Novel Extensions of the Electrostatic Covalent Approach and

measured observable with pKB or other one parameter criteria of sigma donor .... of ECW is not to correlate the universe but to provide a tool for und...
0 downloads 0 Views 1MB Size
Chapter 12

Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 12, 2018 at 01:14:52 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Novel Extensions of the Electrostatic Covalent Approach and Calorimetric Measurements to Organometallic Systems Russell S. Drago Department of Chemistry, University of Florida, Gainesville, FL 32611

Attempts to understand chemical reactivity in organometallic systems often involve comparison of some measured observable with pK or other one parameter criteria of sigma donor strength. Deviations from the sigma donor trends are often interpreted in terms of unusual bonding effects in the organometallic system. In this article, the pitfalls associated with selection of a one parameter criteria of donor strength are discussed. An alternative approach based on the ECW model is offered for both the interpretation and design of experiments. Several examples are presented which illustrate both the ways in which the model should be applied and the additional information that can be obtained from the data. Utilization of the approach to reactions in polar solvents and in heterogenous systems is also described. B

Most c h e m i s t s c a r r y o u t t h e r m o d y n a m i c m e a s u r e m e n t s i n o r d e r t o u n d e r s t a n d t r e n d s i n c h e m i c a l r e a c t i v i t y . To a c c o m p l i s h t h i s objective, quantitative c r i t e r i a are required t o provide the basis f o r what i s t o be e x p e c t e d u n d e r normal c i r c u m s t a n c e s where s i g m a b o n d i n g d o m i n a t e s r e a c t i v i t y . F o r e x a m p l e , t h e ρ Κ β s c a l e h a s been u s e d o f t e n t o p r o v i d e t h e b a s i s f o r t h e s i g m a bond r e a c t i v i t y o f o r g a n i c b a s e s . In t h e l a t e 1950's, i t was r e c o g n i z e d t h a t no s i n g l e s c a l e o f sigma donor s t r e n g t h e x i s t e d (1^3). As t h e Lewis a c i d i s v a r i e d , changes i n t h e order o f donor s t r e n g t h occur. 0097-6156/90A)428-0175$06.00A) © 1990 American Chemical Society

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

176

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

Some o f t h e most d r a m a t i c r e v e r s a l s o c c u r w i t h t h e a c i d s i o d i n e and p h e n o l (3). E a r l y , f i r s t row t r a n s i t i o n m e t a l c o m p l e x e s a l s o g i v e r i s e t o o r d e r s d i f f e r e n t f r o m d ^ t h i r d row s y s t e m s (1). Q u a l i t a t i v e e x p l a n a t i o n s o f t h e s e r e v e r s a l s i n b a s i c i t y were b a s e d on t h e M u l l i k e n (4) d e s c r i p t i o n o f b o n d i n g i n c h a r g e - t r a n s f e r complexes:

r

B A

= *·

β1

+ *-



cov

V a r i a t i o n s i n t h e i m p o r t a n c e o f c o v a l e n t , 0 ° » and e l e c t r o s t a t i c , ^ ° - | , b o n d i n g were p r o p o s e d t o a c c o u n t f o r t h e r e v e r s a l s i n s t r e n g t h o f oxygen and s u l f u r d o n o r s t o w a r d i o d i n e ( R S > R 0) and phenol (R 0 > R S ) . N i t r o g e n donors, w i t h both a l a r g e lone p a i r d i p o l e moment and low i o n i z a t i o n e n e r g y , e . g . , ( C ^ ^ N , t e n d t o be s t r o n g e r t h a n s u l f u r d o n o r s t o w a r d I and a l s o s t r o n g e r t h a n o x y g e n donors toward p h e n o l . These examples i l l u s t r a t e the q u a l i t a t i v e way i n w h i c h t h e M u l l i k e n o r P a u l i n g (5) e l e c t r o s t a t i c - c o v a l e n t , ( E C ) , model i s u s e d t o r a t i o n a l i z e d i f f e r e n t d o n o r o r d e r s . I f a q u a l i t a t i v e r a t i o n a l i z a t i o n o f b o n d i n g has any b a s i s i n f a c t , a t t h e v e r y l e a s t one s h o u l d be a b l e t o f i t bond s t r e n g t h s , e.g. adduct f o r m a t i o n e n t h a l p i e s , t o e m p i r i c a l parameters t h a t r e l a t e t o the e f f e c t s used i n the q u a l i t a t i v e d e s c r i p t i o n . I f a d d i t i o n a l p a r a m e t e r s a r e needed f o r a good q u a n t i t a t i v e f i t , t h e n an added e f f e c t i s a l s o needed f o r t h e c o m p l e t e q u a l i t a t i v e r a t i o n a l i z a t i o n . The e q u a t i o n p r o p o s e d (6^8) f o r t h e q u a l i t a t i v e e l e c t r o s t a t i c - c o v a l e n t model i s : c o v

e

2

2

2

2

2

-ΔΗ = E E A

B

+ C C A

B

-W

(2)

The e n t h a l p y o f c o o r d i n a t e bond f o r m a t i o n , -ΔΗ, i s g i v e n b y a n e l e c t r o s t a t i c t e r m , E^Eg, and a c o v a l e n t t e r m , C^Cg where A r e f e r s t o a L e w i s a c i d and Β a L e w i s b a s e . The W t e r m accommodates (8) any c o n s t a n t c o n t r i b u t i o n t o t h e e n t h a l p y w h i c h f o r a n a c i d ( o r b a s e ) i s i n d e p e n d e n t o f t h e b a s e ( o r a c i d ) e m p l o y e d . The W t e r m i s u s u a l l y z e r o b u t w o u l d be f i n i t e , f o r example, f o r t h e h e a t o f d i s s o c i a t i o n o f A1 C1 t o f o r m a B-AICI3 a d d u c t . Enthalpy data f o r r e a c t i o n s o f the type: 2

6

A + Β * A-B

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

(3)

12.

DRAGO

Novel Extensions of Electrostatic Covalent Approach

177

i n s o l v e n t s w i t h m i n i m a l s o l v a t i o n c o n t r i b u t i o n s a r e used t o e m p i r i c a l l y d e t e r m i n e t h e Ε and C p a r a m e t e r s . T h e r e s u l t i n g d a t a f i t i s e x c e p t i o n a l . T h e most r e c e n t r e p o r t ( 9 ) o f v a l u e s f o r t h e s e p a r a m e t e r s e m p l o y e d 500 e n t h a l p i e s f o r 48 b a s e s and 43 a c i d s t o s o l v e f i v e h u n d r e d e q u a t i o n s f o r 185 unknown p a r a m e t e r s . (Seven a c i d s have W v a l u e s and a l l o t h e r a c i d s and b a s e s have W=0.) T h e EC p a r a m e t e r s t h a t r e s u l t f r o m t h e f i t r e p r e s e n t t h e t e n d e n c y o f t h e a c i d o r base t o u n d e r g o e l e c t r o s t a t i c o r c o v a l e n t b o n d i n g , r e s p e c t i v e l y , when f o r m i n g an a d d u c t . When t h e r e p o r t e d ( 9 ) e m p i r i c a l p a r a m e t e r s f o r t h e a c i d and base a r e s u b s t i t u t e d i n t o E q u a t i o n 2, t h e c a l c u l a t e d e n t h a l p y i s f o u n d t o a g r e e w i t h t h e e x p e r i m e n t a l r e s u l t t o w i t h i n 0.1 t o 0.2 k c a l m o l e " ^ . S y s t e m s i n w h i c h s t e r i c e f f e c t s e x i s t and t h o s e i n w h i c h t h e r e i s m e t a l - l i g a n d π - b a c k b o n d i n g show d e v i a t i o n s between t h e c a l c u l a t e d and m e a s u r e d v a l u e s t h a t p r o v i d e an e s t i m a t e o f t h e m a g n i t u d e o f t h e s e e f f e c t s . In c o n t r a s t t o t h e c l a i m ( 1 0 ) t h a t t h e ECW model " d i s g u i s e s t h e r e l a t i o n s h i p between r e a c t i v i t y and p e r i o d i c e l e m e n t a l p r o p e r t i e s " , elementary a p p l i c a t i o n o f f r o n t i e r molecular o r b i t a l t h e o r y ( H ) c a n be used t o u n d e r s t a n d t h e t r e n d s . U s i n g q u a l i t a t i v e trends i n i o n i z a t i o n energies, inductive effects, e l e c t r o n e g a t i v i t i e s and p a r t i a l c h a r g e / s i z e r a t i o s , o n e c a n e s t i m a t e t r e n d s i n t h e H0M0-LUM0 s e p a r a t i o n o f t h e d o n o r and a c c e p t o r . I n c r e a s i n g t h e s e p a r a t i o n d e c r e a s e s t h e c o v a l e n t and increases the e l e c t r o s t a t i c nature o f the i n t e r a c t i o n . Decreasing the s e p a r a t i o n has t h e o p p o s i t e e f f e c t . Trends i n t h e r e p o r t e d a c i d and base p a r a m e t e r s a s w e l l a s i n t h e Ε Ε and C C g p r o d u c t s c a n be u n d e r s t o o d i n t h i s way. T h e r e have been s e v e r a l a t t e m p t s i n r e c e n t i n o r g a n i c c h e m i s t r y t e x t b o o k s t o r e l a t e t h e ECW a p p r o a c h t o o t h e r a c i d - b a s e t h e o r i e s . F i n s t o n and Rychtman ( 1 2 ) have done an o u t s t a n d i n g j o b i n t h e i r r e c e n t t e x t and t h e r e a d e r i s r e f e r r e d t o t h i s s o u r c e f o r t h i s t o p i c . A s i m p l e t e s t c a n be used t o j u d g e o t h e r a p p r o a c h e s . A n y o n e o f f e r i n g o r c o n s i d e r i n g a d i f f e r e n t q u a l i t a t i v e model f o r d o n o r - a c c e p t o r r e a c t i v i t y s h o u l d e x p r e s s i t u s i n g an e m p i r i c a l e q u a t i o n , a s was done w i t h E q u a t i o n 2 f o r t h e c o v a l e n t e l e c t r o s t a t i c m o d e l . T h e 500 e n t h a l p i e s c o m p i l e d ( 9 ) s h o u l d be f i t to t h e proposed equation. I f t h e q u a n t i t a t i v e e x p r e s s i o n o f t h e model l e a d s t o a p o o r f i t b u t r e p r o d u c e s t h e c o r r e c t t r e n d s w i t h p a r a m e t e r s c o n s i s t e n t w i t h t h e model imposed t h e n i t c a n be c o n c l u d e d t h a t t h e q u a l i t a t i v e model i s a c c e p t a b l e . I f t h e q u a n t i t a t i v e e x p r e s s i o n does n o t reproduce t h e t r e n d s , then t h e q u a l i t a t i v e model i s n o t a c c e p t a b l e . I f t h e new model r e q u i r e s Α

β

A

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

178

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

t h r e e o r more e f f e c t s t o e x p l a i n t h e t r e n d s i n s t e a d o f t h e two o f t h e EC model i t c a n a l s o b e d i s r e g a r d e d . Though t h e a b o v e statements appear obvious, they are mentioned here because the f a i l u r e of various q u a l i t a t i v e i n t e r p r e t a t i o n s of chemical r e a c t i v i t y t o f i t q u a n t i t a t i v e d a t a have been j u s t i f i e d b y t h e argument t h a t " i t i s o n l y a q u a l i t a t i v e model." PHILOSOPHY OF THE ECW MODEL The ECW model p r o v i d e s a b a s i s f o r d e t e r m i n i n g what i s normal ( E q u a t i o n 1) i n sigma bond, d o n o r - a c c e p t o r i n t e r a c t i o n s . A s s u c h i t c a n b e u s e d i n t h e s t u d y o f t h e c o o r d i n a t i o n c h e m i s t r y o f new a c i d s or bases t o determine the e x i s t e n c e , o r l a c k t h e r e o f , o f u n u s u a l b o n d i n g e f f e c t s . The e n t h a l p y o f c o m p l e x a t i o n o f a s e r i e s o f b a s e s ( o r a c i d s ) i n t h e Ε and C c o r r e l a t i o n (9) c a n b e s t u d i e d t o w a r d t h e new a c i d ( o r b a s e ) and t h e s e r i e s o f s i m u l t a n e o u s e q u a t i o n s o f t h e f o r m o f E q u a t i o n 2 s o l v e d f o r t h e two ( o r t h r e e i f W i s n e e d e d ) unknown p a r a m e t e r s . A r e c e n t s t u d y (13) o f m e t a l m e t a l bonded a c i d s , M ( 0 C R ) , (where M = R h ( I I ) , M o ( I I ) , C r ( I I ) and R u ( I I ) R u ( I I I ) ) i l l u s t r a t e s t h e i n s i g h t p r o v i d e d b y t h i s t y p e o f a n a l y s i s . An u n u s u a l l y l a r g e π - b a c k b o n d s t a b i l i z a t i o n was o b s e r v e d i n t h o s e s y s t e m s where t h e π o r b i t a l s o f t h e m e t a l - m e t a l bond a r e o c c u p i e d . The m e t a l s i n a m e t a l - m e t a l bond i n t e r a c t i n a s y n e r g i s t i c way t o e n h a n c e t h e a b i l i t y o f t h e m e t a l c e n t e r t o π b a c k d o n a t e . The d i s c o v e r y o f t h i s s y n e r g i s m has f u n d a m e n t a l i m p l i c a t i o n s f o r understanding the r e a c t i v i t y o f metal c l u s t e r s . O t h e r e x a m p l e s o f t h e s e a p p l i c a t i o n s have been r e v i e w e d . (7-8) The u t i l i z a t i o n o f t h e ECW model need n o t b e r e s t r i c t e d t o bond s t r e n g t h s . I f one m e a s u r e s t h e s p e c t r a l s h i f t s , Δι/, o f a s e r i e s o f o r g a n o m e t a l l i c b a s e a d d u c t s , one c a n a t t e m p t t o f i t t h e s e to the expression: 2

2

A

4

E

E

" • A* B

+

C

W

A* B " * C

W

The a s t e r i s k i n d i c a t e s t h e s e a r e n o t e n t h a l p y b a s e d p a r a m e t e r s and c o n t a i n c o n v e r s i o n u n i t s t o g i v e E E g t h e same u n i t s as Δι/. F r e e e n e r g i e s , i n f r a r e d , nmr, e p r , uv, e t c . s h i f t s , r a t e c o n s t a n t s , c o n t a c t a n g l e s , g . c . r e t e n t i o n t i m e s , e t c . , can a l s o b e a n a l y z e d by s u b s t i t u t i n g t h e p r o p e r t y , Δ χ , f o r Δι/ i n t o E q u a t i o n 3 and a f i t A

it

"k

k

a t t e m p t e d . I f t h e f i t i s s u c c e s s f u l , ( i . e . t h e E , C and W p a r a m e t e r s d e t e r m i n e d c a l c u l a t e Δ χ t o e x p e r i m e n t a l e r r o r ) , one c a n c o n c l u d e t h a t t h e phenomenon i s b e i n g d o m i n a t e d b y n o r m a l , sigma A

A

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

12.

DRAGO

Novel Extensions of Electrostatic Covalent Approach

179

bond c o o r d i n a t i o n c h e m i s t r y . The more c o m p l e x t h e p r o p e r t y t h e g r e a t e r t h e c h a n c e t h a t t h e c o r r e l a t i o n w i l l n o t work b e c a u s e o t h e r f a c t o r s e x i s t and may make d o m i n a n t c o n t r i b u t i o n s t o t h e o b s e r v a b l e , Δ χ . T h e s e a p p l i c a t i o n s i l l u s t r a t e an i m p o r t a n t p h i l o s o p h i c a l p o i n t a b o u t t h e ECW a p p r o a c h . The ECW p a r a m e t e r s a r e b a s e d on s o l v e n t m i n i m i z e d e n t h a l p i e s o f a d d u c t f o r m a t i o n . Phenol h y d r o g e n b o n d i n g s h i f t s i n t h e i n f r a r e d were i n c l u d e d i n t h e f i t (9) o n l y a f t e r e x t e n s i v e s t u d i e s showed t h a t t h e y c o r r e l a t e d w i t h s e v e r a l known b a s e p a r a m e t e r s . T h u s , t h e ECW a p p r o a c h i s u n i q u e b e c a u s e i t i s b a s e d on t h e " r i g h t s t u f f " . O t h e r e m p i r i c a l a p p r o a c h e s u s e l a r g e q u a n t i t i e s o f more e a s i l y m e a s u r e d d a t a t o d e t e r m i n e t h e p a r a m e t e r s . The p h i l o s o p h y o f t e n i s t h e more d a t a t h e p a r a m e t e r s f i t , t h e b e t t e r t h e m o d e l . The EC p a r a m e t e r s w o u l d n o t be c h a n g e d t o f i t o n e - h u n d r e d e l e c t r o n i c t r a n s i t i o n s i f t e n good e n t h a l p i e s had t o be e l i m i n a t e d . I n s t e a d , t h e q u e s t i o n w o u l d be a s k e d , what e l s e i s o c c u r r i n g i n t h e s p e c t r o s c o p y t h a t i s n o t i n v o l v e d i n normal s i g m a bond f o r m a t i o n ? The ECW a p p r o a c h c a n be a p p l i e d t o o r g a n o m e t a l l i c s p e c t r a l and thermodynamic data i n p o l a r s o l v e n t s . I f a good c o r r e l a t i o n r e s u l t s , t h e phenomenon m e a s u r e d i s d o m i n a t e d by d o n o r - a c c e p t o r sigma bonding i n s t e a d o f s o l v a t i o n e f f e c t s , e n t r o p i e s , e t c . I f a c o r r e l a t i o n d o e s n o t r e s u l t , t h e phenomenon i s b e i n g d o m i n a t e d by e f f e c t s o t h e r t h a n normal s i g m a bond f o r m a t i o n . I t i s n o t c o r r e c t t o a t t r i b u t e t h e f a i l u r e t o t h e EC model and c l a i m o t h e r p a r a m e t e r s a r e b e t t e r i n h i g h l y c o o r d i n a t i n g s o l v e n t s ( 1 2 ) . Any s c a l e t h a t has s o l v a t i o n a s w e l l as c o o r d i n a t i o n p r o p e r t i e s i n c l u d e d i n t h e same p a r a m e t e r c a n n o t h a v e g e n e r a l a p p l i c a b i l i t y . T h e s e a r e d i f f e r e n t , i n d e p e n d e n t e f f e c t s t h a t need t o be u n d e r s t o o d and p a r a m e t e r i z e d s e p a r a t e l y . T h i s i s a l s o an i m p o r t a n t p h i l o s o p h i c a l p o i n t t h a t i s o f t e n n o t a p p r e c i a t e d . The g o a l o f ECW i s n o t t o c o r r e l a t e the universe but t o provide a tool f o r understanding i t .

PLOTS EMPLOYING REFERENCE ACIDS OR BASES

N e x t c o n s i d e r t h e i m p l i c a t i o n s o f t h e c o n c l u s i o n t h a t t h e r e i s no i n h e r e n t o r d e r o f d o n o r ( o r a c c e p t o r ) a b i l i t y . The m u l t i t u d e o f o r d e r s t h a t e x i s t i s n i c e l y i l l u s t r a t e d by t h e g r a p h i c a l p l o t o f C r a m e r and Bopp, ( 1 4 ) who f a c t o r e d t h e ECW e q u a t i o n ( w i t h W=0) t o obtain:

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

180

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

P l o t t i n g an e n t h a l p y normalized f o r a c i d s t r e n g t h , -AH/(C + E ) v e r s u s a " n o r m a l i z e d a c i d c o v a l e n t bond t e n d e n c y " ( C - E ) / ( E + C ) one o b t a i n s a s t r a i g h t l i n e f o r a g i v e n b a s e b o n d i n g t o a l l s i g m a a c c e p t o r s . S e l e c t a b a s e f r o m t h o s e r e p o r t e d , (9) s u b s t i t u t e i t s E g and C g i n t o E q u a t i o n 5, use any E and C v a l u e y o u w i s h , c a l c u l a t e Δ Η w i t h E q u a t i o n 2 and p l o t t h i s d a t a a c c o r d i n g t o E q u a t i o n 5. Any v a l u e s o f E and C c h o s e n , w i l l f a l l o n a s t r a i g h t l i n e f o r the base. F i g u r e 1 i s a p l o t o f such l i n e s f o r s e v e r a l b a s e s . I f you s e l e c t a v a l u e o f ( C - E ) / ( C + E ) o n t h e x - a x i s and move up p a r a l l e l t o t h e y - a x i s , t h e o r d e r o f i n c r e a s e d donor s t r e n g t h toward t h i s a c i d r e s u l t s . Every time the l i n e f o r a g i v e n b a s e c r o s s e s t h a t f o r a n o t h e r i n F i g u r e 1, t h e o r d e r o f d o n o r s t r e n g t h f o r t h e s e two b a s e s w i l l r e v e r s e f o r a c i d s o n o p p o s i t e s i d e s o f t h e i n t e r s e c t i o n . From t h e l a r g e number o f i n t e r s e c t i o n s i n F i g u r e 1, a l a r g e number o f d o n o r o r d e r s i s seen t o r e s u l t f o r the bases p l o t t e d as the a c i d i s v a r i e d . Thus, i t i s i m p o s s i b l e to f i n d a r e f e r e n c e a c i d t h a t w i l l i n d i c a t e the o r d e r o f sigma donor s t r e n g t h s f o r b a s e s . T h i s shows t h a t i t i s a f u n d a m e n t a l e r r o r i n c h e m i c a l r e a c t i v i t y t o m e a s u r e a Δχ, p l o t i t v s . pKg o r any o t h e r donor s c a l e based on a s i n g l e r e f e r e n c e a c i d (proton a f f i n i t y , S b C l ç , BF^, e t c . ) and i n t e r p r e t d e v i a t i o n s f r o m t h i s p l o t w i t h s t e r i c , π - b o n d i n g , e t c . t y p e a r g u m e n t s . The r e s u l t i n g d e v i a t i o n c o u l d r e s u l t simply because the r e f e r e n c e a c i d chosen i s not p r o p e r l y r e p r e s e n t i n g t h e c o v a l e n t and e l e c t r o s t a t i c c o n t r i b u t i o n to Δχ. I f t h e C / E r a t i o f o r some b a s e a d d u c t o b s e r v a b l e s , Δχ, i s t h e same a s t h a t f o r d o n o r o r d e r p a r a m e t e r s o f a r e f e r e n c e a c i d w i t h t h e same C / E r a t i o , a s t r a i g h t l i n e w i l l r e s u l t (15) when these base parameters (or e n t h a l p i e s ) are p l o t t e d vs. the o b s e r v a b l e , Δχ. D i v i d i n g both s i d e s o f Equation 2 by E produces: A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

ΔΗ C

B

+

E

=

B

B

k

(6)

For a c o n s t a n t C / E , the term i n b r a c k e t s i s a c o n s t a n t f o r each b a s e , B^, where k i s t h e C/E r a t i o , i . e . , when C / E = 0.01, BQ = 0.01 C g + Eg. We can v i e w t h e s e BQ p a r a m e t e r s a s a one A

A

A

A

Q 1

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Q 1

DRAGO

Novel Extensions of Electrostatic Covalent Approach

τ

1

1

1

1

1

1

1

1

1

1

1

1

1

Γ

more covalent acids

F i g u r e 1. P l o t o f E q u a t i o n 5 i l l u s t r a t i n g t h e w i d e v a r i e t y o f d o n o r o r d e r s as t h e a c i d i s v a r i e d .

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

181

182

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

p a r a m e t e r s c a l e o f b a s i c i t y (15b) g e n e r a t e d f r o m e n t h a l p i e s f o r a n a c i d w i t h E = 1 t h a t c a n be u s e d a s a s c a l e f o r o t h e r s y s t e m s whose C / E r a t i o i s 0.01. I f t h e C/E r a t i o f o r Δ χ i s 0.01, i t w i l l p l o t l i n e a r l y w i t h BQ v a l u e s i n d e p e n d e n t o f t h e E v a l u e o f the p r o p e r t y examined. Let's generate a s e t o f s y n t h e t i c Δ χ v a l u e s f o r a n a c i d whose C/E r a t i o i s 0.1 w i t h Ε = 2, i . e . , Δ χ j = .2 C g + 2 Eg. When Δ χ j i s p l o t t e d v s . B parameters, Figure 2 r e s u l t s . C e r t a i n base p o i n t s d e v i a t e f r o m t h e l i n e b e c a u s e t h e i r c o v a l e n t c o n t r i b u t i o n to the bonding i s g r e a t e r than t h a t f o r the B Q2 r e f e r e n c e a c i d whose C/E = 0.01. How many t i m e s have y o u seen some p r o p e r t y , Δχ, f o r m e t a l l i g a n d c o m p l e x e s p l o t t e d v s . pKg o r a p r o t o n a f f i n i t y o r a s i m i l a r one p a r a m e t e r b a s i c i t y s c a l e i n t h e l i t e r a t u r e ? How o f t e n a r e t h e d e v i a t i o n s o f p y r i d i n e and s u l f u r d o n o r s f r o m t h e s e p l o t s a t t r i b u t e d to π-backbonding? I t c o u l d j u s t as w e l l b e t h a t covalency plays a d i f f e r e n t r o l e i n the c o o r d i n a t i o n chemistry o f t h e c o m p l e x t h a n i n t h e b a s i c i t y s c a l e s e l e c t e d . The s t r a i g h t f o r w a r d a p p r o a c h t o t h e s t u d y o f o r g a n o m e t a l l i c and t r a n s i t i o n m e t a l c o m p l e x r e a c t i v i t y i s t o u t i l i z e some o f t h e 4 8 b a s e s whose Eg and C g v a l u e s a r e known (9) i n t h e e x p e r i m e n t a l d e s i g n and f i t t h e e x p e r i m e n t a l d a t a t o E q u a t i o n 2. B a s e s must b e s e l e c t e d whose Cg/Eg r a t i o v a r i e s . I f p y r i d i n e and d i e t h y l s u l f i d e were n o t u s e d i n F i g u r e 2, a good p l o t would have r e s u l t e d and one w o u l d have c o n c l u d e d i n c o r r e c t l y t h a t t h e two a c i d s (Δχ and t h e r e f e r e n c e a c i d used t o generate the b a s i c i t y s c a l e ) are s i m i l a r i n t h e i r e l e c t r o s t a t i c - c o v a l e n t b o n d i n g p r o p e r t i e s . D o n o r numbers (12) a r e r e p o r t e d f o r b a s e s w h i c h have a l i m i t e d r a n g e o f Cg/Eg r a t i o s . F o r t h i s reason they o f t e n appear to c o r r e l a t e with experimental r e s u l t s . The s u b t l e n a t u r e o f t h e above c o n c e p t s i s i l l u s t r a t e d i n o u r own r e s e a r c h . The c h a n g e i n t h e OH s t r e t c h i n g f r e q u e n c y o f p h e n o l upon a d d u c t f o r m a t i o n t o a s e r i e s o f b a s e s was p l o t t e d v s . the e n t h a l p y o f adduct formation (16). S u l f u r donors d i d not f a l l on t h e l i n e . I t was some t i m e l a t e r (17) b e f o r e we r e a l i z e d t h a t the C / E r a t i o f o r the phenol s h i f t i s d i f f e r e n t than C / E r a t i o f o r t h e e n t h a l p i e s . Both s e t s o f d a t a f i t E q u a t i o n 2 v e r y well f o r a l l bases. A

A

A

0 1

A

0

0

A

QQ 1

A

A

A

APPLICATION OF THE ECW APPROACH TO ORGANOMETALLIC SYSTEMS DIMER CLEAVAGE ENTHALPIES. A v a r i e t y o f a p p l i c a t i o n s i n w h i c h t h e ECW a p p r o a c h has been u s e d t o p r o b e u n u s u a l e f f e c t s i n c o o r d i n a t i o n c h e m i s t r y have been r e v i e w e d ( 7 , 8 , 1 3 ) . S y s t e m s i n w h i c h s t e r i c

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

12. DRAGO

Novel Extensions of Electrostatic Covalent Approach

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

183

184

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

e f f e c t s e x i s t have been s p o t t e d and t h e m a g n i t u d e o f t h e e f f e c t m e a s u r e d . In o t h e r e x a m p l e s , a q u a n t i t a t i v e m e a s u r e o f t h e a d d i t i o n a l s t a b i l i z a t i o n o f a m e t a l - l i g a n d bond e n e r g y f r o m π b a c k b o n d i n g h a s been d e t e r m i n e d and i n d u c t i v e i n f l u e n c e s o n t h i s e n e r g y p r o b e d ( 1 3 ) Here s y s t e m s a r e d i s c u s s e d t h a t p r o v i d e t h e b a s i s f o r f u t u r e a p p l i c a t i o n s o f t h e ECW model t o o r g a n o m e t a l l i c chemistry. T a b l e I c o n t a i n s a l i s t o f Ε β and C g p a r a m e t e r s f o r b a s e s commonly e n c o u n t e r e d i n o r g a n o m e t a l l i c c h e m i s t r y . A l s o l i s t e d a r e t h e BQ Q2 and BQ J p a r a m e t e r s . T h e s e c a n be u s e d a s r e f e r e n c e a c i d s i n p l a c e o f ρ Κ d a t a t o a t t e m p t one p a r a m e t e r p l o t s . T h e r e a d e r c a n c o n s u l t t h e l i t e r a t u r e (9.15b) f o r a more c o m p l e t e l i s t . β

Table I. Parameters f o r I n t e r p r e t i n g Experimental Data Base

E

NH (C H )NH (C H ) NH (C H ) N (CH ) NH HC(C H ) N NCH Im 3

2

5

2

2

5

2

2

5

3

2

5

2

4

3

3

CH CN CH C(0)CH CH C(0)0CH CH C(0)N(CH ) (C H ) 0 (CH ) 0 (C Hç) S (CH ) S (CH ) S0 C H N0 [(CH ) N] PO (C H 0) P0 (CH ) P 3

3

3

3

3

3

3

2

5

2

2

4

2

5

2

2

4

3

2

5

3

2

2

5

3

3

3

3

2

B

C

1.48 1.51 1.11 1.29 1.28 1.14 1.12 1.30 0.90 1.01 .92 1.32 1.08 1.06 0.55 0.58 1.36 1.40 1.52 1.37 1.11

3.32 5.91 8.59 10.83 9.00 12.71 9.30 6.69 1.34 2.38 1.79 2.48 3.08 4.12 7.40 7.70 2.78 4.40 3.80 1.84 6.51

B

B

0.01

1.52 1.58 1.22 1.43 1.39 1.30 1.29 1.38 .917 1.04 .942 1.35 1.12 1.11 .643 .677 1.40 1.45 1.64 1.39 1.19

B

0.1

1.81 2.11 1.97 2.37 2.18 2.61 2.05 1.96 1.03 1.24 1.10 1.57 1.39 1.49 1.29 1.29 1.64 1.84 1.88 1.55 1.76

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

12.

DRAGO

185

Novel Extensions of Electrostatic Covalent Approach

In t h e a p p l i c a t i o n o f t h e s e p a r a m e t e r s t o o r g a n o m e t a l l i c s y s t e m s , t h e m e a s u r e d q u a n t i t y t h a t v a r i e s as t h e l i g a n d i s c h a n g e d , Δχ, i s s u b s t i t u t e d i n t o E q u a t i o n 4 a l o n g w i t h Eg and Cg l e a d i n g t o a s e r i e s o f s i m u l t a n e o u s e q u a t i o n s . The l e a s t s q u a r e f i t o f t h i s data produces E , C and W . In t h e a p p l i c a t i o n o f t h e ECW e q u a t i o n t o s i m p l e a d d u c t f o r m a t i o n , E q u a t i o n 3, W g e n e r a l l y has a v a l u e o f z e r o . E q u a t i o n s 7 and 8 d e s c r i b e r e a c t i o n s i n w h i c h t h e r e i s a c o n s t a n t e n e r g y c o n t r i b u t i o n to the r e a c t i o n enthalpy. A

A

AB + B' 1/2 A

> AB' 2

+ Β

*

+

Β

(7)

AB

(8)

E q u a t i o n 7 i s a b a s e d i s p l a c e m e n t r e a c t i o n . The e n t h a l p i e s f o r a s e r i e s o f d i f f e r e n t b a s e s B' d i s p l a c i n g Β c a n be f i t t o t h e ECW e q u a t i o n . In s u c h a f i t , W i s t h e e n t h a l p y o f a d d u c t f o r m a t i o n o f AB f r o m A and B, i f AB i s c o m p l e t e l y a s s o c i a t e d i n s o l u t i o n . I f AB i s p a r t i a l l y d i s s o c i a t e d , i t i s a f r a c t i o n o f t h e e n t h a l p y o f AB f o r m a t i o n c o r r e s p o n d i n g t o t h e f r a c t i o n o f AB t h a t i s a s s o c i a t e d i n solution. Equation 8 i s a general r e a c t i o n f o r a d i m e r i c a c i d i n which W r e f e r s t o t h e h e a t o f d i s s o c i a t i o n o f t h e d i m e r . The h e a t o f r e a c t i o n o f a s e r i e s o f bases with [ R h ( C 0 D ) C l ] i s measured, l e a d i n g f r o m E q u a t i o n 2 and T a b l e I t o t h e f o l l o w i n g e q u a t i o n s i n u n i t s o f k c a l m o l e " o f Rh, i . e . -ΔΗ f o r Β + l / 2 [ R h ( C O D ) C l ] > BRh(C0D)Cl: 2

1

2

Base C

H

N

5 5 CH C H N (CH ) S l-CH Im C H N (CH ) S0 HC(C H ) N 3

5

2

4

4

3

5

n

3

2

2

4

3

7, .6 8. ,2 5,,3 9, J 10, Λ 3.8 7,.0

= E (1.30) = E (1.30) = E (.58) = E (1.12) = E (1.28) = E (1.36) = E (1.14) A

A

A

A

A

A

A

+ + + + + + +

C C C C C C C

A

A

A

A

A

A

A

(6.69) (7.42) (7.70) (9.30) (9.00) (2.78) (12.71)

-

W W W W W W W

A l e a s t s q u a r e s s o l u t i o n o f t h e s e e q u a t i o n s f o r t h e b e s t f i t EC and W p a r a m e t e r s l e a d s t o E = 4.85, C = 1.07, W = 5.78 k c a l m o l e " . W i s one h a l f t h e e n t h a l p y v a l u e f o r c l e a v i n g t h e d i m e r . T h i s q u a n t i t y c a n n o t be o b t a i n e d as e a s i l y by any o t h e r means. C o m p u t e r programs are a v a i l a b l e from the author f o r the l e a s t squares 1

A

A

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

186

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

s o l u t i o n o f t h e s i m u l t a n e o u s e q u a t i o n s . The e n t h a l p y f o r [ R h ( C 0 D ) C l ] r e a c t i n g with a whole s e r i e s o f o t h e r bases i s r e a d i l y c a l c u l a t e d b y s u b s t i t u t i n g E , C and W w i t h E g and C g v a l u e s f r o m T a b l e I i n t o E q u a t i o n 2. The v a l u e f o r t h e d i s s o c i a t e d monomer Rh(C0D)Cl r e a c t i n g w i t h b a s e s i s o b t a i n e d b y s e t t i n g W = 0 and s u b s t i t u t i n g E , C , E g and C g i n t o E q u a t i o n 2. S i m i l a r s t u d i e s o n [ R h ( C O ) C l ] and [π-allyl P d C l ] l e a d t o E = 9.23, C = 1.71, W = 11.19 and E = 3.2, C = 1.0, W = 4.1 r e s p e c t i v e l y . The w e a k e r sigma b a s i c i t y o f CO v s . a l k e n e s i s m a n i f e s t e d i n t h e g r e a t e r a c i d i t y o f Rh(C0) Cl vs. Rh(C0D)Cl. In t h e n e x t two s e c t i o n s , t h e a n a l y s i s o f more c o m p l e x r e a c t i o n s i s i l l u s t r a t e d . These w i l l i n c l u d e systems i n which a l i t t l e i n g e n u i t y e n a b l e s one t o add o r s u b t r a c t a s e r i e s o f e q u a t i o n s w h i c h a r e composed o f c o n s t a n t e n e r g y p r o c e s s e s and adduct formation r e a c t i o n s to produce the equation f o r the d e s i r e d reaction. 2

A

A

2

A

A

2

2

A

A

A

A

2

COBALT-CARBON BOND ENERGIES. The c o b a l t - c a r b o n bond d i s s o c i a t i o n e n e r g y has been r e p o r t e d (18) f o r a s e r i e s o f base a d d u c t s o f alkyl-substituted bis (dimethylglyoximato) c o b a l t ( I I ) , R-Co(DH) -B

> Co(DH) -B + R

2

(9)

2

(where R i s C g H C H ( C H ) and DH i s d i m e t h y l g l y o x i m a t o ) . A t f i r s t g l a n c e i t l o o k s a s t h o u g h ECW i s n o t a p p l i c a b l e . The c o b a l t - c a r b o n bond d i s s o c i a t i o n e n e r g y v a r i e s when Β i s c h a n g e d , b u t e v e r y t i m e Β c h a n g e s we c h a n g e t h e ECW o f t h e c o b a l t c e n t e r t o w a r d R. F u r t h e r m o r e , t h e c o b a l t - c a r b o n bond d i s s o c i a t i o n ( o r f o r m a t i o n i f we c h a n g e t h e s i g n o f Δ Η ρ ) i s n o t c o o r d i n a t e bond f o r m a t i o n b u t a f r e e r a d i c a l r e a c t i o n . However, t h e f o r m a t i o n r e a c t i o n ( i . e . , t h e r e v e r s e o f E q u a t i o n 9) can b e b r o k e n up (9) i n t o t h e f o l l o w i n g steps: 5

3

C o ( D H ) + .R 2

SUM

>

Co(DH) R

>

Co(DH) + Β

2

W

(10)

Co

(Π)

+

BCo(DH)

+

Co(DH) R + Β

>

Β - Co(DH) R

" CoR

(12)

B C o ( D H ) + .R

>

BCo(DH) R

-AH

(13)

2

2

2

2

2

2

+ A H

A H

D

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

12.

DRAGO

187

Novel Extensions of Electrostatic Covalent Approach

We have r e w r i t t e n E q u a t i o n 8 a s c o b a l t - c a r b o n bond f o r m a t i o n a n d e x p r e s s e d i t a s t h e sum o f a c o n s t a n t e n e r g y p r o c e s s (W), an a d d u c t d i s s o c i a t i o n r e a c t i o n a n d an a d d u c t f o r m a t i o n r e a c t i o n t o p r o d u c e t h e d e s i r e d r e a c t i o n , E q u a t i o n 13. S t e p s 11 a n d 12 a r e t h e t y p e r e a c t i o n t r e a t e d by ECW l e a d i n g r e s p e c t i v e l y t o E q u a t i o n s 14 a n d 15. +



A H

A H

Co

E

-

CoR

=

E

E

+ C

E

+

Co B

CoR B

C

1 4

Co B C

( >

C

( 1 5 )

CoR B

The h e a t o f c o b a l t - c a r b o n bond f o r m a t i o n ( E q u a t i o n 13) i s g i v e n by summing W a n d E q u a t i o n s 14 a n d 15 t o p r o d u c e : A H

D

E

E

C

C

"

" Co B " Co B

=

ΔΕ Ε

+

E

E

CoR B

+

C

C

CoR B "

W

or ΔΗ

0

Α

Β

+ AC C A

B

(16)

- W

where ΔΕ = E - E a n d A C = CQ - C . S i x b a s e s w i t h d i f f e r e n t Cg/Eg r a t i o s s h o u l d have been s e l e c t e d f r o m T a b l e I a n d t h e i r i n f l u e n c e on c o b a l t - c a r b o n bond d i s s o c i a t i o n s t u d i e d . T h e s i x s i m u l t a n e o u s e q u a t i o n s o f t h e f o r m o f E q u a t i o n 16 c a n be s o l v e d f o r t h r e e unknowns ΔΕ , A C a n d W. We w o u l d know i f sigma bond f o r m a t i o n d o m i n a t e s t h e Co-R d i s s o c i a t i o n e n e r g y , t h e r e l a t i v e i m p o r t a n c e o f t h e base c o v a l e n t o r e l e c t r o s t a t i c bond f o r m i n g p r o p e r t i e s on t h e s t a b i l i t y and, i f s t e r i c e f f e c t s e x i s t o r i f π b a c k b o n d i n g i s p r e s e n t . I n a d d i t i o n , t h e c o b a l t - c a r b o n bond d i s s o c i a t i o n e n e r g y w i t h no base a t t a c h e d i s g i v e n by W a n d t h e c o b a l t - c a r b o n bond d i s s o c i a t i o n e n t h a l p y f o r t h e 48 a d d u c t s o f b a s e s i n ECW c a n be c a l c u l a t e d . How e l s e c a n o n e o b t a i n t h i s much i n f o r m a t i o n from experimental data? U n f o r t u n a t e l y , t h e experiment was r e p o r t e d (18) w i t h o n l y f o u r s i m i l a r b a s e s l e a d i n g t o t h e f o u r simultaneous equations. Α

C o R

C o

A

Α

-21.2 -20.1 -19.5 -17.9

qR

C o

A

= = = =

1.37 1.33 1.30 1.14

ΔΕ ΔΕ ΔΕ ΔΕ

Α

Α

Α

Α

+ + + +

7.99 7.24 6.69 3.89

AC AC AC AC

A

A

A

A

-W -W -W -W

The r e s u l t i n g t e n t a t i v e v a l u e s f r o m t h e l e a s t s q u a r e s s o l u t i o h n o f t h e f o u r e q u a t i o n s a r e ΔΕ = 4.27, A C = 0.54 a n d W = -10.7. The q u a l i t y o f t h e f i t i s shown i n T a b l e I I where e n t h a l p i e s Α

A

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

188

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

c a l c u l a t e d b y s u b s t i t u t i n g A E , A C and W v a l u e s i n t o E q u a t i o n 16 (AH ) a r e compared t o e x p e r i m e n t a l r e s u l t s ( A H ). A

A

c a l c

m e a s

Table II.

C o b a l t - C a r b o n Bond D i s s o c i a t i o n -AH, f o r R - C o ( D H ) - B A d d u c t s

Energies,

?

X - C H N 5

4-NH

A H

" calc

A H

" meas

4

20.8 20.3 19.9 17.7

21.2 20.1 19.5 17.9

2

4-CH3

Η 4-CN

The r a d i c a l p a i r i n g r e a c t i o n o f 0 t o c o b a l t ( I I ) i s s i m i l a r t o t h e r e a c t i o n o f c o b a l t ( I I ) w i t h a n a l k y l r a d i c a l ( 1 9 ) . The 0 b i n d i n g e n t h a l p i e s h a v e been a n a l y z e d (19) w i t h ECW t o g i v e A E = 2.9 A C = 0.6 a n d W = -1.5 where A r e f e r s t o C o 0 - C o ( I I ) . The l i g a n d s y s t e m a r o u n d c o b a l t i n t h e 0 b o n d i n g s t u d i e s i s a porphyrin. I t i s i n t e r e s t i n g t h a t b i n d i n g R* t o C o ( D H ) i s much more e x o t h e r m i c (-10.7 k c a l m o l e " * ) t h a n b i n d i n g 0 t o Co ( p o r ) (-.5 k c a l m o l e " ) . I t i s a l s o i n t e r e s t i n g t o n o t e t h a t b i n d i n g R^to C o ( D H ) has i n c r e a s e d t h e a c i d i t y o f t h e c o b a l t much more t h a n b i n d i n g 0 t o Co ( p o r ) ( A E i s much l a r g e r f o r C o ( D H ) and A C c o m p a r a b l e ) . T h i s i s c o n s i s t e n t w i t h more e x t e n s i v e e l e c t r o n t r a n s f e r i n t o the a l k y l group than i n t o 0 , s u p p o r t i n g our p o s i t i o n (19) t h a t c o b a l t bound 0 d o e s n o t r e s e m b l e i o n i c a l l y bound superoxide. Though t h e c o n c l u s i o n s on C o ( D H ) a r e t e n t a t i v e b e c a u s e o f t h e e x p e r i m e n t a l d e s i g n , t h e y a r e p r e s e n t e d h e r e t o show t h e power o f an ECW a n a l y s i s i n p r o v i d i n g i n s i g h t s i n t o c h e m i c a l r e a c t i v i t y t h a t c a n n o t b e o b t a i n e d b y o t h e r means. 2

2

A

A

2

2

2

2

1

2

2

A

2

A

2

2

2

2:1 BASE ADDUCTS. The e x t e n s i o n o f t h e ECW a n a l y s i s t o 2:1 a d d u c t s constitutes another challenge. Consider acids that react in t h i s fashion: A + Β * AB AB + Β ^ A B

(17) 2

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

(18)

12.

DRAGO

189

Novel Extensions of Electrostatic Covalent Approach

The f i r s t r e a c t i o n i s a s t r a i g h t f o r w a r d ECW p r o b l e m . The s e c o n d one r e q u i r e s o b t a i n i n g E and C v a l u e s f o r AB. When Β i s t h e same f o r b o t h s t e p s ( E q u a t i o n s 17 and 1 8 ) , e v e r y t i m e we s t u d y a d i f f e r e n t b a s e we g e n e r a t e a new a c i d f o r s t e p 18 whose E and C v a l u e s a r e n o t known. The unknowns mount up f a s t e r t h a n t h e knowns. U s u a l l y , we c a n n o t m e a s u r e e n t h a l p i e s f o r AB r e a c t i n g w i t h s e v e r a l d i f f e r e n t b a s e s B' t o o b t a i n t h e s i m u l t a n e o u s equations needed to s o l v e f o r E and C . In t h e m i x e d s y s t e m e x p e r i m e n t AB, AB', ABB', A B and A B ' f o r m . The a s s u m p t i o n i s made (13) that: A B

A B

A B

A B

2

A B

A B

2

E

-

A B

E

- kE

A

(19)

B

and C

=

f t B

C

- k'C

A

(20)

B

H e r e k and k' r e p r e s e n t t h e e x t e n t t o w h i c h c o o r d i n a t i o n o f Β t o A m o d i f i e s t h e a c i d i t y o f AB i n i t s s u b s e q u e n t r e a c t i v i t y t o f o r m AB . I t i s a m e a s u r e o f t h e i n d u c t i v e t r a n s f e r o f B's c o o r d i n a t i n g t e n d e n c y i n m o d i f y i n g t h e new a c i d AB. The model has been t e s t e d in metal-metal bonding systems i n v o l v i n g M ( R C 0 ) complexes (13). The p r o p o r t i o n a l i t y c o n s t a n t s m e a s u r e t h e e f f e c t i v e n e s s o f t h e M-M bond t o t r a n s m i t t h e i n d u c t i v e e f f e c t o f b a s e c o o r d i n a t i o n a t one m e t a l c e n t e r t o t h e o t h e r m e t a l . S u b s t i t u t i n g E q u a t i o n s 19 and 20 into Equation 2 with W = 0 leads to: 2

2

-ΔΗ

2 ; 1

= E E A

B

- kE

2

+ C C

B

A

- k'C

B

2

= AH

B

2

4

- kE

1 : 1

2

- k'C

g

2

(21)

B

T h u s a h a l f d o z e n e n t h a l p i e s can be s o l v e d f o r t h e two unknowns k and k' when AHJ.J can be m e a s u r e d s e p a r a t e l y . When o n l y t h e sum o f t h e 1:1 and 2:1 e n t h a l p i e s c a n be d e t e r m i n e d ( e . g . , K > K j ) t h e d a t a has t o be f i t t o : 2

-ΔΗ

Τ

=

2(E E A

B

+ C C ) - kE A

B

2 B

- k'C

2

(22)

g

In t h i s c a s e a v e r y e x t e n s i v e s e t o f d a t a i s n e e d e d t o s o l v e f o r t h e f o u r unknowns. REACTIONS OF CATIONS AND ANIONS. Many o f t h e o r g a n o m e t a l l i c e n e r g i e s i n the l i t e r a t u r e are o b t a i n e d from the r e a c t i o n : MX

+

HY

>

MY + HX

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

bond

(23)

190

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

The e n t h a l p y f o r M

+

+ Y"

> MY

(24)

+

can b e r e p r e s e n t e d r e l a t i v e t o M + X" > MX b e i n g z e r o . I f we had E g and C g v a l u e s f o r a n i o n s , an ECW a n a l y s i s w o u l d l e a d t o a b s o l u t e e n e r g i e s w i t h W b e i n g t h e v a l u e f o r M-X. The o n l y p l a c e t o o b t a i n s o l v a t i o n f r e e e n e r g i e s f o r i o n s i s t h e gas p h a s e . However, t h e ECW e q u a t i o n d o e s n o t a p p l y t o t h e l a r g e e n t h a l p i e s o f i n t e r a c t i o n a s s o c i a t e d w i t h gas p h a s e i o n m o l e c u l e r e a c t i o n s ( 2 0 , 2 1 ) . The g a s e o u s i o n i s a s t r o n g L e w i s a c i d and when i t i n t e r a c t s w i t h a b a s e , a s i g n i f i c a n t c o n t r i b u t i o n t o t h e m e a s u r e d e n t h a l p y o f i n t e r a c t i o n comes f r o m e x t e n s i v e e l e c t r o n t r a n s f e r t o t h e i o n ( 2 1 ) . One can v i e w t h i s a s a one c e n t e r e n e r g y t e r m i n w h i c h t h e c a t i o n has r e g a i n e d some f r a c t i o n o f i t s i o n i z a t i o n e n e r g y . The m a g n i t u d e o f t h i s e f f e c t , f o r a n e x t r e m e c a s e , c a n be a p p r e c i a t e d b y c o n s i d e r i n g t h e e n t h a l p y d i f f e r e n c e i n t h e r e a c t i o n o f two h y d r o g e n atoms t o f o r m H w i t h t h a t o f H r e a c t i n g w i t h H". R e c e n t work f r o m t h i s l a b o r a t o r y (22) shows t h a t 369 e n t h a l p i e s c a n b e f i t t o t h e e q u a t i o n : +

2

-ΔΗ = E E A

B

+ C C A

B

+ T T A

B

(25)

where T^Tg i s t h e t r a n s f e r t e r m . The s i g n i f i c a n t new f i n d i n g i s t h a t t h e r e p o r t e d (9) E g and C g v a l u e s f r o m s o l v e n t m i n i m i z e d weak a d d u c t e n t h a l p i e s can be u t i l i z e d i n E q u a t i o n 25. T w e n t y t h r e e c a t i o n s i n c l u d i n g t h e p r o t o n , e i g h t e e n new b a s e s and t w e n t y f i v e known b a s e s l e a d t o 148 unknown p a r a m e t e r s f o r t h e l e a s t s q u a r e s f i t . V a l u a b l e i n s i g h t s c o n c e r n i n g gas p h a s e and s o l u t i o n r e a c t i v i t y r e s u l t ( 2 3 ) . The T^Tg t e r m d o m i n a t e s gas p h a s e i o n c h e m i s t r y but i s l a r g e l y c a n c e l l e d o u t i n s o l u t i o n where t h e r e a c t i o n s are u s u a l l y displacement. C o n t r i b u t i o n s from t h i s e f f e c t must be c o n s i d e r e d when d i s p l a c e m e n t e n t h a l p i e s a r e p l o t t e d v s . gas p h a s e bond e n e r g i e s . The e x t e n s i o n o f t h e s e f i n d i n g s t o o r g a n o m e t a l l i c d i s p l a c e m e n t r e a c t i o n s , i s c u r r e n t l y underway. However, t h e r e s u l t s p r e s e n t l y a v a i l a b l e i n d i c a t e t h a t v a r i a t i o n s i n t h e c o v a l e n t and e l e c t r o s t a t i c c o n t r i b u t i o n s t o t h e b o n d i n g o c c u r and c a u s e v a r i a t i o n s i n t h e t r e n d s o f sigma bond e n e r g i e s f o r t h e d i f f e r e n t o r g a n o m e t a l l i c Lewis a c i d s . Thus, i t i s q u i t e i n a p p r o p r i a t e t o p l o t M-X v s . H-X d i s s o c i a t i o n e n e r g i e s and e x p e c t t o o b t a i n a l i n e a r p l o t . A l l o f the arguments p r e s e n t e d i n the s e c t i o n on P l o t s E m p l o y i n g R e f e r e n c e A c i d s and Bases a p p l y t o t h e a n a l y s i s o f

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

12.

DRAGO

191

Novel Extensions of Electrostatic Covalent Approach

o r g a n o m e t a l l i c bond e n e r g i e s . The CH^-X, H-X and K-X s y s t e m s v a r y s u b s t a n t i a l l y i n t h e c o v a l e n t and e l e c t r o s t a t i c c o n t r i b u t i o n s t o t h e s i g m a b o n d s . P l o t s o f M-X bond e n e r g i e s v e r s u s a l l t h r e e r e f e r e n c e s y s t e m s may p r o v i d e some i n s i g h t s . However, d e v i a t i o n s f r o m t h e p l o t s a r e d i f f i c u l t t o i n t e r p r e t and i n a d d i t i o n t o n o v e l b o n d i n g c o n t r i b u t i o n s d e v i a t i o n s may o c c u r b e c a u s e t h e c o v a l e n t e l e c t r o s t a t i c c o n t r i b u t i o n t o sigma b o n d i n g i s n o t p r o p e r l y r e p r e s e n t e d i n t h e r e f e r e n c e compound. HETEROGENOUS CATALYSTS. The c o o r d i n a t i o n o f s u b s t r a t e o r b i n d i n g o f a small molecule i s o f t e n i n v o l v e d i n t h e mechanism o f heterogeneous c a t a l y z e d r e a c t i o n s . Thermodynamic s t u d i e s which use t y p i c a l o r g a n i c b a s e s as l i g a n d s t o t h e c a t a l y t i c m e t a l c e n t e r s have t h e p o t e n t i a l o f c h a r a c t e r i z i n g t h e i r c o o r d i n a t i o n c h e m i s t r y and e n a b l i n g us t o compare t h e s e h e t e r o g e n e o u s s y s t e m s t o c o n v e n t i o n a l c o o r d i n a t i o n compounds. K n o w l e d g e o f t h e s t e r i c and e l e c t r o n i c c h a r a c t e r i s t i c s ( E g , Cg) o f t h e l i g a n d s w i l l a i d i n t h e c h a r a c t e r i z a t i o n o f t h e a c i d i t y o f t h e m e t a l c e n t e r and i n u n d e r s t a n d i n g c a t a l y s t p o i s o n i n g . In o r d e r t o o b t a i n d a t a c o n s i s t e n t w i t h t h e ECW d a t a s e t , t h e s o l i d c a t a l y s t s h o u l d be s l u r r i e d i n a p o o r l y s o l v a t i n g s o l v e n t and t h e e n t h a l p y o f i n t e r a c t i o n determined a f t e r c o r r e c t i n g f o r the enthalpy o f s o l u t i o n o f b a s e . When t h e c a t a l y s t s u p p o r t i n t e r a c t s w e a k l y w i t h t h e b a s e , t h e c a l o r i m e t r i c d a t a a l s o has t o be c o r r e c t e d f o r t h i s c o n t r i b u t i o n . The e q u a t i o n f o r t h e r e a c t i o n o f 5% Pd/C r e a c t i n g with p y r i d i n e i s thus w r i t t e n as: P d

C

/ (sl)

+

P

*(sol)

>

P

*

P d

C

26

/ (sl)

where s i r e f e r s t o t h e s o l i d s l u r r y and s o l t o s o l u t i o n . equilibrium constant i s written as:

< > The

PyPd/C Κ =

(27) [Py][n.

s

- PyPd/C]

s

where n ^ i s t h e number o f a c t i v e s i t e s p e r gram o f c a t a l y s t ; PyPd/C t h e number o f grams o f p y r i d i n e c o o r d i n a t e d p e r gram o f c a t a l y s t ; [Py] i s the s o l u t i o n c o n c e n t r a t i o n o f p y r i d i n e i n m o l e l i t e r ' ; and Κ has u n i t s o f 1 m o l e " . The h e a t l i b e r a t e d i n t h e t i t r a t i o n h' i s g i v e n by (24)· 1

1

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

192

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

h'

n^KJPy] 1

g Pd/C

1

1+

AHj

K^Py]

(28)

With p r a c t i c a l c a t a l y s t s that o f t e n c o n t a i n m u l t i p l e a c i d s i t e s a d d i t i o n a l t e r m s a r e added f o r e a c h s i t e w i t h t h e s u b s c r i p t s c h a n g i n g f r o m 1 t o 2, 3 e t c . i n e a c h s i t e a d d e d . The i n f o r m a t i o n a v a i l a b l e f r o m a c a l o r i m e t r i c t i t r a t i o n o f a b a s e and s l u r r i e d c a t a l y s t i s n o t s u f f i c i e n t t o d e t e r m i n e a l l t h e unknown q u a n t i t i e s i n E q u a t i o n 28. The p r o b l e m i s a l l e v i a t e d b y c o u p l i n g the c a l o r i m e t r i c t i t r a t i o n with the d e t e r m i n a t i o n o f an a b s o r p t i o n i s o t h e r m . E q u a t i o n 26 can b e r e a r r a n g e d t o g i v e t h e f a m i l i a r Laugmuir equation: [Py] PyPd/C

1

[Py]

n^Kj

(29)

n ^

F o r two s i t e s we can w r i t e ( 2 4 ) : PyPd/C

s

n^KJPy]

n K [Py] 2

= - ^ - i

2

+ - i — i

1 + KjiPy]

(30)

1 + K [Py] 2

Knowing t h e amount o f p y r i d i n e added and m e a s u r i n g t h e e q u i l i b r i u m c o n c e n t r a t i o n i n s o l u t i o n (by t i t r a t i o n , g . c , u v - v i s i b l e e t c . ) we know b o t h PyPd/C and [Py] o f E q u a t i o n 30. The b e s t v a l u e s o f n - , and ΔΗ^ t h a t s i m u l t a n e o u s l y f i t t h e d a t a t o E q u a t i o n 30 and 28 ( w i t h t h e added t e r m s f o r m u l t i p l e s i t e s ) a r e d e t e r m i n e d . This a n a l y s i s g r o u p s s i m i l a r s i t e s i n t o one and g i v e s t h e minimum number o f d i f f e r e n t types of s i t e s r e q u i r e d by the data. Independent c o n f i r m a t i o n o f t h e c o n c l u s i o n a b o u t t h e number o f d i f f e r e n t s i t e s by s u r f a c e s c i e n c e t e c h n i q u e s i s d e s i r a b l e . F o r t h e t i t r a t i o n o f 5 % Pd/C w i t h p y r i d i n e , t h e e x p e r i m e n t showed (24) two d i f f e r e n t s i t e s , n^ = 2.5 mmole/g and n = 3.2 mmole/g. V a l u e s o f K j = 2.5 χ 1 0 M" and K = 2.9 χ 1 0 M" r e s u l t e d w i t h AHj = 13 k c a l m o l e " and Δ Η = 10 k c a l m o l e ' . ESCA s t u d i e s showed t h e e x i s t e n c e o f two d i s t i n c t s i t e s o n t h e s u r f a c e , one b e i n g P d ( I I ) and t h e o t h e r P d ( 0 ) . T h e r m o g r a v i m e t r i c studies and d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y were n o t a b l e t o d i s t i n g u i s h t h e two s i t e s but p r o d u c e d a v e r a g e v a l u e s i n a g r e e m e n t w i t h t h e average found i n the t i t r a t i o n . T h i s p r o c e d u r e has many p o t e n t i a l a p p l i c a t i o n s i n c a t a l y s i s and m a t e r i a l s c i e n c e . In t h e l a t t e r a r e a Fowkes and c o w o r k e r s (25) s

2

4

1

2

1

2

1

1

2

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

12.

DRAGO

Novel Extensions of Electrostatic Covalent Approach

193

and Chen ( 2 6 ) have r e p o r t e d s e v e r a l e x a m p l e s w h e r e i m p o r t a n t i n s i g h t s i n t o a d h e s i o n a t i n t e r f a c e s h a v e been o b t a i n e d by a p p l i c a t i o n o f ECW c o n s i d e r a t i o n s . V e r i f i c a t i o n o f some o f t h e s e c o n c l u s i o n s w i t h c a l o r i m e t r i c s t u d i e s i s underway. These d i v e r s e examples i n d i c a t e t h e p h i l o s o p h y o f a p p l y i n g t h e ECW m o d e l . I t i s a v a l u a b l e t o o l f o r u n d e r s t a n d i n g t h e v e r y complicated area o f chemical r e a c t i v i t y because i t provides q u a n t i t a t i v e c r i t e r i a f o r what i s t o be e x p e c t e d when normal s i g m a bond f o r m a t i o n d o m i n a t e s a r e a c t i o n .

LITERATURE CITED

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

Ahrland, S.; Chatt, J.; Davies, N. R. Chem. Soc., Q. Rev. 1958, 12, 265. Edwards, J. O. J. Am. Chem. Soc. 1956, 78, 1819 and references therein. Drago, R. S.; Meek, D. W.; Longhi, R.; Joesten, M. D. Inorg. Chem. 1963, 2, 1056 and references therein. Mulliken, R. S. J. Am. Chem. Soc. 1952, 74, 811 and references therein. Pauling, L. "Nature of the Chemical Bond," Cornell University Press, Ithaca, New York 1967. Drago, R. S.; Wayland, B. B. J. Am. Chem. Soc. 1965, 87, 375. Drago, R. S. Structure and Bonding 1973, 15, 73. Drago, R. S. Coord. Chem. Rev. 1980, 33, 251. Drago, R. S.; Wong, N.; B i l g r i e n , C.; Vogel, G. C. Inorg. Chem. 1987, 26, 9. Jensen, W. B. Chem. Rev. 1978, 78, 1. Klopman, G. J. Am. Chem. Soc. 1969, 90, 223 and references therein. Finston, H. L.; Rychtman, A. C. "A New View of Current Acid-Base Theories" Wiley-Interscience, N.Y. 1982. Drago, R. S.; B i l g r i e n , C. J. Polyhedron 1988, V o l . 7, No. 16/17, 1453. Cramer, R. E.; Bopp, T. T. J. Chem. Ed. 1977, 54, 612. a) Li, M. P . ; Drago, R. S.; Pribula, A. J. J. Am. Chem. Soc. 1977, 99, 6901. b) Drago, R. S. submitted. Vogel, G. C.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 5347. Doan, P. E.; Drago, R. S.; J. Am. Chem. Soc. 1982, 104, 4524. Ng, F. T. T.; Rempel, G. L.; Halpern, J. J. J. Am. Chem. Soc. 1982, 104, 621.

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

194

BONDING ENERGETICS IN ORGANOMETALLIC COMPOUNDS

19.

Drago, R. S . ; Corden, Β. B. Acc. Chem. Res. 1980, 13, 353 and references therein. 20. Marks, A. P.; Drago, R. S. J. Am. Chem. Soc. 1975, 97, 3324. 21. Kroeger, M. K.; Drago, R. S. J. Am. Chem. Soc. 1981, 103, 3250. 22. Drago, R. S . ; F e r r i s , D . ; Wong, N. G. Submitted. 23. Drago, R. S . ; Cundari, T . R.; F e r r i s , D. C. J. Org. Chem. 1989, 54, 1042. 24. Lim, Y. Y.; Drago, R. S . ; Babich, M. W.; Wong, N.; Doan, P. E . J. Am. Chem. Soc. 1987, 109, 169. 25. a) Fowkes, F . M.; T i s c h l e r , D. O.; Wolfe, J. Α.; Lannigan, L. Α.; Cedemu-John, C. M.; Halliwel, M. J. J. Polym. Sci-Polym. Chem. Ed. 1984, 22, 547. b) Fowkes, F . M.; Mustafa, M. A. Ind. Eng. Chem. Res. Dev. 1978, 17, 3. c) Fowkes, F . M.; McCarthy, D. C.; Mustafa, M. A. J. Coll. Interf. S c i . 1980, 78, 200. 26. Chen, F . Macromolecules 1988, 21, 1640. RECEIVED December 6, 1989

Marks; Bonding Energetics in Organometallic Compounds ACS Symposium Series; American Chemical Society: Washington, DC, 1990.