i o n or h e a t i n g to 5 5 0 ° C . P r e c i p i t a t i o n . R a i n f a l l averages 92 inches p e r y e a r for the b a s i n as a w h o l e b u t w i t h i n the b a s i n ranges f r o m a b o u t 50 to 110 inches. O f t h i s , 7 6 % appears as runoff ( 3 6 ) .
T h e b u l k of the a n n u a l r a i n f a l l occurs i n the
m o n t h s of N o v e m b e r t h r o u g h M a r c h , w i t h intense d o w n p o u r s w i t h some storms.
associated
N o r m a l l y , l i t t l e or no r a i n falls f r o m late M a y u n t i l
late O c t o b e r . The
average c o m p o s i t i o n
of
p r e c i p i t a t i o n f a l l i n g i n the
Mattole
R i v e r b a s i n is s h o w n i n T a b l e I. Samples w e r e c o l l e c t e d near P e t r o l i a , Honeydew,
E t t e r s b u r g , a n d T h o r n d u r i n g p a r t of
the 1 9 6 6 - 6 7 r a i n y
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4.
Silica Variation
KENNEDY
Table I.
in Stream
101
Water
Composition of Atmospheric Precipitation in the Mattole River Basin Weighted Average Values January-May 1967
Constituent Ca + Mg + Na+ K+ S0 CI" Si0 2
4
2
2
Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
October-A pril 1968-69
5.5 0.4 1.1 0.1 6.4 1.6 0.1
2
(mg/liter)
2.2 0.3 0.9 0.1 4.7 1.7 3 0 0 ) , a n d r a t h e r l o w s i l i c a ( 7 - 8 m g / l i t e r ) . T h u s , the alkalis a n d a l k a l i n e earths are p r e f e r e n t i a l l y r e m o v e d as c o m p a r e d w i t h s i l i c a f r o m r o c k m i n e r a l s at or near the w a t e r t a b l e .
I n surface soils, h o w e v e r , d u r i n g
s t o r m runoff, q u i t e different c o n d i t i o n s p r e v a i l . T h e p H of the w a t e r m a y at first b e l o w ( 5 ± ) ,
s i l i c a release is r e l a t i v e l y r a p i d ( 8 - 1 2
mg/
l i t e r ) , a n d alkalis a n d a l k a l i n e earths are r e m o v e d r a t h e r s l o w l y ( S p e c . Cond. 70-150).
T h e result is t h a t the rate of s i l i c a r e m o v a l
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
compared
126
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
w i t h t h a t of the m a j o r cations is a b o u t f o u r times as great d u r i n g s t o r m runoff as at l o w
flow.
E v e n d u r i n g s t o r m runoff, h o w e v e r , the r a t i o of
s i l i c a to a l k a l i s a n d a l k a l i n e earths i n s o l u t i o n is m u c h less t h a n the r a t i o i n p r i m a r y minerals. F r o m the s t a n d p o i n t of the a n n u a l l o a d of d i s s o l v e d s i l i c a , t h e l a c k of c o r r e l a t i o n b e t w e e n s i l i c a c o n c e n t r a t i o n a n d d i s c h a r g e , w h e n c o n s i d e r e d o n a n a n n u a l basis (see
F i g u r e 8 ) , means t h a t s i l i c a l o a d c a n b e
c a l c u l a t e d as t h o u g h i t v a r i e d d i r e c t l y w i t h d i s c h a r g e . of
flow-duration
T h i s a l l o w s use
curves to c o m p u t e the t i m e d i s t r i b u t i o n of s i l i c a l o a d
carried b y the M a t t o l e R i v e r . Such information was obtained from the r e p o r t of R a n t z a n d T h o m p s o n Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
were made.
(36),
a n d the necessary
computations
T h e s e s h o w t h a t a b o u t 25, 60, a n d 9 0 % of the a n n u a l d i s
s o l v e d s i l i c a l o a d is c a r r i e d b y the M a t t o l e i n 2, 10, a n d 3 5 % of the t i m e , respectively.
B e c a u s e s t o r m runoff makes u p most of the s t r e a m
i n the M a t t o l e d u r i n g at least 2 0 %
of the y e a r , 7 5 %
or m o r e of
flow the
d i s s o l v e d s i l i c a t r a n s p o r t e d b y the M a t t o l e R i v e r a n n u a l l y is d e r i v e d f r o m near-surface soils r a t h e r t h a n f r o m w e a t h e r i n g of soils a n d rocks at d e p t h . S o m e tentative c o n c l u s i o n s c a n n o w b e d r a w n r e g a r d i n g the w a y i n w h i c h s i l i c a is released f r o m M a t t o l e soils. T h e l i n e a r r e l a t i o n b e t w e e n s i l i c a c o n c e n t r a t i o n a n d the square root of t i m e i n s o i l a n d
sediment
suspensions, w h e r e d i s s o l v e d s i l i c a is less t h a n a b o u t 1 m g / l i t e r , suggests t h a t a d i f f u s i o n m e c h a n i s m controls the release o f s i l i c a f r o m m i n e r a l particles.
S u c h a m e c h a n i s m w o u l d b e i n a g r e e m e n t w i t h studies b y
others (14,
17, I S ) .
T h o s e studies suggest that i n the i n i t i a l release of
silica from feldspar only a diffusion mechanism w o u l d be apparent, b u t as the s i l i c a c o n c e n t r a t i o n i n c r e a s e d a subsequent
sorption
(precipita
t i o n ? ) r e a c t i o n o n the a l t e r e d s o l i d surface w o u l d s l o w the net release of s i l i c a u n t i l a r e l a t i v e l y steady c o n d i t i o n existed. T h i s appears to b e a p a t t e r n t h a t w o u l d e x p l a i n the s i l i c a released f r o m b o t h l o w a n d h i g h concentrations of p r e w a s h e d M a t t o l e s o i l a n d s e d i m e n t i n w a t e r . T h e f o l l o w i n g s e q u e n c e for the release of s i l i c a f r o m soils a n d rocks of t h e M a t t o l e b a s i n is i n d i c a t e d b y a v a i l a b l e d a t a . A t the e n d of the s u m m e r , surface soils c o n t a i n w e a t h e r i n g p r o d u c t s t h a t i n c l u d e r e a d i l y s o l u b l e s i l i c a . E a r l y r a i n s , w h i c h are too l i g h t to c a u s e runoff, m a y c a r r y m u c h of this s o l u b l e m a t e r i a l i n t o the l o w e r A a n d u p p e r Β s o i l h o r i z o n s . B u t h y d r a t i o n of m i n e r a l surfaces encourages f u r t h e r w e a t h e r i n g a n d the f o r m a t i o n of m o r e s o l u b l e s i l i c a w h i c h is a v a i l a b l e for r e m o v a l w i t h the first runoff.
W h e n r a i n f a l l is h e a v i e r t h a n t h a t r e q u i r e d to saturate the
surface s o i l , o v e r l a n d flow a n d subsurface flow, the latter c o n t a i n i n g some of the e a s i l y - s o l u b l e s i l i c a , j o i n together
to cause a s t r e a m rise.
r a i n f a l l c o n t i n u e s , the surface s o i l is l e a c h e d , a n d s i l i c a diffuses
As into
s o l u t i o n i n the s o i l w a t e r u n t i l i t reaches a l i m i t i n g c o n c e n t r a t i o n w h i c h represents a b a l a n c e b e t w e e n the
flushing
rate a n d the rate of
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
release
4.
KENNEDY
Silica Variation
in Stream
127
Water
f r o m s o i l m a t e r i a l s . W h e n r a i n stops, the s i l i c a c o n c e n t r a t i o n i n s o i l w a t e r increases to a n e w p l a t e a u l e v e l w i t h i n 24 h o u r s or less. I f m o r e r a i n falls o n the m o i s t s o i l , the d i s s o l v e d s i l i c a a n d some s o r b e d or f r e s h l y r e p r e c i p i t a t e d s i l i c a f o r m a r e s e r v o i r of r e a d i l y - a v a i l a b l e s i l i c a w h i c h c a n b e flushed o u t first. W i t h m o r e r a i n a n d l e a c h i n g , d i f f u s i o n a g a i n b e c o m e s a n i m p o r t a n t process, s u p p l y i n g the s i l i c a to the s u b s u r f a c e runoff.
As
the r a i n y season continues, the c o n c e n t r a t i o n of s i l i c a i n s o i l w a t e r s l o w l y increases.
A f t e r the r a i n y season ends, w a t e r continues to d r a i n f r o m
s u p e r f i c i a l deposits for s e v e r a l m o n t h s , a n d s i l i c a concentrations i n t h e r i v e r r e m a i n w e l l a b o v e those o b s e r v e d at the e n d of t h e s u m m e r d r y period.
A s g r o u n d w a t e r c o n t a i n i n g l o w e r concentrations of s i l i c a b e -
Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
comes a n i n c r e a s i n g p a r t of the s t r e a m flow, s i l i c a decreases i n c o n c e n t r a t i o n . I n late O c t o b e r or e a r l y N o v e m b e r , a n e w c y c l e begins. Summary
and
Conclusions
S i l i c a concentrations i n the M a t t o l e R i v e r of n o r t h e r n C a l i f o r n i a v a r y i n a consistent p a t t e r n w i t h r e l a t i o n to d i s c h a r g e a n d t o t a l c o n c e n t r a t i o n of electrolytes, as m e a s u r e d b y specific c o n d u c t a n c e .
D u r i n g the i n i t i a l
p a r t of a s t r e a m rise, b o t h s i l i c a a n d electrolytes decrease i n a n e a r l y constant r a t i o , b u t as the rise continues, the rate of s i l i c a decrease slows r e l a t i v e to that of the electrolytes, c a u s i n g the S i 0 : S p e c . C o n d . r a t i o 2
to t u r n u p w a r d . C o m m o n l y , 2 - 4 hours b e f o r e p e a k d i s c h a r g e , m i n i m u m silica occur.
concentration
and m a x i m u m suspended
sediment
concentration
A t p e a k d i s c h a r g e , the specific c o n d u c t a n c e is at a m i n i m u m b u t
b o t h s i l i c a a n d the r a t i o S i 0 : S p e c . C o n d . are r i s i n g a n d c o n t i n u e to d o 2
so for another 1 2 - 1 8 hours. T h e n s i l i c a c o n c e n t r a t i o n b e c o m e s a l m o s t constant w h i l e specific c o n d u c t a n c e r a t i o b e t w e e n t h e m to decrease. crease s l o w l y .
continues to increase, c a u s i n g the
A f t e r s e v e r a l days, s i l i c a begins to d e -
T h i s c y c l e is r e p e a t e d w i t h e a c h s t r e a m rise.
Enough
d a t a f r o m other streams are a v a i l a b l e to suggest that the p a t t e r n occurs elsewhere. T h e silica-concentration pattern observed
i n the M a t t o l e e x p l a i n s
b o t h the l a c k of h i g h c o r r e l a t i o n b e t w e e n s i l i c a a n d d i s c h a r g e or specific c o n d u c t a n c e a n d the r e l a t i v e l y s m a l l changes i n s i l i c a c o n c e n t r a t i o n w i t h d i s c h a r g e n o t e d b y investigators for other streams. B e c a u s e the m i n i m u m i n s i l i c a c o n c e n t r a t i o n a n d m a x i m u m i n s e d i m e n t c o n c e n t r a t i o n n o r m a l l y p r e c e d e p e a k d i s c h a r g e , p e a k o v e r l a n d flow p r o b a b l y also precedes p e a k d i s c h a r g e . T h e r e f o r e , runoff that has spent a n a p p r e c i a b l e p e r i o d of t i m e i n s o i l pores contributes a m a j o r p a r t of the s t r e a m flow at p e a k d i s c h a r g e . T h e r a t h e r s m a l l decrease i n s i l i c a c o n c e n t r a t i o n d u r i n g a stream rise supports this i n t e r p r e t a t i o n . B e c a u s e l i t t l e s i l i c a c a n b e o b t a i n e d b y i n t e r a c t i o n b e t w e e n w a t e r a n d stream s e d i m e n t
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
128
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
d u r i n g t r a n s p o r t , the r e l a t i v e l y h i g h c o n c e n t r a t i o n of s o l u b l e s i l i c a m u s t result f r o m p e r c o l a t i o n of w a t e r t h r o u g h the s o i l i m m e d i a t e l y after f a l l i n g as r a i n . T h i s a p p a r e n t l y o c c u r s o n slopes of 1 5 ° - 2 5 ° that are c o m m o n i n the M a t t o l e b a s i n . I f i t c a n b e s h o w n that s i l i c a m i n i m a a n d s e d i m e n t m a x i m a m a r k p e a k o v e r l a n d flow elsewhere a n d that the e n d of o v e r l a n d flow is m a r k e d b y a l e v e l i n g off i n s i l i c a c o n c e n t r a t i o n after p e a k d i s c h a r g e i n s t r e a m flow,
t h e n m o n i t o r i n g of these p a r a m e t e r s s h o u l d b e v e r y h e l p f u l i n
s e p a r a t i n g s t o r m runoff i n t o the v a r i o u s c o m p o n e n t s of
flow.
T h e r a p i d a c h i e v e m e n t of a " c o n s t a n t " v a l u e of s i l i c a i n s o i l w a t e r demonstrates that the o p p o r t u n i t y for e q u i l i b r a t i o n exists, b u t the electro Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
lytes d o not s h o w a n y signs of r e a c h i n g a p l a t e a u c o n c e n t r a t i o n .
The
electrolytes a p p a r e n t l y d o not e q u i l i b r a t e w i t h the s o i l d u r i n g o r s h o r t l y after a s t o r m p e r i o d . T h u s , d u r i n g s t o r m runoff, w h e n m o r e t h a n 7 5 % of the a n n u a l d i s c h a r g e occurs, there is not sufficient t i m e for c h e m i c a l e q u i l i b r i u m of the electrolytes to b e r e a c h e d i n s o i l w a t e r , a n d i t appears that r e a c t i o n k i n e t i c s m u s t b e a n i m p o r t a n t factor i n d e t e r m i n i n g the concentrations of the electrolytes. W o r k o n M a t t o l e R i v e r w a t e r a n d studies of s o i l - w a t e r interactions i n d i c a t e that d e t a i l e d investigations of changes i n w a t e r c h e m i s t r y d u r i n g s t o r m runoff c a n b e a p o w e r f u l t o o l i n o b t a i n i n g a better u n d e r s t a n d i n g of w e a t h e r i n g reactions.
T h e use of ratios b e t w e e n constituents c a n b e
e s p e c i a l l y h e l p f u l because d i l u t i o n is e l i m i n a t e d as a factor.
Sampling
i n t e r v a l s a p p a r e n t l y s h o u l d not exceed 2 hours d u r i n g a s t r e a m rise, a n d 1-hour intervals are p r e f e r r e d .
A s basins increase i n size, t r a v e l - t i m e
effects m a y o b s c u r e changes i n c h e m i s t r y o w i n g to w e a t h e r i n g reactions. It is d e s i r a b l e , therefore, to w o r k w i t h the smallest b a s i n that c a n c o n s i d e r e d representative of the area u n d e r study.
be
M i n o r changes i n
c o n c e n t r a t i o n trends c a n b e seen best i f samples are r u n i n s e q u e n c e , u s i n g a u t o m a t i c e q u i p m e n t for analysis. Acknowledgment R . L . M a l c o l m w o r k e d w i t h the a u t h o r i n c o l l e c t i n g m a n y of the w a t e r samples, often u n d e r adverse c o n d i t i o n s . W a t e r samples w e r e also collected b y M r . and M r s . T . E . M a t h e w s a n d b y John Schonrock.
Many
of the ideas expressed h a v e b e e n d i s c u s s e d a n d m o d i f i e d as a r e s u l t of talks w i t h E . A . Jenne, J . D . H e m , a n d Κ. V . S l a c k . E . A . J e n n e , J . D . H e m , R . M . G a r r e l s , S. N . D a v i s , P . B . H o s t e t l e r , a n d D . R . S c h i n k r e a d the m a n u s c r i p t a n d suggested
improvements.
Analyses were made
by
C . S. B a r w i s , E . A . C l a r k e , a n d D . K . M a c D o n a l d or w e r e m a d e i n the S a c r a m e n t o , C a l i f o r n i a l a b o r a t o r y of the U . S. G e o l o g i c a l S u r v e y u n d e r the s u p e r v i s i o n of J . W . H e l m s . T h e s t u d y w o u l d h a v e b e e n i m p o s s i b l e w i t h o u t the h e l p of these i n d i v i d u a l s .
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4.
KENNEDY
Silica
Variation
in Stream
Water
129
Literature Cited
Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
(1) Davis, S. N., Am. J. Sci. (1964) 262, 870. (2) Palmer, Chase, U. S. Geol. Surv. Bull. (1911) 479, 24. (3) Hendrickson, G. E., Krieger, R. Α., U. S. Geol. Surv. Water-Supply Paper (1964) 1700, 93. (4) Davis, S. N., Univ. Hawaii Water Resources Res. Center Tech. Rept. (1969) 29. (5) Feth, J. H., Roberson, C. E., Polzer, W. L., U. S. Geol. Surv. Water -Supply Paper (1964) 1535-I, 39. (6) Krauskopf, Κ. B., Geochim. Cosmochim. Acta (1956) 10, 1. (7) Siever, R., J. Geol. (1962) 70, 127. (8) Morey, G. W., Fournier, R. O., Rowe, J. J., Geochim. Cosmochim. Acta (1962) 26, 1029. (9) Stöber, W., "Equilibrium Concepts in Natural Water Systems," ADVAN. C H E M . SER. (1967) 67, 161-82.
(10) Garrels, R. M., Christ, C. E., "Solutions, Minerals, and Equilibria," p. 361, Harper and Row, New York, 1965. (11) Polzer, W. L., Hem, J. D., J. Geophys. Res. (1965) 70, 6223. (12) Mackenzie, F. T., Garrels, R. M., Science (1967) 150, 57. (13) Mackenzie, F. T., Garrels, R. M., Bricker, O. P., Bickley, Frances, Science (1967) 155, 1404. (14) Correns, C. W., von Engelhardt, W., Chem. Erde (1938) 12, 1. (15) Nash, V. E., Marshall, C. E., Missouri Univ. Res. Bull. (1956) 613, Pt. 1. (16) Garrels, R. M., Howard, P. F., Clays Clay Minerals (1959) 6, 68. (17) Wollast, R., Geochim. Cosmochim. Acta (1967) 31, 635. (18) Luce, R. W., Ph.D. dissertation, Stanford University, 1969. (19) Kittrick, J. Α., Clays Clay Minerals (1969) 17, 157. (20) McKeague, J. Α., Cline, M. G., Can. J. Soil Sci. (1963) 43, 70. (21) Ibid., (1963) 43, 83. (22) Jones, L. H. P., Handreck, Κ. Α., Nature (1963) 198, 852. (23) Jones, L. H. P., Handreck, Κ. Α., Advan. Agron. (1967) 19, 107. (24) Harder, H., Flehmig, W., Geochim. Cosmochim. Acta (1970) 34, 296. (25) Bricker, O. P., Godfrey, A. E . , "Trace Inorganics in Water," ADVAN. C H E M . SER. (1968) 73, 128-42.
(26) Miller, R. W., Soil Sci. Soc. Am. Proc. (1967) 31, 46. (27) Inter-Agency Committee on Water Resources, Report No. 14, p. 60, Supt. of Documents, Washington, D. C., 1963. (28) LaRue, G. W., oral communication, 1970. (29) Mullin, J. B., Riley, J. P., Anal. Chim. Acta (1955) 12, 1962. (30) O'Brien, J. F., Wastes Eng. (1962) 33, 670. (31) Irwin, W. P., Calif. Div. Mines Bull. (1960) 179, 42. (32) McLaughlin, J., Harradine, F., "Soils of Western Humboldt Co., Calif.," p. 68, 71, 81-4, Univ. of Calif. at Davis, 1965. (33) Walker, G. F., "X-Ray Identification and Structures of Clay Minerals," Ch. VII, pp. 199-223, Mineral Society of Great Britain Monograph, 1951. (34) Grim, R. E., "Clay Mineralogy " 2nd ed., pp. 83, 105, McGraw-Hill, New York, 1968. (35) Hathaway, J. C., Clays Clay Minerals (1955) 3, 74. (36) Rantz, S. E., Thompson, T. H., U. S. Geol. Surv. Water-Supply Paper (1967) 1851, 38, 47. (37) U. S. Geological Survey, "Water Resources Data for California, 1968 W. Y.," Pt. 1, 426 (1968). (38) Barnes, Ivan, Geochim Cosmochim. Acta (1965) 29, 85. (39) Enright, J. T., Ecology (1969) 50, 1070.
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV LAVAL on April 7, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch004
130
NONEQUILIBRIUM
SYSTEMS
IN
NATURAL
WATERS
(40) Smith, G. M., "The Fresh Water Algae of the United States," 2nd ed., p. 451, McGraw-Hill, New York, 1950. (41) Dana, E. D., Ford, W. E., "A Textbook of Mineralogy," 4th ed., pp. 536, 659, 663, Wiley, New York, 1947. (42) Chow, V. T., "Handbook of Applied Hydrology," Sec. 14, p. 2, McGraw-Hill, New York, 1964. (43) Storey, H. C., Hobba, R. L., Roas, J. M., "Handbook of Applied Hydrology," Sec. 22, p. 10, McGraw-Hill, New York, 1964. (44) Jamieson, D. G., Amerman, C. R., J. Hydrol. (1969) 8, 122. (45) Pinder, G. F., Jones, J. F., Water Resources Res. (1969) 5, 438. (46) Steele, T. D., "Seasonal Variations in Chemical Quality of Surface Water in the Pescadero Creek Watershed," Ph.D. dissertation, Stanford University, 1968. (47) U. S. Weather Bureau, "Climatological Data for California," Vols. 11 and 12, 1966. RECEIVED June 29, 1970. Publication authorized by the Director, U. S. Geological Survey.
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.