NONFERROUS METALLURGY. I. Light Metals - ACS Publications

Authority, Res. Croup AERE-R 3974,. 1962. (228) Welcher, Frank S., ed., “Standard. Methods of Chemical Analysis,” 6th ed., Vol. II, Van Nostrand, ...
2 downloads 0 Views 2MB Size
(223) Uzumasa, Y., Hayashi, K., Ito, S., Bull. Chem. SOC.Japan 36, 301 (1963). (224) Wagner, J. C., Bryan, F. R., Advan. X-Ray Anal. 6, 339 (1963). (225) Wakamatsu, S., Japan dnalyst 11, 1151 (1962). 12261 Walker. J. hZ.. Kuo. C. W.. ANAL. ‘ CHEM.35, 2017 (1963). ’ (227) Watling, J., C . K . At. Energy Authority, Res. Group AERE-R 3974, 1no0

IYUL.

(228) Welcher, Frank S., ed., “Standard >\lethods of Chemical Analvsis.” 6th ed., Vol. 11, Van Nostrand, Princeton, X . J., 1963.

(229) West, Philip W., MacDonald, A. 31. G., West, T. S.,eds., “Analytical Chemistry 1962,” Fritz Fiegl 70th Birthday Symp. Papers, Elsevier, Amsterdam, 1963. (230) Weszpremy, B., Kohdsz. Lapok 96, 74 (1963). (231) White, G., Scholes, P. H., Metallurgia 70, 197 (1964). (232) Wojcik, A., Hutnik 30, 281 (1963). (233) Yakovlev, P. Y., Koeina, G. V.) Zavodsk. Lab. 29, 920 (1963). (234) Yakovleva, E. F., Belyaeva, Y.A., Sb. T r . Tsentr. AVauchn.-Issled. Inst. Chernoi M e t . 31, 129 (1963).

(238) Yamaguchi, N., Hasegawa, M., Japan Analyst 11, 126 (1962). (236) Yatsyk, I. E., Orzhekhovskaya, A. I., Sb. A\Jauchn.-Tekhn. T r . Nauchn.Issled. Inst. Met. Chelyabinsk. Sovnarkhoza 1961, 205. (237) Zeuner, H., Giesserei 49, 858 (1962). (238) Zielinski. E.. Przealad Odlewnictwa 13, 219 (1963). ’ (239) Zindel, E., Zeiher, R., 2 . Anal. Chem. 195, 27 (1963). (240) Zitter, H., Schwarz, W., Arch. Eisenhuttenw. 35, 109 (1964).

Nonferrous Metallurgy Light Metals

1.

Fritz Will, 111 Alcoa Research laboratories, Aluminum Co. o f America, New Kensington, Pa.

T

is the tenth review on nonferrous metallurgical analysis and covers the two-year period from September 1962 through August 1964, as documented by Chemical Abstracts and Analytical Abstracts. Also, the following journals were surveyed directly for the same period: . ~ N A L Y T I CAL CHEMISTRY, dnalytica Chimica Acta, The Analyst, and Talanta. S o t all of the creditable contributions are mentioned, nor are those that are discussed necessarily the most important. As mentioned in the last nonferrous metallurgy review (207), because of the increasing diversity of publications in the field of nonferrous metallurgy, the scope of this review surveys methodology on analysis of only the light structural metals : aluminum, beryllium, magnesium, and titanium. Fifty-five per cent of the references discussed the analysis of aluminum, 14% beryllium; 11% magnesium, and 20% titanium. I n a breakdown of the references as to percentages of the various techniques of analyses mentioned, the following results were found: 27% colorimetric, 22% spectrochemical, 11% activation analysis, 11% classical, 6% gas determinations, 5% polarographic, 4% chelometric, 3% ion exchange, 3% x-ray, 3% flame photometric, 2y0 atomic absorption, 3y0miscellaneous. As in the past, the colorimetric and spectrochemical methods of analyses are predominant with an increasing number of papers on activation analysis. Even though there were only four references to atomic absorption spectroscopy, more papers in this field are anticipated. W700d, Marron, and Lambert (211) discussed the electron-probe microanalysis of anodic oxide films on aluminum alloys. The oxide films formed by anodizing aluminum alloy in 15% H2S04were subjected to cleaning HIS

92 R

ANALYTICAL CHEMISTR\!

or sealing treatments and examined by electron probe for aluminum, sulfur, chromium, and nickel. This was the only paper on electron-probe analysis. Van Sandt et al. (193) constructed an automatic, direct-reading spectrograph suitable for the analysis of beryllium samples with a commercially available grating monochromator as its basic unit. Specially designed high-purity graphite electrodes were used. Ivanova, Kovalenko, and Tsyvenkova ( 7 6 ) discussed the spectrographic analysis of an aluminum alloy by fractional exposure. During analysis only one standard was employed and its spectra was photographed for various times. Lemieux (106) recommended an improved spectrochemical analysis of alumina by mineralized calcination. A procedure which converted samples to essentially alpha alumina was outlined. Calcination with a small amount of aluminum fluoride eliminated many of the striking differences in physical properties of the samples. Pocze (149) and Brune ( 1 5 ) summarized the activation analysis of aluminum. Ross (166) described the determination of 62 elemental impurities in beryllium, aluminium, and iron by activation analysis. The gamma activities of radionuclides produced by neutron activation were measured. Kern (82) critically reviewed important methods for determining hydrogen, nitrogen, and oxygen in beryllium, magnesium, and titanium, among others. The methods discussed were vacuum melting, carrier gas methods, chemical, spectrographic by a carbon d.c. arc, interniolecular viscosity, mass spectrometry, and activation analysis. Four recent books concerning in part the analysis of light metals are noteworthy. “Chemical Analysis of

Metals,” Part 32 of the American Society for Testing and Materials’ 1964 Book of Standards ( S ) , contains sections on the chemical analysis of aluminum, magnesium, and titanium and their alloys and the spectrochemical analysis of aluminum and its alloys. “The Chemistry of Beryllium” (39) includes chapters on chemical reactions of beryllium, extractive metallurgy of beryllium, and analytical chemistry of beryllium. “Treatise on Analytical Chemistry” ( 9 5 ) , Part 11, Vol. 5 , discusses the determination of 24 elements in titanium. “Standard Methods of Chemical Analysis” (50), Vol. 1, describes the analysis of aluminum, beryllium, magnesium, and titanium. As in the previous nonferrous review (207), the remaining text of this review is arranged alphabetically according to constituents determined. Tables I and I1 list analytical procedures according to materials analyzed and constituents determined. Aluminum. K o o d , Marron, and Lambert (211) reported the electronprobe microanalysis of anodic oxide films on aluminum alloys. Fedorav and Linkova (41, 4.2)described the determination of alumina in metallic aluminum by hydrochlorination. A quartz boat containing the aluminum was inserted into a molybdenum glass tube. The aluminum was dissolved in a current of hydrogen chloride and hydrogen and was distilled as the chloride. The alumina which remained was dissolved and determined photometrically a i t h aluminon. Iron, manganese, silicon, 0.05% tin in aluminum alloys using oxidized haematoxylin a t 570 mK. Kida et al. (88) determined tin and lead in a beryllium-copl)er alloy polarographically with a salt calomel electrode. 3Iore details are given in t'he Lead section. Titanium. Volkova, Get'inan, and Emtsova (197) determined titanium in aluminum photometrically as the titanium salicylate - quinine cornples, which was extracted with chloroform froin a pH 3 solution. Shkaravskii (163) proposed the photometric determination of small amounts of titanium in aluminum by estraction as phosphoti~

100 R

ANALYTICAL CHEMISTRY

tanomolybdate with butanol and chloroform. The absorbance was measured a t 360 mfi. hsmus, Kurzmann, and Wallsdorf (4) recommended the use of 2,3,7 - trihydroxy - 9 - (3,4 - dihydroxyphenyl)-6-isoxanthenone for the photometric determination of 0.005 to 1.2% t,itanium in aluminum alloys a t a pH of 1.5. Budanova and Pinaeva (16) reported the photometric determination of titanium in aluminum alloys containing vanadium with dichlorochroniotropic acid a t 490 mp. Khasnobis ( 8 6 ) utilized polarography for the estimation of titanium in aluminum and its alloys. Titanium oside was precipitated froin the sample solution and dissolved, after filtration, with oxalic acid. The polarogram was obtained between -0.2 and -0.7 volt. Pribil and Vesely (153) applied chelometric methods to the determination of titanium in titanium-aluminum alloys. Sodium salicylate (to mask aluminum) and triethanolamine were added to the sample solution and the pH was adjusted to 1 to 2. Bismuth was used to titrate the excess EDTA added with Xylenol Orange as indicat'or. When iron was present, titanium was first precipitated with NaOH in the presence of triethanolamine, which kept Fe(II1) and A1 in solution. Walkden and Heathfield (202) studied the photometric determination of titanium in beryllium by a chloroformcupferron extraction, evaporation of the organic layer to dryness and fusion of the residue. The titanium in a solution of the residue was determined by a freshly prepared thymol reagent. Zinchenko, Ershova, and Gertseva (214) reported the determination of bi- and trivalent titanium in titanium slag. The sample was decomposed with H3P04 and the titanium was titrated with FeSH4(S04)2 wit'h thiocyanate indicator. Tungsten. Dymov and Kozel (52) described the colorimetric determination of tungsten in titanium based on the extraction of the thiocyanate complex with isobutyl alcohol. Uranium. Slusil (168) developed a n x-ray fluorescence technique for the rapid determination of 100 to 1000 p.1i.m. of uranium in aluminum alloy. Boyle (12) determined uranium in beryllium oxide-uranium oxide mixtures by dissolving t,he sample in HC104 and HzS04 overnight, reducing the uranium with Cr(III), and titrating electrometrically with K2Crz07. Vanadium. Deyris and Albert (SO) recommended the determination of vanadium in zone-refined aluminum by activation analysis based on irradiation of vanadium, coprecipitated by adsorption on Fe(OH)Z, in a flux of 5 X lo1* neutrons per sq. em.-see. The activity of V2was measured after

extraction of vanadium cupferrate into CC14. Eiechler, Jordan, and Leslie ( 7 ) reported the spectrophotometric determination of vanadium in high-purity aluminum powder by converting the vanadium into the phosphotungstate, which was estracted into n-hexanol. Zinchenko and Barinova ( B f 3 ) proposed the photometric determination of vanadium in titanium by extraction of the vanadium phosphotungstate complex with isobutyl alcohol. Fluoride was added to complex the large amount of titanium. Zinc. Niyajima (121) reported the rapid photo metric determination of zinc in aluminum alloys with Xylrnol Orange a t a p H of 0.3. Ions such as calcium were masked with thiourea, ascorbic acid, and SH4F. 3Ionnier and Prod'hom (122) recommended a colorimetric determination of traces of zinc in bauxite, alumina, and refined aluminum with dithizone and a series of CHCI, and CC14 extractions. Wakamatsu (201) proposed a ral)id determination of zinc in aluminuin alloys by titration with EDT.1 at pH 5 to 6 with PAANas indicator. The interferences of aluminum and tin were masked by XH4F. Dirnitrova (31) studied the chelonietric determination of zinc in aluminum alloys by titrating with EDTA at pH 8.5 to 9.5 with Eriochrome Nack T as indicator. Ishibashi and Komaki ( 7 3 ) developed a method for the determination of zinc in aluminum alloy by using a liquid anion exchanger and EDTA titration with Eriochrome Black T as an indicator a t pH 9 to 10. The interfering iron was removed by a methyl isobutyl ketone extraction. Kharin and Soroka (84) described an ion exchange-electrolytic determination of zinc and copper in aluminum alloys not containing nickel. More details are in the Copper section. Fleury (44) recommended the polarographic determination of 0.01 to 0.357, zinc in copper-aluminum alloys. Copper was separated by electrodeposition, iron was extracted by isobut'yl methyl ketone, and zinc was measured polarographically in a SaOH-EDTA& gelatin mixture. Tajima and Kurobe (172) investigated the determination of copper, zinc, and iron in aluminum alloys by square-wave polarography without interference from other constituents. The polarograms for copp er and zinc were recorded from an HCI solution a t -0.025 and -1.05 volts, respectively, us. the mercury pool electrode. Vasil'eva and Vinogradova (194) studied the determination of gallium, zinc, and cadmium in highpurity aluminum by anvdic voltammetry at a stationary mercury electrode with a silver contact. Gornaya ( 6 8 ) applied emission spectroscopy to make an approximate determination of 0.2 to 0.87, zinc in

aluminum alloys by using an iron clectrode. S e e b (131) determined small amounts of zinc in high-purity aluminum by vaporization and condensation on a water-cooled fingercondenser, followed by spark spectrography. Wallace (205) employed atomic absorption spectroscopy for the determination of 0.02 to 6.0% zinc in aluminum alloys at 2138 A,, slit width 0.3 mm., lamp current 44 ma., and air pressure 12 lb. per sq. in. Ishibashi and Komaki (74) used liquid anion exchangers and E D T X titration for the separation and determination of zinc in nickel-magnesium alloy. Zirconium. SVolna and Studencki (209) determined 0.05 to 1% zirconium in magnesium alloys by precipitating the zirconium with tartrazine and weighing the complex. Crawley (23) described the photometric determination of soluble and insoluble zirconium in magnesium alloys with PAN after extraction with trioctylphosphine oxide. Tuma and Kabicky (186) reported the photometric determination of zirconium in magnesium alloys with morin. The absorbance was measured a t 436 mp after the complex was held at 20°C. for 20 to 60 minutes. Titanium and fluorides interfere. Tikhonov (178) recommended the colorimetric determination of zirconium in magnesium alloys with Alizarin S without weighing the sample. A plexiglas cylinder was glued on the surface of the sample and 2 to 3 drops of concentrated HC1 were added. hfter 5 minutes the solution was transferred to a graduate cylinder and the color was developed. Wood and McKenna (210) proposed the photometric determination of 0.5 to S70 zirconium in t,itanium alloys with Alizarin Red S at 560 mu. LITERATURE CITED

(1’1 Adell. hl. Roca. Anales Real SOC. % - l

E s p a n . Fis. Quim. ( M a d r i d ) Ser. B 59, 345 (1963). ( 2 ) hlbert, Phihppe, Gaittet, Jean, Radiozsotopes Phys. Sci. Ind., Proc. Conj. C‘se. Cowenhaoen. 1960 2, 243-59 (Pub. 1962). (3) Am. Soc. Testing and Materials, “Chemiral Analysis of Metals,” Part 32, Philadelphia, Pa., 1964. (4) Asmus, E . , Kurzmann, P., Wallsdorf, F., 2 . Anal. Chem. 197, 413 (1963). (5) Berry, R., Walker, J. A. J., Analyst 88, 280 (1963). (6) Bertoldi, S., Tartari, A., Alluminio 31, 127 (1962). (7) Biechler, D. G Jordan, D. E., Leslie, I$. D., ANAL.CHEM.35, 1685 (1963). (8) Blackburn, R., Peters, B. F. G., Ibid. p. 10. (9) BoLrov, T’. A., Chernogus, E . N., Yaroslavova, T. N., Materialy Tret’ego Ural’sk. Soveshch. PO Spektroskopii, Inst. F i z . Metal.. Akad. h‘auk S S S R , Komzs. PO Spektroskopir, Sverdlovsk 1960, 66 (Pub. 1962). (10) Bogatyrev, P. >I., Navyazhskaya, E. .4.,Sporykhina, T‘. S., Lakokras1

,

a

.)

ochnye Materialy i ikh Primenenie 1962 ( 3 ) , 68. 1) Bogatyrev, P. XI,, Yavyazhskaya, E. -4.,Sporykhina, Y. S., T r . Vses. LVauchn. Issled. Inst. K h i m . Reaktivov 1963 (2,5), p. 240. 2 ) Boyle, Walter G., U . S . At. Energy Comrn. Rept. UCRL-6639, 1-9 (1961). 3) Boyle, LValter G., Jr., Gregory, Lews, J., Sunderland, William, U . S . .4t. Energy Comm. Rept. UCRL-7204, 9 pp. (1963). (14) Bradshaw, W.,Johnson, R., Beard, D., V. S. Dept. Comrn., Office Tech. Serv., PB 159,872,28 pp. (1960). (15) Brune, Dag, Aktiebolaget Atomenergi, Stockholm AE-51, 8 pp. (1961). (16) Bitdanova, L. M., Pinaeva, S. N.) Zaootlsk. L a b . 29, 149 (1963). (17) Bugaeva, N . I., Mironenko, L. K., Ibid., 30, 419 (1964). (18) Biirke, Keith E., Davis, C. Manning, ~ A L CHEY. . 36, 172 (1964). (19) Calrararii, H., Rev. Chim.(Bucharest) 14, 349 (1963). (20) Cattogio, Jose A,, Publ. Inst. Invest. Micropuim., L‘niv. S a c l . Litoral 24, ( 2 2 ) , 99 (1968). (21) Christ, N., A s . 4 ~ . CHEM.35, 775 11963). (22) Costin, I., Metalurgia (Bucharest) 15, 511 (1963). (23) Crawley, R. H. A., Anal. Chim. Acta 26, 281 (1962). (24) Czajka, Zofia, Magy. K e m Folyoirat 68, 519 (1962). (25) Davey, hl. L., Metallurgia, Manchr 65, 151 (1962). (26) Dehngelis, Giorgio, Gerardi, Maria, Ric. Sci. Rend. Sez. A . (Z), 1 (I), 67 (1961). (27) Ibid., p. 76. (28) Degtyareva, 0. F., Sinitsyna, L. G., Proskuryakova, A . E., Zh. Analit. K h i m . 17, 926 (1962). (29) Ibid., 18, 510 (1963). (30) Deyris, M., Albert, P., M e m . Sci. Rev. L%letall.59, 14 (1962). (31) Dirnitrova, AI., Mashinostroene (Sofia) 10 (4), 23 (1961). (32) Dymov, A . hl., Kozel, L. Z., Zzv. Vysshikh Uchebn. Zavedenii, Chernaya Met. 1961 (5) . 192. (33) Egorova, k! I., Gurevich, A. N., Zavodsk. Lab. 29 789 (1963). (34) Eisen, J., 2. Erzbergbau Metallhuettenw. 16. 579 1 1963). (35) Elweil, W.’T,, Wood, D. F., Analyst 88, 475 (1963). (36) Erko, Y. F., Lifshits’, E. V., Konovalov, V. G., Dubins’kii, I. G., Bugaiova, N . I., U k r . Fir. Zhur. 6, 837 (1961). (37) Ershova, K. N., T r . Vses. .Vauchn. Issled. Inst. Zheleznodor. Transp. 1962 (227), 4 (1962). (38) Evans, C., Herrington, J., Radioisotopes Phys. Sei. Ind., Proc. Conf. Use, Copenhagen 1960, 2, 309 (Pub. 1962). (39) Everest, D. A , , “The Chemistry of Beryllium,” Elsevier, New York, 1964. (40) Everett, 31. R., Thompson, G. E., Analyst 87, 515 (1962). (41) Fedorov, A . A., Linkova, F. V., Zh. Analit. K h i m . 17, 53 (1962). (42) Fedorov, A. A,, Linkova, F. V., Sb. T r . Tsentr. Sauchn. Issled. Inst. Chernoi Met., 1962 (24), 172. (43) Fitzgerald, John J., NASA (Natl. Aeron. Space Admin.), Doc. N63-14839, 14 pp. (1963). (44) Fleury, M., Chim. Anal. ( P a r i s ) 45, 463 (1963). (45) Flewy, M., Capelle, R., Ibid., p. 117. (46) Ibid., p. 357. (47) Fratkin, Z. G., Zavodsk. Lab. 30 (2), 170 (1964). (48) Fujii, Isao, Muto, Haruo, Miyoshi, Katsuhiko, Bunseki Kagaku 13, 249 (1964).

(49) Fujishima, I., Takeuchi, T., Ibid., 10, 1221 (1961). (50) Furman, N. H., ed., “Standard Methods of Chemical Analysis,” 6th ed., Vol. 1, Van Nostrand, Princeton, 1962. (51) Furuya, M.,Bunseki Kagaku 11, 1247 (1962). (52) Galliford, D. J. B., Yardly, J. T., Analyst 88, 653 (1963). (53) Gilman, A. R., Isserow, S., U . S . Atomic Energy Comm. Rept. NMI-1,234, 24 pp. (1960). (54) Ginsberg, H., Pfundt, H., Z . Metallk. 53, 695 (1962). (55) Girardi, F., Pietra, R., AIVAL.CHEM. 35, 173 (1963). (66) Gomiscek, S., Rudarsko-Met. Zbornik, 1961, p. 403. (57) Gordievskii, A. T’., Ustyugov, G. P., I z v . Vysshikh Uchebn. Zavedenia, K h i m . i K h i m . Tekhnol. 4, 366, (1962). (58) Gornaya, R. I., Zavodsk. Lab. 29, 1083 (1963). (59) Gromoshinskaya, T. F., T r . Vses. iVauchn. - Issled. Alyumin. - Magnievyi Inst. 49, 200 (1962). (60) Grossmann, O., Doege, H. G., Kernenergie 7 , 113 (1964). (61) Guerreschi, L., Romita, R., Ric. Sci., R. C., A , 2, 603 (1962). (62) Gusarskii, 1‘. V., Kuzovlev, I. A., Zavodsk. Lab. 25, 1464 (1959). (63) Gusarskii, Y. V., Tarasevich, N. I., Ibid.. 28. 183 (1962). ~, (64) Hasegawa, hl., S i p p o n Kinzoku Gakkaishi 24, 493 (1960). (65) Hashimoto, S., Tanaka, R., Bunseki Kagaku 8, 564 (1959). (66) Hashitani, H., h’ippon Genshiryoku Gakkaishi 4, 287 (1962). (67) Hayes, 31. R., Metcalfe, J., Elwell, W. T., Wood, D. F., Analyst 8 8 , 471 (1963). (68) Hibbits, J. O., Kallmann, S., Talanta 10, 181 (1963). (69) Hine, R. A . , Bates, J. F., A p p l . Mater. Res.. 2. 215 11963). (70) Hine, R.’A.; Bates, J. F., Metallurgia, 65, 101 (1962). (71) Hirano, S., Mizuike, A., Iida, Y., Kogyo Kagaku Zasshi 62, 1491 (1959). (72) Ichiryu, A., Hashimoto, S., Bunseki Kagaku 10, 1137 (1961). (73) Ishibashi, M., Komaki, H., Zbid., 11, 43 (1962). (74) Ibid., p. 756. (75) Ivanova, Z. I., Kovalenko, P. N.,, Tsyvenkova, T. V., Elektrokhim. z Optich. Melody Analiza Sb., 191 (1963). (76) Jackson, H., Phillips, D. S., Analyst 87. 712 119621. (77) ’Kajzer, M:, Glusnik Hem. Drustva, Beograd, 25/26, 217 (1960-61). (78) Kalinin, Yu. S., Kondrashova, G. P., Mironov, D. E., Yalymov, G. I., T r . PO K h i m . i K h i m . Tekhnol. 4. 472 (1961). (79) Kalinnikov, V. T., Shteinberg, A . N , , Tatan i Ego Spluvy, Akad. ‘Vauk S S S R . , Inst. Met. 8 , 260 (1962). (80) Karalova, Z. K., Nemodruk, A. A,, Zh. Analit. K h i m . 17, 985 (1962). (81) Karev, 1‘. N . , Matyushenko, N. N , , Zavodsk. Lab. 30, 45 (1964). (82) Kern, R., Physik Kondenszerten Materie 1, 105 (1963). (83) Keys, J. H., Rowan, J. H., U S . At. Energy Comm. Rept. Y-1447, 14 pp, (1963). (84) Kharin, A. N., Soroka, N . N., Zh. Prikl. K h i m . 37, 672 (1964). (85) Khasnobis. S. K.. Indzan J . Annl. dhem. 25, 71’ (1962): (86) Kida, K., Abe, ll., Sishigaki, S., Kobayashi, K., Bunseki Kagaku 9, 1031 (1960). (87) Kida, K., Abe, Ll., Nishigaki, S., Kusaka, T., Ibid., 10, 358 (1961). I- 1-

VOL. 37, NO. 5 , APRIL 1965

101 R

( 8 8 ) Zbid., p. 1217. (89) Kiesl, W.,Bildstein, H., Hecht, F., Radiochim. Acta, 1 (3), 123 (1963). (90) Kiesl, W., Bildstein, H., Sorantin, H., Mikrochim. Zchnoanal. Acta, 1963, 151

( g i j k i e s l , w., Sorantin, H., Pfeifer, v., Mikrochim. Ichnoanal. Acta 1963, 996. (92) Klug, Otto, Sajo, Istvan, Kohasz. Lapok 95, 425 (1962). (93) Klyachko, Yu. A., Kunin, L. L., Chistyakova, E. M., Sb. Tr. Tsentr. IVauchn.-Zssled. Inst. Chernoi Met., 24, 42 (1962). (94) Kobayashi, M., Nagatsuka, S., Sawai, T., Radioisotopes 13, 26 (1964). (95) Kolthoff, I. hl., Elving, P. J., eds., “Treatise on Analytical Chemistry,” Part 11, Vol. 5 , p. 41, Interscience, New York, 1961. (96) Korenman, Ya. I., Tr. Khim. i Khim. Tekhnol. (Gor’kii) 384 (1962). (97) Kotsis, Tivadar, Femip. Kut. Znt. Kozlemen. 5 , 333 (1961). (98) Kovalenko, T. V., Zavodsk. Lab. 25, 1519 (1959). (99) Krejzova, E., Kruml, J., Plocek, L., Sklar Keram. 9, 244 (1959). (100) Kukula, F., Slunecko, J., Simkova, M., Jaderna Energie 9 , 166 (1963). (101) Kuzovlev, I. A., Gusarski, V. V., Zavodsk. Lab. 28, 1076 (1962). (102) Landi, hf. F., Alluminio 31, 577 (1962). (103) Laszlo, P., Magyar Kem. Foly., 68, 523 (1962). (104) Laverlochere, J., Bull. SOC.Chim. France, 1963, 457. (105) Laverlochere, J., C h i v . Anal. 44, 388 (1962). (106) Lemieux, P. E., Appl. Spectry. 17, 153 (1963). (107) Lewis, R. W., Earl, C. F., Potter, J. L., Fehler, R., U . S . Bur. Mines, Rept. Invest. 6108, 15 pp. (1962). (108) Lihl, Franz, Fischhuber, Johann, Z . .Wetallk. 53, 186 (1962). (109) Lin, Robert, U. S. At. Energy Comm. Rept. UCRL-6639, 10 (1961). 11101 Linanov. T’. A.. Bukhanova. A. A.. ‘ Kolachev, B. A., ‘ Tr. Mosk. ’Aviats: Tekhnol. Inst. 55, 90 (1962). (111) Linanov, V. A., Gorokhov, V. P., Golofaev, T. I., Malyavkina, V. P., Izv. Akad. Xauk SSSR. Ser. F i z . , 26, 914 (1962). (112) McCrary, J. H., Morgan, I. L., Baggerly, L. L., Proc. Intern. Conf., Modern Trends Activatzon Anal., College Station, Tex., p: 24 (1961). (113) Malevannyi, V. A., Lakokrasochnye Materialy i ikh Primenenie, 1962, 54. (114) Matelli, G., Attini, E., Alluminio 29, 227 (1960). (115) RIendlina, N. G., Zh. Analit. Khim., 18, 408 (1963). (116) bleyer, R. A., Austerman, S. B., Swarthout, D. G. ANAL.CHEM.35,2144

102 R

0

ANALYTICAL CHEMISTRY

128) Musil, F. J., U . S. At. Energy Comm. Rept. GAT-T-1053, 27 pp. (1962). 129) Navyazhskaya, E. A., Sporykhina, V. S., Lakokrasochnye Materialy i ikh Primenenie, S o . 4, 52 (1962). 130) Nazarenko, V.A., Shustova, M. B., Shitareva, G. G., Yagnyatinskaya, G. Ya., Ravitskaya, R. V., Zavodsk. Lab. 28, 645 (1962). 131) Xeeb, K. H., 2. Anal. Chem., 194, 255 (1963). (132) Nemodruk, A. A., Palei, P. K., Hun-I, He, Zavodsk. Lab. 28, 406 119581. (133) N’everovsky, E., Rev. Brasil. Quim. (Suo Paulo) 56, 191 (1963). (134) Oda, N., Kubo, >I.,Bunseki Kagaku 10, 1262 (1961). (135) Oda, N., Norishimtt, K., Kubo, *M., Ibid., 11, 526 (1962). 1136) . , Oda. N.. Tsunoo. S.. Haahimoto. T., Trans. Japan Inst. hfetuls, 1 , 130 11960). (137) -Oida, K., Fujita, K., Takahashi, I., Bunseki Kagaku 1 1 , 1136 (1962). (138) Onishi, K., Zbid., 12. 959 (1963). (139) Orlova, N. M., Petrov, A. A., Vestn. Leningr. Gniv. Ser. Fiz. i Khim. 1964, 69. (140) Orlovtsev, Yu. V., Krapukhin, V. V., Krestovnikov, A. I., Zzv. Vysshikh Uchebn. Zavedenii, Tsvetn. Met. 5 , 132 (1962). (141) Ottolini, A. C., Develop. Appl. Spectry. 1, 91 (1962). (142) Owens, E. B., Appl. Spectry. 16, 86 (19621. (143) ‘Penner, E. M.,Inman, W. R., Can. Dept. Mines Tech. Surv., Mines Branch, Tech. Bull. TB-49, 16 pp. (1963). (144) Peter, L., Magy. Kem. Folyoirat 69, 231 (1963). (145) Peter, L., Talanta 10, 513 (1963). (146) Petit, J., Engelmann, Ch., Prod. Use Short-Lived Radioisohpes Reactors, Proc. Seminar, Vienna, 2, 29 (1962) (Pub. 1963). (147) Pilgrim, W. E., Ford, W. R., ANAL. CHEM.35, 1735 (1963). (148) Pitwell, L. R., Analyst 87, 684 (1962). (149) Pocze, L., Kohasz. Lapok 96, 179 ilQA.?) ,- - - - ,. (150) Pohl, H., Aluminum 34, 710 (1958). (151) Pollock, E. N., Zopatti, L. P., Anal. Chim. Acta 28, 68 71963). (152) Postma, F. W., Jr., McMurray, C. S., Jr., U . S. At. Energy Comm. Rept. TID-7655, 90 (1962) (Pub. 1963). (l,53) Pribil, R., Veaely, V., Chemist Analyst 52, 43 (1963). (154) Romand, J., Balloffet, G., Vodar, . Spectros. Intern., 8u1, witzerland, 160. 1959 (Pub. 1960). (155) Rosenberg, K., U. S . At. Energy Comm. Rept. IA-672, 11 p. (1961). (156) Ross, W‘.J., ANAL. 36, 1114 (1964). (157) Sajo, I., Pozsgay, G., Klug, O., Kohasz. Lapok 96, 412 (1963). (158) Sawada, T., Keikinzoku 1 1 , 55 (1961). (159) Sawada, T., Kato, S., Bunseki Kagaku 1 1 , 544 (1962). (160) Sawada, T., Kato, S., J . Japan Inst. Metals, Sendai, 26, 190 (1962). (161) Schroeder, W. S., Straaheim, A., Colloq. Spectros. Intern., 9th, Lyons, 2, 117 (1961) (Pub. 1962). (162) Shimazaki, K., Nakayama, T., Nakamura, R., Nippon Kinzoku Gakkaishi 25, 269 (1961). (163) Shkaravskii, Yu. F.,Zh. Analit. Khim. 19, 514 (1964). (164) Shustova, M. B., Nazarenko, 1’. A., Khim. Prom., jVauk.-Tekhn. Zb., No. 4, 78 (1962).

2cerF3

I

,

HEM.

(165) Sikes, J. H., Wade, 11. A,, Yamamura, S., CONF-157-5, (1959). ACS, Northwest Regional Meeting, Bellingham, Wash., June, 1963; Sucl. Sci. Abstr. 18, 706 (1964). (166) Smart, A , , Metallurgia 69, 245 (1964). (167) Steckel, L. hI.> Hall, J. R., U.S. At. Energy Comm. Rept. Y-1406, 18 pp. I~-”--,. lRA2) (168) StrorB, W.,Clark, J., lWetallurqia 67, 47 (1963). (169) Zbid., 68, 191 (1963). (170) Suzuki, T., Bunseki Kagaku 12, 65.5 ... (1963). \----, ( l i’1) . - Tah, Fu-Hai, W u L i Hsueh Pao , A , . n - \

17, 4YS ( I Y b l ) . (172) Tajima, ?;., Kurobe, &I., Bunsekz

Kagaku 10, 146 (1961). (173) Taiima. N..Kurobe. >I.. Terada. H., Zb;d., p. 1340. (174) Tanaki, R., Zbid., p. 336. (175) Teillac, J., Microtecnic 17, 258 IlF)fi.?’i \----,.

(176) Thieme, O., Hermsdorfer Tech. Mitt. ( H T M ) 1, 8 (1960). (177) Tikhonov, 1:. X., Izv. Vysshikh Uchebn. Zavedenii. Khim. i Khim. Tekhnol. 5 , 31 (1962). (178) Zbid., p. 214. (179) Tikhonov, V. K.,Zh. Analit. Khim. 17, 422 (1962). (180) Tikhonov, 1’.N., Grankina, M.Ya., Ind. Lab. 29, 6g6 (1963). (181) Tikhonov, V. K.,Xikitina, A. P., Zavodsk. Lab. 28. 662 f 1962).

(184) Tsuji, N., Abe, K., Ando, AI., Bunseki Kagaku 1 1 , 648 (1962). (185) Tucholka-Szmeja, B., Chem. Anal. (Warsaw) 7, 463 (1962). (186) Tuma, H., Kabicky, T-., Talantu 8, 749 (1961). (187) Tumanov, A. A., Sidorenko, A. S., Tr. Khim. i Khim. Tekhnol. (Gor’kii), 378 (1962). (188) U . K . At. Energy Authority Rept. PG-348(S), 1962. (189) Ibid., PG-409 (S), 1963. (190) Vahldick, F. W., Lynch, D. T., Robinson, L. B., ANAL. CHEM.34, 1667 (1962). (191) Valach, R., Czech. 105,355, Oct. 15, 1962. 1192) S‘alnshtein. E. E.. Korolev. T’. V.. ’ Savinova, E. N., Chem. Anal., Warsaw; 7, 187 (1962). (193) Van Sandt, W. A., Santomassino, V. C., Rumble, R. P., Barlow, 0. M., Am. Znd. H y g . Assoc. J . 23, 203 (1962). (194) Vasil’eva. L. N.. Vinogradova. E. ‘ N.’. Zh. Analit. Khim: 18. 4 a f 1963j. (195j Vilnat, J., Voinovitih, I. ‘A,, Publ. Group. Avan. Methodes Spectrog. (lo), 307 (1962). (196) Vinogradova, E. X., Vasil’eva, L. N.. Zh. Analit. Khim. 17. 579 (1962): (197) Volkova, .4. I., Get’man, T. E., Emtaova, X. A , , Ukr. Khim. Zh. 30, 102 (1964). (198) Volodarskaya, R. S., Derevyanko, G. N., Zavodsk. Lab. 29, 148 (1963). (199) Voronezhskaya, I. A., Mladentseva, 0. I., Akeenova, .4. V., Gradoboeva, R. A,, Zbid., 28, 557 (1962). (200) Vvedenskii, L. E., Shekhobalova, 1‘. I., Novikova, A. S., Izv. Akad‘ iVauk S S R , Ser. Fiz., 26, 896 (1962). 12011 Wakamatau. S.. Siwwon Kinzoku Gulckaishi 24, 504 (1960j.‘ (202) Walkden, J., Heathfield, K. E., At. Enerav Research Estab. iGt. Brit.) AM 32, i-(1959). (203) Wallace, F. J., Analyst 88, 259 (1963). ~

(204) Wallace, F. J., Foseco Developm., (8), 72 (1963). (205) Wallace, F. J., Nillger J . 7, 39 (1962). (206) Wells, J. R., Carpenter, Ll., U . S. BUT. Min. Rep. Invest. 6105, 23 pp. 1962. (207) Will, Fritz, 111, Moss, M. L., ANAL.CHEM.35, 96R (1963).

(208) Wilson, L., Anal. Chim. Acta 30, 377 (1964). (209) Wolna, Jozefa, Studencki, Jerzy, Rudy Metale Siezelazne 7 , 557 (1962). (210) Wood, D. F., McKenna, R. H., Analyst 87, 880 (1962). (211) Wood, G. C., Marron, V. J. J., Lambert, B. W., LVature199,239 (1963). (212) Yakovlev, P. Ya., Malinina, R. D.,

Sb. Tr. Tsentr. Nauchn.-Issled. Inst. Chernoi Met. 24, 136 (1962). (213) Zinchenko, V. A., Barinova, 0. D., Titan i Ego Splavy, Akad. Nauk S S S R , Inst. Met. 8 , 251 (1962). (214) Zinchenko, V. A,, Ershova, N. A . , Gertseva, N. M., Titan i Ego Splavy, Akad. Y u u k SSSR, Inst. Met. 8 , 242 (1962).

Nonferrous Metallurgy II, Zirconium, Hafnium, Vanadium, Niobium, Tanta= lum, Chromium, Molybdenum, and Tungsten Robert Z. Bachman and Charles V . Banks Institute for Atomic Research and Department o f Chemistry, I o w a State University, Ames, l o w a

T

HIS REVIEW,which is appearing for the first time, is concerned with methods for the determination of zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten which appeared in the literature between January 1962 and July 1964. ,4 recent review (21) discusses the literature on the analytical chemistry of these elements along with titanium for the period from 1950 through 1960. A review of the literature appearing in 1961 was included in the Nonferrous Netallurgy Section of Analytical Reviews-1963. Because this is the first review in Analytical Reviews dealing exclusively with these elements, enough different methods and types of methods are included to try to present a representative cross-section of the material being published on the determination of these elements. To make this review more useful to those engaged in the determination of these metals, an effort was made to include a brief statement as t o the content of each paper. Those references which appeared in the Ferrous or Nonferrous Metallurgy Sections of Analytical Reviews-1963 were intentionally omitted from this review. Although titanium has been included in some reviews of the analytical chemistry of these elements, i t was felt in this case that better continuity would be maintained by including titanium with the other “light-structural metals” in Nonferrous Metallurgy, Part I. The elements vanadium, chromium, molybdenum, and tungsten are discussed separately; however, it was found to be more satisfactory to discuss zirconium and hafnium together and niobium and tantalum together. Analytical methods are summarized in Tables I-XI.

ZIRCONLUM AND HAFNIUM

Zirconium and hafnium are found together in nature, are usually discussed together in the literature, and most wet chemical methods work equally well for

both. Consequently, they will be considered together in this review to avoid repetition. Elwell and Wood ($4) have recently authored a book on the analysis of zirconium entitled “The Analysis of Titanium, Zirconium, and Their Alloys.” Recent reviews of the analytical chemistry of zirconium and hafnium include a two-part review by I t o and Hoshino (125, 124) and one by Elinson (80). McKaveney (165) used round-robin analysis on three niobium-base alloys to evaluate several types of procedures for the determination of a number of elements including zirconium in niobium. Activation analysis is a technique which has proved useful for the determination of zirconium in the presence of hafnium and of hafnium in the presence of zirconium. Oka, Kato, and Sasaki (203) added copper as a n internal standard to mixtures of zirconium and hafnium and then measured the ratio of radioactivity of zirconium-89 to copper62 to determine zirconium in hafnium. Zitnansky and Sebestian (293) irradiated pure zirconium along with the unknown sample to determine the zirconium correction for the determination of hafnium in zirconium. Kamemoto and Yamagishi (132) irradiated a standard along with the sample to determine 0.06 to 1.1% hafnium in zirconium. They used the y-rays from hafnium-181 rather than hafnium-179. Hafnium along with a number of elements was determined by Fournet (89) using activation analysis in pure zirconium prepared by two different methods. Ehmann and Setser (78) applied activation analysis and radiochemical separations to the determination of both hafnium and zirconium in stone meteorites. Chinaglia e.! al. (55) included hafnium in a discussion of the use of short-lived radionuclides in activation analysis. Girardi and Pietra (97) used a n activation method coupled with separations for the determination of hafnium in

aluminum. Activation analysis techniques were used by Gruverman and Henninger (101) for the determination of zirconium in alloy steels and electroetch residues. Radiochemical methods have also been frequently used to determine the amount of zirconium-95 in various substances under different conditions. Seyb (250) proposed a mathematical treatment of the decay curves which allows the determination of both zirconium-95 and niobium-95 in mixtures. Overman (210) used a fl-y coincidence counting technique to resolve mixtures such as zirconium-95 and niobium-95. Maeck, Marsh, and Rein (16’7) utilized zirconium-97 to evaluate critical nuclear incidents in which large levels of fission products were present prior to the incident. Park, Kim, and Suo (215) determined the concentration of zirconium-95 and a number of other elements in air to find the level of fallout from weapons tests. MacDonald et al. (163) determined some y-emitting nuclides including zirconium-95 in newborns, infants, and children, and Cofield (60) worked out techniques for the determination of zirconium-95 and other nuclides in human lungs. Techniques for the determination of important fission products including zirconium have been applied to rain water by Buchtela and Lesigang (36); to vegetables by Park, Kim, and Suo (216); to marine sediments by Osterberg, Kulm, and Byrne (209) ; to seaweed and seawater by Hampson (108); and to soil and river-bed samples by Sakagishi, Ueno, and Minami (241). During the period covered by this review there were also a number of papers published which described gravimetric methods for the determination of zirconium. Several of these were merely procedures for finishing the determination after a separation had been achieved by some other means, while some involved the use of reagents which were claimed t o separate zirconium from VOL. 37, NO. 5, APRIL 1965

103 R