7 Use of Inert Tracer Data to Estimate the Course of Reaction in Geometrically Complex Natural Flows
Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
L L O Y D A. S P I E L M A N and FRANCOIS BRIERE Division of Engineering and A p p l i e d Physics, H a r v a r d University, Cambridge, Mass. 02138
The dispersion
model, while
suitable
data from geometrically
simple
plex
the
geometries.
originally
developed
application and occur
Here by
to steady
extended
to
in modeling
time
Danckwerts transient
and
control.
to
Zwietering is
loadings
which
Sample
computer
are based on tracer responses
of two flows:
theoretical,
the
Results
a natural
stream.
sented for both slug and step inputs of reactants ing according With
second
is bracketed minimum
to both first and second order by upper
and complete
the bounds
reaction,
the
and lower segregation.
merge to give a single
for
described
calculations
other
com-
interpretation,
reactors,
reactant
for pollution
tracer
is not suited
residence
state industrial
treat
for interpreting
flows,
are
one pre-
disappear-
order rate
expressions.
downstream
response
bounds
corresponding
For first order response
to
reaction,
curve.
T n m o d e l i n g r i v e r s , streams, a n d other n a t u r a l flows for p o l l u t i o n c o n t r o l , A
i t is often necessary to estimate d o w n s t r e a m c o n c e n t r a t i o n profiles, i n
d i s t a n c e a n d t i m e , o f substances w h i c h s i m u l t a n e o u s l y u n d e r g o r e a c t i o n a n d c o n v e c t i o n after t h e i r i n t r o d u c t i o n u p s t r e a m . T h e s e substances m i g h t b e d i s s o l v e d or s u s p e n d e d p o l l u t a n t s , m i c r o o r g a n i s m s , o x y g e n , o r other r e l e v a n t constituents o f the aqueous e n v i r o n m e n t . T o p r e d i c t c o n c e n t r a t i o n profiles, i t is d e s i r e d to c o m b i n e i n d e p e n d ent l a b o r a t o r y r e a c t i o n rate d a t a w i t h e m p i r i c a l d a t a o n the h y d r o d y n a m i c s o f the flow. T h e p r o b l e m o f i n t e r p r e t i n g l a b o r a t o r y r e a c t i o n d a t a to o b t a i n rate expressions w h i c h are v a l i d w i t h i n the c o m p l e x n a t u r a l s y s t e m is i n itself a difficult task b e y o n d the scope o f this w o r k ; i t is here 194 Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
spiELMAN A N D BRiERE
Use of Inert Tracer
195
Data
a s s u m e d that v a l i d c o n c e n t r a t i o n - d e p e n d e n t expressions for rates of r e a c t i o n are a v a i l a b l e . W i t h the g i v e n rate expression, d e t a i l e d t h e o r e t i c a l or e m p i r i c a l k n o w l e d g e of the s p a t i a l v e l o c i t y d i s t r i b u t i o n w o u l d p r o m o t e use of t h e equations of c o n v e c t i v e t r a n s p o r t ( I )
to e v a l u a t e c o n c e n t r a t i o n profiles
a n d give a comprehensive treatment, but direct in-stream measurements r e q u i r e d to o b t a i n s u c h v e l o c i t y d a t a are p r o h i b i t i v e l y costly a n d n o t g e n e r a l l y a v a i l a b l e . I n e r t tracer studies for t h e f l o w are far m o r e p r a c t i c a l a n d economical but do not convey complete h y d r o d y n a m i c information. T r a c e r studies are n o r m a l l y c a r r i e d out b y i n t r o d u c i n g a c o n v e n i e n t l y Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
m o n i t o r e d solute ( s u c h as a r a d i o a c t i v e i s o t o p e ) , u s u a l l y as a s l u g , a n d m e a s u r i n g its c o n c e n t r a t i o n response w i t h t i m e at stations d o w n s t r e a m (2).
F o r reaches of the flow w h i c h are n o t g e o m e t r i c a l l y c o m p l e x , t h e
longitudinal dispersion model
c a n often
be
applied, using
measured
t r a c e r response curves to extract n u m e r i c a l d i s p e r s i o n coefficients.
These
c a n t h e n b e i n s e r t e d b a c k i n t o the d i s p e r s i o n e q u a t i o n w i t h a r e a c t i o n rate t e r m to estimate the concentrations of r e a c t i n g species w h i c h are i n t r o d u c e d u p s t r e a m i n a n assigned f a s h i o n ( 3 , 4). flow
F o r regions of the
w h i c h are g e o m e t r i c a l l y c o m p l e x , h o w e v e r , tracer response
curves
c a n differ i n shape g r e a t l y f r o m those e x p e c t e d f r o m the d i s p e r s i o n m o d e l a n d a n alternate m e t h o d of i n t e r p r e t i n g t h e m m u s t b e sought.
Illustra-
tions of s u c h p o s s i b l e c o m p l e x i t i e s are s h o w n i n F i g u r e 1. I n t e r p r e t i n g t r a c e r response curves as residence t i m e d i s t r i b u t i o n s , a l o n g w i t h considerations of c o m p l e t e a n d m i n i m u m segregation i n the flow,
p r o v i d e s a r i g o r o u s basis f o r t r e a t i n g g e o m e t r i c a l l y c o m p l e x
flows.
This approach was pioneered b y Danckwerts (5) and Zwietering (6)
for
a p p l i c a t i o n to n o n i d e a l i n d u s t r i a l reactors. I n d u s t r i a l reactors over w h i c h the engineer
has c o n s i d e r a b l e
geometrical
control behave
more
pre-
d i c t a b l y t h a n most n a t u r a l flows a n d often c a n b e t r e a t e d t h e o r e t i c a l l y ; thus, a p p l i c a t i o n of the s e m i e m p i r i c a l residence t i m e a p p r o a c h to n a t u r a l systems c o u l d b e e v e n m o r e significant t h a n its o r i g i n a l l y i n t e n d e d use. W h i l e r e s i d e n c e t i m e t h e o r y s h o u l d b e a p p l i c a b l e to a w i d e v a r i e t y of g e o m e t r i c a l l y c o m p l e x flows, i t possesses i n h e r e n t t h e o r e t i c a l l i m i t a t i o n s w h i c h s h o u l d be discussed. A n i m p o r t a n t one is that i n p u t a n d m o n i t o r i n g stations s h o u l d c o r r e s p o n d to constrictions of the
flow
(Figure
1)
w h e r e concentrations across the s t r e a m w i d t h m a y b e c o n s i d e r e d as u n i f o r m ( a l t h o u g h m u c h c a n also be s a i d a b o u t t h e d i s t r i b u t i o n of
concen-
trations b e t w e e n s t a t i o n s ) . T h i s is seen to b e n o great h a n d i c a p , h o w e v e r , w h e n c o m p a r e d w i t h the o n e - d i m e n s i o n a l d i s p e r s i o n m o d e l w h i c h assumes a u n i f o r m c o n c e n t r a t i o n across the s t r e a m w i d t h f o r a l l p o i n t s a l o n g the flow. A n o t h e r l i m i t a t i o n occurs i f the r e a c t i o n d e p e n d e n c e o n c o n c e n t r a t i o n is g r e a t l y different f r o m first o r d e r ; t h e n , w i t h
knowledge
of the residence t i m e d i s t r i b u t i o n , one c a n o n l y b r a c k e t the c o n c e n t r a t i o n
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
196
NONEQUILIBRIUM
SYSTEMS
IN
N A T U R A L
WATERS
Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
MONITOR
Figure 1. Possible natural flows having complex geometry and tracer response. Input and monitoring stations are at constrictions. Upstream of station A , the dispersion model might apply. w i t h least u p p e r a n d greatest l o w e r b o u n d s . O n l y for the i m p o r t a n t s p e c i a l case of first o r d e r
( l i n e a r ) r e a c t i o n is the d o w n s t r e a m
concentration
u n a m b i g u o u s l y d e t e r m i n e d for a specified i n e r t t r a c e r response. t i g h t l y c o n c e n t r a t i o n is b r a c k e t e d f o r a g i v e n system d e p e n d s
How o n the
p a r t i c u l a r f o r m of the residence t i m e ( t r a c e r r e s p o n s e ) c u r v e , t h e d e g r e e of n o n l i n e a r i t y of the r e a c t i o n , a n d the extent of r e a c t i o n o c c u r r i n g b e t w e e n stations. T h a t the tracer response c u r v e does n o t i n g e n e r a l fix system b e h a v i o r u n a m b i g u o u s l y for n o n l i n e a r reactions is r e a d i l y d e m o n s t r a t e d b y
con-
s i d e r i n g the p a r t i c u l a r system c o n s i s t i n g of a n i d e a l p l u g flow vessel i n alternate s e q u e n c e w i t h a n i d e a l l y - s t i r r e d vessel. A s i l l u s t r a t e d i n F i g u r e 2, i n t e r c h a n g i n g the o r d e r of the t w o vessels leaves the s h i f t e d e x p o n e n t i a l response to a s l u g i n p u t of t r a c e r u n c h a n g e d ; y e t f o r reactions w i t h o r d e r greater t h a n u n i t y , s t r a i g h t f o r w a r d c a l c u l a t i o n s c o n f i r m that the c o n f i g u r a t i o n h a v i n g the p l u g flow vessel first y i e l d s m o r e extensive r e a c t i o n . T h e s i t u a t i o n is r e v e r s e d for r e a c t i o n orders less t h a n u n i t y . B o t h a r r a n g e ments g i v e the same response i f the r e a c t i o n is first o r d e r . B e c a u s e of the a m b i g u i t y of b e h a v i o r w h i c h r e m a i n s w i t h k n o w l e d g e of a s y s t e m s tracer response, i t c a n b e c o n c l u d e d t h a t close a g r e e m e n t of i n e r t tracer response curves to the f o r m e x p e c t e d
f r o m the d i s p e r s i o n
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
spiELMAN A N D BRiERE
Use of Inert Tracer
197
Data
m o d e l does not c o n c l u s i v e l y c o n f i r m the v a l i d i t y of t h a t m o d e l
between
t w o m o n i t o r i n g stations; thus, a p p l i c a t i o n of the d i s p e r s i o n m o d e l to n o n l i n e a r reactions s h o u l d b e m a d e w i t h c a u t i o n e v e n i f i n e r t t r a c e r response appears i d e a l . It is s u b s e q u e n t l y s h o w n h o w a n y g i v e n i n e r t tracer r e sponse o f a system s t i l l p e r m i t s a r a n g e of p o s s i b l e responses f o r n o n l i n e a r r e a c t i o n a n d h o w the m i n i m a l b o u n d s o n t h a t r a n g e c a n b e Elements of Residence Time
computed.
Theory
S i n c e the f o u n d a t i o n s of r e s i d e n c e t i m e t h e o r y are r i g o r o u s l y g i v e n Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
elsewhere ( 5 , 6, 7 ) , o n l y those features w h i c h are essential t o the present t r e a t m e n t w i l l b e g i v e n here. T h e residence t i m e d i s t r i b u t i o n ( r e s i d e n c e t i m e f r e q u e n c y f u n c t i o n ; exit age d i s t r i b u t i o n ) , / ( * ) , is d e f i n e d s u c h that f(t)dt
is the f r a c t i o n of f l u i d at a n y instant l e a v i n g the system, h a v i n g
spent t i m e b e t w e e n
t and t +
dt w i t h i n the system.
The cumulative
residence t i m e d i s t r i b u t i o n is
o
o
CO
f(t)
Figure 2. Ideal plug flow and perfectly mixed vessels in alternate sequence. Both arrangements exhibit the same response for inert tracers and first order reactions but not for nonlinear reactions.
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
198
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
7 f(t')dt'
F(t)
(1)
corresponds to the f r a c t i o n of fluid at a n y instant l e a v i n g t h e s y s t e m ,
h a v i n g spent t i m e shorter t h a n t w i t h i n the system. A r e l a t i o n of f u r t h e r i m p o r t a n c e is
Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
(2)
T h a t is, t h e first m o m e n t of the residence t i m e f r e q u e n c y f u n c t i o n residence t i m e )
(mean
equals t h e q u o t i e n t of the system v o l u m e V a n d the
constant v o l u m e flow rate Q t h r o u g h the system. T h e f u n c t i o n f(t)
is s t r a i g h t f o r w a r d l y r e l a t e d to t h e e x p e r i m e n t a l
t r a c e r response c u r v e ; for a s l u g i n p u t , t h e d o w n s t r e a m c o n c e n t r a t i o n t i m e c u r v e is p r o p o r t i o n a l to the f u n c t i o n f(t).
vs.
R e s p o n s e curves f o r d i f -
ferent m o d e s of i n p u t t h e o r e t i c a l l y c o n v e y e q u i v a l e n t i n f o r m a t i o n , a l t h o u g h c e r t a i n i n p u t s are e x p e r i m e n t a l l y c o n v e n i e n t to c a r r y out.
Thus,
r e d o i n g tracer experiments for different i n p u t s gives n o a d d e d i n f o r m a t i o n a b o u t the
flow.
Extremes of Mixing Residence Time
for
an Arbitrary
Specified
Distribution
Z w i e t e r i n g w a s a b l e to p r o v e that t h e t w o c o n c e p t u a l reactor figurations
con-
s h o w n i n F i g u r e 3, e a c h h a v i n g the same specified a r b i t r a r y
residence t i m e d i s t r i b u t i o n , e x h i b i t o p p o s i t e extremes of m i x i n g a n d thus give bounds on chemical conversion. flow
vessel h a v i n g c o n t i n u o u s
E a c h c o n f i g u r a t i o n is a n i d e a l p l u g
d i s t r i b u t i o n of respective
side exits
entrances w h i c h are g o v e r n e d to g i v e t h e a r b i t r a r y specified time distribution. Zwietering showed
or
residence
that the l o w e r c o n f i g u r a t i o n
in
F i g u r e 3 corresponds to t h e m i n i m u m degree of segregation for a g i v e n residence
t i m e d i s t r i b u t i o n , w h i l e the u p p e r
d i a g r a m corresponds
to
c o m p l e t e segregation or d e g r e e of segregation u n i t y . T h e degree of segreg a t i o n w a s i n t r o d u c e d b y D a n c k w e r t s a n d is a m e a s u r e of the extent to w h i c h m o l e c u l e s e n t e r i n g t h e system at a p a r t i c u l a r t i m e r e m a i n together, n o t m i x i n g w i t h m o l e c u l e s w h i c h enter at o t h e r times. W h i l e this c o n c e p t arises i n the f u n d a m e n t a l s of the theory, its precise d e f i n i t i o n o r n u m e r i c a l e v a l u a t i o n is n o t n e e d e d for a p p l i c a t i o n of the t h e o r y a n d w i l l not
be
g o n e i n t o here. Z w i e t e r i n g a l t e r n a t e l y interprets c o m p l e t e a n d m i n i m u m segregation
for the specified
"earliest" m i x i n g , respectively.
residence
t i m e f u n c t i o n as " l a t e s t " a n d
T h e time coordinate a shown i n F i g u r e 3
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
SPIELMAN AND B R i E R E
Use of Inert Tracer
199
Data
c o r r e s p o n d s to t h e age ( t i m e i n t e r v a l after e n t e r i n g ) o f a fluid e l e m e n t i n t h e s y s t e m , a n d t h e c o o r d i n a t e λ is t h e l i f e e x p e c t a t i o n ( t i m e i n t e r v a l before l e a v i n g ) o f a n element. COMPLETE SEGREGATION
c (t) 0
Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
lmnnmmm
c (t) e
MINIMUM SEGREGATION C (t) n
1111111111Π1ΤΤΤ
c (t) e
Figure 3. Conceptual flows corresponding to ex tremes of complete and minimum segregation. The distributed entrances and exits are governed to give the same arbitrary specified residence time distribution for each system. Analysis
for Complete
Segregation
I n t h e case o f c o m p l e t e s e g r e g a t i o n , t h e v o l u m e dv o f a n e l e m e n t o f fluid w i t h age b e t w e e n a a n d a + da is
* = V τ
F(oL)]doL
(3a)
T h e r e l a t i o n b e t w e e n t h e v o l u m e c o o r d i n a t e ν ( F i g u r e 3 ) a n d α is t h e n
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
200
NONEQUILIBRIUM
α
[1 -
SYSTEMS
IN
N A T U R A L
WATERS
(3b)
F{ot)W
i n w h i c h F is g i v e n b y E q u a t i o n 1. T h e equations d e s c r i b i n g r e a c t i o n i n the system w e r e d e r i v e d p r e v i o u s l y o n l y f o r the steady state w i t h a constant i n c o m i n g c o n c e n t r a t i o n . F o r i n d u s t r i a l reactors that case is of u t m o s t i m p o r t a n c e , b u t f o r n a t u r a l systems transient situations are e q u a l l y i m p o r t a n t , a n d the t r e a t m e n t is e x t e n d e d here to i n c l u d e a n a c c u m u l a t i o n t e r m . F o l l o w i n g Z w i e t e r i n g , let c(a,t) d e n o t e the c o n c e n t r a t i o n of r e a c t i n g substance i n the system Downloaded by SUFFOLK UNIV on January 18, 2018 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch007
as i t d e p e n d s o n b o t h p o s i t i o n ( t h r o u g h E q u a t i o n 3 b ) let R(c)
a n d t i m e t, a n d
b e the c o n c e n t r a t i o n - d e p e n d e n t rate of d i s a p p e a r a n c e o f reactant
per unit volume.
C o n s i d e r i n g n o w a v o l u m e e l e m e n t of the system a n d
u s i n g E q u a t i o n 3b, the q u a n t i t y of reactant l e a v i n g t h r o u g h side exits is Qc(a,t)f(a)da.
A d e t a i l e d m a t e r i a l b a l a n c e o n the v o l u m e e l e m e n t gives
the p a r t i a l d i f f e r e n t i a l e q u a t i o n for the c o n c e n t r a t i o n profile as dc
, dc
Fa + M
D
-
=
R
ν
/ (
C
(4)
)
T h e t i m e - d e p e n d e n t c o n c e n t r a t i o n i n the c o m b i n e d exit s t r e a m is
(5)
i n w h i c h c ( « , f ) is the s o l u t i o n of E q u a t i o n 4. E q u a t i o n 4 is to b e s o l v e d u n d e r the c o n d i t i o n s : b e f o r e t i m e t = system, a n d after t =
0, n o reactant is present i n the
0, the i n c o m i n g c o n c e n t r a t i o n c
0
is a n a r b i t r a r y
specified f u n c t i o n of t i m e . T h a t is, c(a,i) = 0 for t < 0
(6a)
= 0 for t
0
(6c)
E q u a t i o n 4 is q u a s i l i n e a r a n d c a n b e s o l v e d r e a d i l y b y the m e t h o d of characteristics ( 8 ) .
Its s o l u t i o n u n d e r c o n d i t i o n s 6 a , 6 b , a n d 6c is g i v e n
b y the i m p l i c i t r e l a t i o n
Hem; Nonequilibrium Systems in Natural Water Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
7.
spiELMAN
201
Use of Inert Tracer Data
BRiERE
A N D
F o r a disappearance reaction of order η ^
1, R(c)
= fcc* a n d E q u a t i o n
7 gives c(