Nuclear and radiochemical analysis - Analytical Chemistry (ACS

Anal. Chem. , 1992, 64 (12), pp 1–22. DOI: 10.1021/ac00036a001. Publication Date: June 1992. ACS Legacy Archive. Cite this:Anal. Chem. 64, 12, 1-22...
3 downloads 0 Views 4MB Size
Anal. Chem. 1992, 6 4 , 1 R-22R

Nuclear and Radiochemical Analysis William D. Ehmann,* J. David Robertson, and Steven W. Yates Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055

In this,our fourth review under this title, we have continued to emphasize topics representing the use of nuclear properties for chemical and elemental analysis. The coverage is similar to that of our previous reviews in this series, but we, in an attempt to reduce the size of our commentary, have relegated many applications to tables and have become more critical in our evaluation of reported developments. A description of the major developments in the diverse subfields covered under this title is provided in the brief text associated with each section of the review. This review is based primarily on a computerized search of Chemical Abstracts (CAI and Physics Abstracts (PA) for the period November 1, 1989, to November 1, 1991, with “radiochemical analysis” as the primary search term. In addition, we have performed a number of more selective keyword searches using other databases, such as Current Contents, Medline, and Science Citation Index. For example, it was again necessary to perform an independent search of INSPEC which includes the Physics Abstracts database in order to cover adequately the topic of ion beam analysis, since these were not found under ”radiochemical analysis.” In an attempt to maximize the ability of readers to utilize the extensive bibliography accompanying this review, we have consciously limited consideration of publications in languages less-commonly used in major international scientific journals, unless the material is unique. Chemical Abstracts, Physics Abstracts, or Medline citations are appended to all non-English publications and some less readily available re orts. As usual, we hope our selections are representative o f t e field, but we make no claims as to complete coverage. Finally, we wish to thank all those who expressed their support for the continuation of this revlew by writing to the editors of this journal.

K

A. BOOKS AND REVIEWS We have a ain separated books and reviews from original research pubfications. In Table I (Al-A89) a selected list of these works is presented. Since new journals in this field are rare, we would like to note that the journal Radioactivity & Radiochemistry has recently completed its second year of publication. This quarterly journal, published by Caretaker Publications, is a welcome addition to the field and accepts articles on nuclear spectroscopy, whole body counting, liquid scintillation counting, laboratory quality assurance, on-line monitor calibrations, environmental analysis, radioactive coolant and effluent analysis, radon analysis, radioactive waste analysis, radiochemical separations, the use of computers in counting rooms and radiochemistry laboratories, and other topics. During the past two years, many new books in the fields of nuclear and radiochemical methods of analysis and related subjects have appeared. As in our previous reviews, we will briefly summarize the contents of some of these monographs. Radiochemistry and Nuclear Methods of Analysis by W. D. Ehmann, one of the authors of this review, and D. E. Vance (AI) is Volume 116 in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, edited by J. D. Winefordner and I. M. Kolthoff for Wiley. This monograph is designed to serve as an advanced undergraduate or first-year graduate student textbook in radiochemistry and as an introduction to the use of tracers and nuclear methods of analysis. After providing a clear and concise introduction to the concepts of radioactivity and radiochemistry, without being sidetracked by the more theoretical aspects, the authors provide a useful survey of nuclear methods of analysis, including nuclear activation, radiotracer methods, ion-beam analysis, and chemical applications of radioactivity. In addition, the reader is introduced to health physics considerations, modern nuclear instrumentation, nuclear dating methods, methods for the production of ra0003-2700/92/0364-1R$10.00/0

Table I. Selected Books a n d Reviews

Books Nuclear and Radiochemical Methods, General Activation Analysis Ion Beam Analysis Radioactivity Separations and Tracers Transuranium Elements

A1-4 A5-6 A7 A8-10 All-13 A14-15

Reviews

Radiochemical Methods general Neutron Activation Methods methodology general and comprehensive chemometrics PGNAA applications archaeology biology cosmochemistry environmental geochemistry coal minerals in vivo light element abundance5 materials reference materials semiconductors zeolites Charged-Particle Activation Methods general and comprehensive applications biological material trace analysis of light elements thin-layer Ion Beam Methods general nuclear microprobes external beam Isotope Dilution Analysis radioimmunoassay Direct Counting environmental Transmission, Attenuation, and Scattering Methods Radioactive Tracers Isotopic Dating Methods Standards Miscellaneous nuclear probes of chemical environment positron annihilation spectroscopy

A16-19 A20-30 A31 A32-33 A34 A35-38 A39 A40-43 A44 A45-A46 A47-48 A49 A50 A51 A52-54 A55 A56-60 A58 A59-60 A56, A61-62 A63-64 A65-68 A69 A70-75 Al6-77 A78-80 A81-82 ~83-a5 A86-87 A88 A89

dionuclides, and current theories of nucleosynthesis. The two-volume work Radioanalytical Chemistry by J. To1 essy and M. Kyrs (A2) is another important addition field. Unfortunately, we did not receive copies in time to for this review, but the informational literature from the publisher provides an overview of the content, and it has been reviewed in detail elsewhere (Am). Volume I begins with a classification of radioanalytical techniques which is followed by discussions of basic applications of a-and y-spectroscopy, the tracer method, isotope dilution analysis, radiore methods, radiometric titrations, radioimmunoassay, an radiochemical determination of biochemical activity of enzymes. In the second volume, activation analysis, nonactivation interaction anal is (absorption and scattering), and automation in the radiocgmistry laboratory are considered.

tE

Yt

0 1992 American Chemical Society

1R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

The two-volume set entitled Activation Analysis, edited by Z. B. Alfassi (A5), was mentioned in our last review, but examination copies were not available at that time. As promised, we provide a brief evaluation here. Twenty different authors, many of whom are leaders in the field of activation analysis, have contributed chapters to this comprehensive, but costly, review of activation analysis. In Volume I the general principles of activation analysis are given with separate chapters on computer analysis of y-ray spectra, optimization of instrumental activation analysis, limits of detection in INAA, radiochemical separations, the use of delayed neutrons and X-ray emitters in activation analysis, stable isotope dilution activation analysis, substoichiometric radioactivation analysis, and the utilization of chemical derivatives in activation analysis. Volume I1 is divided into sections on activation methods-with nuclear reactors, 14-MeV neutron generators, charged particles, photons, isotopic sources, small mobile reactors-and a plications of activation analysis. Applications to biologic materials, coal, water, archaeology, forensics, air particulate matter, a riculture, botany, and semiconductor materials are detailef, and in vivo and depth profiling studies are described. Activation Spectrometry in Chemical Analysis by Susan J. Parry (A6) is Volume 119 in the aforementioned Wiley series in Chemical Analysis. This book on activation spectrometry, defined by the author as neutron activation analysis with y-ray spectrometry, furnishes an introduction to the field by providing, in a three-part format, the principles, techniques, and applications of INAA. Under principles, the neutron activation method is introduced and is followed by discussions of irradiation facilities, y-rays and radioactive decay, spectrometry equipment and spectrometric methods. Discussions of techniques include sample preparation, irradiation containers, preparation of standards, reference materials, irradiation techniques, and counting techniques. In the concluding chapters, biomedical, environmental, geological, and industrial applications are considered. While certainly not as comprehensive as the previous monograph on activation analysis, this text can be recommended to those who wish an appreciation of the capabilities of INAA in a concise, readable fashion. Non-destructive Zon Beam Analysis of Surfaces by F. F. Komarov, M. A. Kumakhov, and I. S. Tashlykov ( A n is a translation of the original Russian language text. After providing a detailed discussion of ion-atom interactions in solids, the authors turn to presentations of specific nuclear analysis methods. Rutherford backscattering and channeling are discussed in considerable detail with frequent reference to applications and the kinds of information that can be extracted from measurements. One chapter is dedicated to the use of fast-ion produced X-rays as a probe for investigating materials. Most of the discussions are directed at the graduate student level or higher and, while this monograph offers a number of interesting insights and applications, it is doubtful that it will supplant any of the more established texts in this field. Two books, The Elements Beyond Uranium by G. T. Seabor and W. D. Loveland (A14) and the Proceedings of the Rotert A. Welch Foundation Conference on Chemical Research XXXZV. Fifty Years with Transuranium Elements (A15), have been published in celebration of the 50th anniversary of the discovery of the transuranium elements. Each of these volumes provides a useful summary of the chemical, hysical, and nuclear properties of the transuranium elements y! those who played important roles in the discovery and characterization of the heavy elements.

9

B. NEUTRON ACTIVATION METHODS The number of neutron activation analysis (NAA) publications found this year by our computerized database searches is approximately 50% larger than for our 1990 review. While our literature search methods may have improved slightly, the major increase is due to increased numbers of applications of instrumental neutron activation analysis (INAA). Especially notable this year is the number of publications that have combined INAA with several other methods of analysis to obtain multielement concentration data for samples with complex matrices. Multitechnique a proaches that couple INAA with AAS, colorimetry, DC-OE$electrochemist with ion-selective electrodes, ICP-AES, ICP-MS, Moss auer

5

2R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

spectrometry, PIGE, PIXE, radiochemical neutron activation analysis (RNAA), voltammetry, and XRFS ma be found frequently among the publications listed in Tagle 11. As exam les, Hall et al. (B133) used AAS, ICP-AES, INAA, and XRFg for anal ses of geological materials, and Andrasi et al. DC-OES, ICP-MS, and INAA for analyses (B142) used of biological material (brain). Both papers compare the efficiencies of several methods for specific elements. A detailed comparison of NAA and ICP-MS for analyses of biological materials has been presented in the review by Ward et al. (A37). Six new books (Al-A6) and 36 recent review articles (A2O-A55) provide useful background information for analysts who wish to evaluate the utility of NAA methods for their specific applications. In this review, only recent research publications on NAA methodology, instrumentation, and data handling will be discussed. Tables 11-VI list representative applications of the several NAA methods. 1. Instrumental Thermal Neutron Activation Analysis. As noted in our 1990 review, instrumental thermal neutron activation analysis (INAA) is a mature field and innovations in methodology are relatively few in number. The number of groups that now use both INAA and ICP-AES or ICP-MS for analyses of complex matrices gives evidence that ICP techniques have not replaced INAA, in spite of earlier predictions. Each method clearly has ita role in the analytical laboratory. Selected recent applications of thermal neutron INAA (Bl-B218) are listed in Table 11. Some publications that include multitechnique approaches may also be cited in other sections of this review. Publications only reportin data on standard reference materials are listed separately in kable XII. The use of activable tracers and INAA continues to be an area of increasing interest. An interesting application is the long-term tagging of green sea turtles with nonactive Ir (B19). The Ir is administered in the turtles' diet and accumulates in the bones. With this tag,turtles can be identified 30 years, or longer, after administration of the stable element tag. Stable La, Sm, and Dy activable tracers have been used by Knaus (B20, B129) to study short-term sedimentary procews, ant behavior, and various other environmental processes. Gold-containing antirheumatic agents have been traced in body fluids by Berm and co-workers (B135-Bl36) using INAA. Dever and Bresee (B171) have used the stable isotope (enriched to 99.61 atom %) as a tracer followed by NAA and DC plasma spectrometry to trace dietary Cu into the hair of rats. Other studies by Gana et al. (B172), Haverland and Wiebe (B173),and Okada et al. (B176) have also used stable metals as activable tracers in biological systems. Cyclic instrumental neutron activation analysis (CINAA) continues to have new applications and some advances in methodology. Most cyclic INAA is done with reador neutrons (B56, B68, B134, B141, B219-B222), but Pu-Be and Sb-Be sources have also been used for coal analysis in systems with on-line potential (B73, B75). Yamamoto et al. (B221) have used a pulsed neutron source and CINAA to measure induced activities with half-lives from 20.2 ms to 7.1 s. Papadopoulos and Tsagas (B222) have described a new reactor cyclic activation system with intermediate sam le stor e, a Cd-shielded irradiation position, and improved raibit b % m g capabilities. The system is automated with a programmable logic controller. A pseudocyclic activation system at the Ecole Polytechnique Reactor Facility in Montreal is reported to be superior to conventional CINAA for measurement of short-lived indicator radionuclides in geological samples (B134). The longer decay periods between the pseudo-CINAA irradiations and the summing of successive spectra to produce a composite spectrum avoid the buildup of 2.24-min 28Alcounts for the silicate rock sam les studied. Conventional reactor thermal INAA for sever2noble elements in meteorites has been cou led with short-irradiation ENAA by Holzbecher and Ryan 7B83). A low-energy photon detector (LEPD) was used to detect the 51.5-keV photons from lMmRh(tip = 4.3 min) and 58.6-keV photons from -Co (tllz = 10.5 min), following a 5-min irradiation in a reactor epithermal neutron flux. Altho h sensitivity is lac ,isotopic neutron sources (e.g., Am-BeY5Tf, Pu-Be, Sb-Be are still frequently used .in INAA. Common uses of isotopic sources are in INAA major and minor elemental abundance analyses of coals (B73,B75), ores and geological materials (B93, B199, B223, B225-B229),

AS,

9

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Wllllsm D. Ehmsnn is a professor in the Chemistry Department of the University of Kentucky. He received his B.S. and M.S. degrees in chemistry from the University of F Wisconsin, Madison, and his Ph.D. in radiolu, chemistry from Carnegle Institute of Technology (now Carnegie-Melion University) in *I 1957. After a year of postdoctoral research at Argonne National Laboratory, Dr. Ehmann joined the faculty of the University of Kentucky in 1958. At the Unhrersity of Kentucky he has been elected Distinguished Professor of the College of Arts and Sciences, appointed university Research Professor, received the Sturgill Award for his contributions to graduate education, and served as Chairman of the Department of Chemistry and Associate Dean for Research in the Graduate School. He currently serves as a member of the Executive Committee of the University of Kentucky Research Foundation and is a member of the International Conference Committee: Modem Trends in Activation Analysis. He has been a Fuibrght Research Fellow at the Institute of Advanced Studies of the Australian National University and a visiting scholar at Arizona State University and Florida State University. His research interests include innovative approaches to trace element analytical chemistry using nuclear methods, especially as applied to problems in geochemistry and cosmochemistry, and the relationships of brain trace element imbalances to neurological diseases such as Alzheimer's disease and ALS. J. Dsvld Roborbon Is an assistant professor in the Chemistry Department and a faculty associate at the Center for Applied Energy Research of the University of Kentucky. He received his B.S. degree in chemistry from the university of Missouri at Columbia in 1982 and his Ph.D. in nuclear chemistry from the University of Maryland at College Park in 1986. After 2 years of postdoctoral research at the Lawrence Berkeley Labors/ tory, Dr. Robertson joined the faculty at the University of Kentucky in 1989. His re- ,."" search interests are focused on the development of accelerator-basedtrace eiement analysis techniques and the subsequent application of these techniques to fundamental problems in a variety of areas. Current applications include research problems in clean coal technology, ionconducting thin films, high-temperature reactions on graphite surfaces, and the relationship of bone trace element imbalances with neurological disorders. I n addition, Dr. Robertson occasionally returns to studies of the decay modes and structure of nuclei far from stability.

A

n

Steven W. Yster is a professor in the Chemistry Department of the Universlty of Kentucky. He received his B. S. degree in chemistry from the University of Missouri at Columbia and his Ph.D. in nuclear chemistry from Purdue University in 1973. After 2 years of postdoctoral research at Argonne National Laboratory, Dr. Yates joined the faculty at the University of Kentucky in 1975. He has served as the Director of General Chemistry at the University, received the University of Kentucky Research Foundation Award in 1981, and is a University Research Professor for 1992-93. Dr. Yates was a visiting scientist at the KFAJulich, West Germany, in 1981 and at Lawrence Livermore National Laboratory in 1989-90. He is currently the Chalrman of the Division of Nuclear Chemistry and Technology of the American Chemical Society, a member of the NSF/DOE Nuclear Science Advisory Committee, and a member of the CommRtee on Nuclear and Radiochemistry of the National Research Council. His primary research interests are nuclear spectroscopy and structural studies of collective modes of nuclear motion, but he makes an occasional excursion into applying accelerator-based techniques for elemental analysis.

and soils (B132, B224). Other applications include determination of K, Na, and Mn in oil seeds (B64) and various elements in alloys and coins (BI 78,B182). Batra et al. (BI 78) and Batra and Garg (B224) used Cd filters together with isotopic neutron sources to achieve enhanced sensitivity through fast neutron INAA in cases where activities from major abundance matrix elements interfered with conventional thermal neutron INAA. Pillay and co-workers (B225-BZ28) have explored the use of X-ray spectrometry in isotopic-source INAA. They demonstrated the capability to determine some rare earth (REE) and platinum group elements (PGE) down

to the trace level in geological samples using a LEPD and a 1-mp 252Cfsource. Teterev (B229) has combined NAA using a 25 Cf isotopic neutron source and radiography in a new method to determine the H content of large mass geological samples. Characteristic X-ray detection has also been used by Barouni et al. (B230) in reactor INAA for counting long half-life indicator radionuclides produced by (n,y), (n,n'), (n,Zn), (n,p), and (n,a) reactions. Dilution of the samples with graphite (to -90%) was necessary to minimize absorption and enhancement effects caused by the sample matrix. Although technically not a purely INAA procedure, Bradbury et al. (B231)have developed an on-line scintillation detector and sequential counting system (ANABET) for NAA indicator radionuclides passing through an ion exchange chromatography column. The system is designed to measure radionuclides that are not y-ray emitters (e.g., a, @, and electron capture decay). Separation and quantitation are accomplished in a single step in the on-line procedure. In another unusual detection approach to INAA, Ermolaev (B232) has used neutron activation autoradiography to study the evolution of different chemical forms of metals during ore body formation. Several innovative INAA methods for the determination of Li and B have utilized the 6Li(n,cy)3Hand 1oB(n,a)7Lireactions. Szabo and Sashin (B27) used a pulsed reactor and prompt a-particle detection to determine B uptake in several crops. Orestova et al. (B45)similarly determined B in cotton fibers. Tsekhladze et al. (B188) and Ross (B207) used the 6Li(n,a)3Hreaction for determination of Li in graphite and silicon, respectively. In what Iyengar et al. (B233) describe as "neutron activation-mass spectrometry (NA-MS)", Li and B are determined in biological samples by mass spectrometric measurement of from decay of :jH and 4Hefrom the cy particles produced in the 6Li(n,a) and 'OB(n,cy) reactions. The freeze-dried samples are placed on an ultrapure polyethylene liner enclosed in a sealed lead irradiation vial and irradiated for 12-24 h in a highly thermal neutron flux density of -3.3 X 10" n cm-2 s-l. The plastic liner prevents the recoil nuclei from becoming imbedded in the walls of the lead irradiation vial. A decay time of 30-45 days was used to allow adequate in-growth of "e from 3H. Comparator samples with known Li and B contents were used for quantitation based on 3He and 4He measurements with a mass spectrometer a t McMaster University. Concentrations of B at the microgram per gram level and Li at the nanogram per gram level are reported for a wide variety of biological reference materials and potential interference reactions are listed. Other novel INAA techniques include rapid determination of low-level radioactive *Tc in samples by use of reactor irradiation and the Tc(n,n')=Tc reactor (B234),derivative NAA to determine P a t nanogram per gram levels through activation of an antimony phosphomolybdate complex and INAA for Sb (B48),and the use of biogeochemical exploration for gold deposits through determination of Au and commonly associated As and Sb in samples of vegetation analyzed by INAA (B86). Interferences in INAA have attracted considerable recent attention. Several groups have investigated analytical bias in the determination of Au in ores due to sampling error and resonance self shielding of neutrons in sizable Au flakes (B92, B95-B96, B100). Hall et al. (B92)have examined the reasons for the discrepancies between INAA, fire assay methods, and acid dissolution methods in the analysis of Au ores. Acid dissolution techniques are found to provide erroneously low Au concentrations due to incomplete removal of Au from treated sample residues. Fire assay results may also be low due to high concentrations of metal such as Cu which hinder efficient collection and separation of Au and the Pb button. Interferences from U fission in INAA have been studied by Al-Jobori et al. (Bs7), Tong and Li (EBB),Landsberger (B235), and Saleh et al. (R236). Perturbations generated in neutron fields by scattering on hydrogen atoms have been considered by Trubert et al. (B237). Reduction of bremsstrahlung radiation interferences in INAA by deflection of @-particlesin a strong permanent magnet field has been reported to enhance analytical sensitivities for elements with indicator radionuclides that emit low energy y-rays (B238). Compton suppression systems for INAA have been described by Petra and co-workers (B23S-B240). ANALYTICAL CHEMISTRY, VOL. 64,

NO. 12, JUNE

15, 1992

3R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Table 11. Selected Applications of Instrumental Thermal Neutron Activation Analysis Archaeological Samples amber ceramics, glass, pottery coins metal artifacts stone artifacts and sculptures Biological Samples activable tracers aquatic and marine biota comparison of INAA and other methods multimethod approach plants, leaves, nuts Environmental Samples atmospheric particulates, aerosols, flue gas household and municipal waste INAA accuracy considerations textiles waters Foods, Mixed Diets, and Related Samples chewing gum composite diets food colors grains, seeds, spices, vegetables milk yeast Forensic Samples NAA statistical considerations glass fragments Geological Samples borehole analyses fossil fuels bulk coals coal and oil shale components, ash, kerogen crude oils on-line analysis comparison of INAA with nonnuclear methods coral cosmochemical samples, meteorites, cosmic dust exploration, biogeochemistry interferences in the NAA of geological samples liquid inclusions in quartz ores and separated minerals rock types, allites, carbonates, oceanic, phosphate rocks rock systems, different regions sediment, soils technique comparison and unique techniques comparison of INAA with other methods pseudocyclic activation of silicate rocks Human Tissues and Related Medical Applications human subjects activable tracer study bile blood, blood components bone brain, brain cell components, other CNS tissues cancerous tissue dialysis fluids gallstones hair, nails implant corrosion kidney, kidney stones liver lung milk (human) pharmaceutical dosage forms teeth thyroid urine, feces whole body, in vivo laboratory animals activable tracer studies normal and diseased rat tissues Materials, Industrial Products alloys, steel catalysts ceramics, refractory materials explosives detection graphite high purity metals integrated circuit packing material oil products., solvents on-line, flow analysis plastics process control applications semiconductors, pure silicon, silicon processing silicon dioxide, NAA irradiation vials textile dves thin metal layers on various substrates

4R

9

ANALYTICAL CHEMISTRY, VOL. 64,

NO. 12, JUNE 15, 1992

B1 A34, B2-7 BE, B178 A34, B9-13 A34, B14-18 B19-20 B21-23 A37, B24 A35 B25-32 A40-42, B33-42, B72, B82 B43-44 A43 B45-46 A40-41, B47-51 B52 B53-56 B57 B58-64 B65 B66 B67 B68 B69 A45-46, B70-75, B80 B70-72, B75-78, B80 B79 B75-76 A44 BE1 A39, B82-85 B86 B87-88, B235-236 BE9 A47-48, A55, B90-103, B223, B225-229 B104-115 B116-122 B71, B92, B123-132, B224 B133 B134 B135 B136 B135, B137-141, B144, B150 B141, B145 B142-147 B148-150 B151 B152 B138, B144, B153-156 A38, B157 B156, 158 B145, B156 B156, B159-162 B163 A49, B164 BE5 B166-167 B135, B138 B168 B169-173 A36, B174-175, B177 B178-182 B183-184 B185-186 A33, B187 B188 B189-191 B192 B193-197 A32, B198-199 B20C-201 B202 A41, A52-54, B203-210 B211-213 B214 B215-218

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Table 111. Selected Applications of Epithermal and Reactor Fast Neutron Activation Analysis

Archaeological Samples Biological Samples Environmental Samples nuclear safeguard materials waters Foods and Mixed Diets Geological Samples coals meteorites ores and rocks sediments and soils Human and Animal Tissues human dental enamel rat bone urine Reference Standards. for Ga and Mo

B268 B240, B261, B269 B270 B271-272 B260 B273-274 B83 B99, B121, B263, B274-276 B107, B269 B277 B262 B278 B279

The use of a "universal com arator" consisting of 52Vand %Nafor short-lived radionucliaes and &Zn, 152Eu,or 18Ta for long-lived radionuclides has been proposed for calibrating relative counting efficiencies at any geometry for lar e-scale INAA (B241).A method to correct for intensity graAenta in an irradiatin neutron flux (B242)is based on use of known (from XRFSy Fe contents of rocks and measurement of the two stro photopeaks of q e at 1099 and 1292 keV. Problems a s s o c i a 3 with nonuniform sampling in NAA have been addressed by Smakhtin and Shevaldin (B243). A novel preloaded p& processor coupled with the virtual p& generator counting loss method has been used with a LOAX detector by Weatphal (E%) to achieve real-time correction of counting losses in high rate, high resolution y-ray spectrometry. The need to have an independent criterion on signal-&background ratios in aired observations has been discussed by Das et al. (BM).h e role of covariances in calibration and quantitation when more than one sample is analyzed from the same batch has been described by Cetnar and Janczyszyn (B246). The analytical importance of secondary particle reactions and threshold reactions as alternative activation reactions for the determination of Li, F, Ti, and TI has been discussed by Cohen (B247). Secondary particle activation analysis uses the energetic 3H particles from the 6Li(n,ol)3Hreaction to induce useful analytical reactions (e.g., 160(t,n)'8F)and %(t,n)Wl). In the same publication, Cohen also reviewed the importance of threshold reactions as interferences to conventional (n,y) capture reactions in INAA. The ko method has been extended to low-energy photon counting by De Corte et al. (B248). Other papers from the De Corte group present ko factors and related nuclear data for many radionuclides of interest in INAA (B249-B251).An evaluation of ko methods for standardization has been published by Elnimr (B252). The preparation and use of a old-aluminum alloy as a comparator material in ko INAA as been described by In elbrecht et al. (B253). The effect of true coincidences in ko &AA has been studied by Jovanovic et al. (B254). Uranium fission interferences, second-order reactions, and threshold reactions as related to ko INAA have been considered by Lin et al. (B255) and Tian and co-workers (B256,B267). Finally, it is noteworthy that several new or modified facilities for NAA have been activated recently and plans for a major new facility are in progress. Dyer et al. (B257) have described the new high flux density pneumatic tube irradiation facilities a t the new Oak Ridge National Laboratory (ORNL) HFIR Neutron Activation Analysis Facility. The capabilities of the newly operational cold neutron facility at the National Institute for Standardsand Technology (NIST), Gaithersburg, MD, are reviewed in a recent NIST report (B258). Robinson et al. (B259) have described the radioanalytical experimental facilities that are being planned for the Advanced Neutron Source to be constructed at ORNL (B259). 2. Reactor Epithermal and Fast Neutron Activation Analysis. Most epithermal neutron activation analysis is done in Cd-shielded reactor irradiation positions, or with Cd-wrapped irradiations vials. Boron nitride (BN) shields have been used by Tobler et al. (B260-B261) for the determination of halides and other elements in diet samples, and Si in plant materials. Dowlati and Jervis (B262)have compared the use of B and Cd shields for the measurement of Cd

e;

in bone samples from Cd-fed rata and found that the B shield resulted in a 27% improvement in the Cd detedion limit, over the Cd shield. ENAA followed by X-ray spectrometry have been used by several authors to determine Ag, Au, PGE, REE, and other elements in meteorites, rocks, and other matrices (B83,B230, B263). Petra et al. (B240)have used ENAA and a Compton suppression system to determine As in biological reference materials. Methods for monitoring the fast neutron flux in a reactor have been published by several grou s (B264-B267). A representative list of recent ENAA appications is given in Table 111. 3. Chemical and Radiochemical Neutron Activation Analysis. In this review we have grouped sample preconcentration and oup or single element preirradiation chemical separation metrods together as chemical neutron activation analysis (CNAA). In cases where separation chemistry is done after neutron irradiation, the methods are referred to as radiochemical neutron activation analysis (RNAA). The most striking feature of the recent publications in this category is the increase in the use of sample preconcentration methods (CNAA), in contrast to the earlier emphasis on RNAA single element and especially sequential postirradiation group separations. Selected publications representative of current activity in both CNAA and RNAA (B28GB375) are listed by method, element or group of elements, and sample matrix analyzed in Table IV. Amon the most interestin rocedures are the speciation of As(IIf)/As(V) and Cr(IIIy)kr(VI) in natural waters b se uential preirradiation copreci itation (B280B281).$he Aility to discriminate between kghly toxic and relatively nontoxic forms of As and Cr in environmental samples is critical. Van Elteren et al. (B280) also studied application of their coprecipitation technique to the determination of organically bound As species. Determination of the long-lived tracer, lZ9I,by INAA, CNAA, and RNAA has been of recent interest. Its long half-life (1.57 X 10' years) and absence of a suitable y-ray in ita decay most often preclude direct counting and INAA may be difficult in complex matrices. Kuznetsov et al. (B282) report detection limits of 1X 10-l26 for lBI using a preirradiation precipitation and post-irradiation solvent extraction method. Copreci itation was a widely used method in both CNAA and R N A during this review period. Collectors included Al(OH)3(B284-B285, B287-B288, B291-B292), BQ3, (B283), calcium oxalate (B286),Fe(OH)$(B290, B294), LaF3 (B337), and salts of various organic chelatin agents (B289, B293, B295). Kaplan et al. (B294) coupled ENAA coprecipitation of metals from natural waters with electrocoagulation in a two chamber electrolyte cell that utilized a stainless steel cathode and a graphite anode operating with an alternat' asymmetric current. Another unique procedure d e s c r i b e 8y Dmitriev et al. (B298) used a CNAA separation of Au from geological samples by microwave helium-oxygen plasma sublimation. The volatilized Au was transferred into tributyl phosphate as a solid extractant with yields of 195%. Tributyl phosphate has also been used as a solid extractant in the CNAA preconcentration of Au in natural waters (B306). Pre- and postirradiation separations of Ir from geological samples remain areas of active work due to the interest in the meteorite impact theory for dinosaur extinction at the K-T geological boundary layer in rock strata. The detection limits for Ir using CNAA or RNAA are greatly improved over those attainable with INAA. Most procedures use RNAA ion exchange procedures (B307, B343-B344, B346), or fire assay preconcentration (B327-B332, B372-B373) to enhance determinations of Ir and other PGE. Duffy et al. (B317)have explored speciation of metals in soil leachates by use of a cation exchange resin to collect cationic inorganic forms and a second anion exchange resin to collect metals in their organically-boundanionic forms prior to NAA. An area of great future potential is the use of separation methods common to biochemistry (centrifugation, gel electrophoreais, and various chromatographic techniques)to study subcellular com onenta in tissue samples, hosphoproteins, and metal-boun8protein complexes (B137,&46, B32343326). Stone et al. (B324-B326) have used poly(acr lamide) gel electrophoresis (PAGE) together with a colloi&l Au tag in an immunoassay protein determination by NAA, as an alANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

5R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Table IV. Selected Applications of Chemical and Radiochemical Neutron Activation Analysis Preirradiation Separation or Preconcentration (CNAA) coprecipitation and related methods As(II1) and As(V) from nat. waters Cr(II1) and Cr(V1) from nat. waters I and lZgI,from biol. samples, nat. waters, soils REE, nat. waters, from biol. samples Se(1V) from nat. waters Tc, from fission product mixtures Th and U, from nat. waters misc. groups of elements, from nat. waters, body fluids, milk, fly ash, rocks, soils derivative NAA P, from nat. waters distillation Au, from geol samples lB1, from grasses, radioactive waste, soils misc., simple evaporation of matrix material ion exchange, adsorption Au, PGE, others, from nat. waters, steel Cd, from nat. waters I, from seawater REE, from geol. and environ. samples Se, from biol. samples U and Th, from Ta metal V, from blood serum misc. groups of elements, from biol. samples, nat. waters, soil leachates solvent extraction Fe, from semiconductor Si REE, from nat. waters misc. groups of elements, from oils, organic matter extr. from rocks misc. methods biochemical sepn techniques, phosphoproteins, metalloproteins, from biol. samples fire assay and related methods, Au and PGE, from geol. samples thin-layer chromatography, REE, from rocks

B280 B281 B282-283 B284-288 B289 B290 B291-292 B 293-29 6 B297 B298 B299-302 B47, B196, B303-304 B305-307 B308 B309 B310-311 B312 B313 B314 B315-319 B320 B321 B322 B137, B146, B323-326 B327-332 B333

Postirradiation Separation (RNAA) coprecipitation and related methods Rh, from rocks Ta, Ti, Hf, W, Y, Zr, from meteorites T1, from biol. samples U and Th, from A1 metal, silica, human fluids distillation As and Sb, from biol. samples Hg, from geol. samples Hg and Se, from biol. samples lZ7Iand lzBI,from soils several elements, from fish ion exchange, adsorption Ag, Au, Ir, Pd, and other PGE, from geol. samples Cd, from biol. samples REE, from geol. samples U, Th, actinides and REE, from geol. samples, high purity Al, Mo, and silica solvent extraction As, Cd, Cu, Hg, and Zn, from human hair and tissues Au, from catalysts, biol., and geol. samples Au, Pt, and Pt, from various matrices Cd, Hg, and Se, from environ. samples Cu, from various matrices I, from nat. waters, tobacco I and Se, from biol. samples Mn, from biol. materials REE, from high purity U Ru, from catalysts and ores Sn, from blood Sr, from blood T1, from biol. samples U, Th, actinides and REE, from geol. samples, blood V, from biol. samples several elements. from fish misc. methods extraction chromatography on Bio-Beads, Mo and W, from biol. samples fire assay, noble metals, Ir and other PGE, from geol. samples HPLC, REE, from geol. samples removal of W o and @Ni interferences in determination of other elements, from high purity Ni metal various combined methods, ~ many elements, from meteorites, geol. samples, high purity A1 _ _ _ _ _ _ _ _ ~

6R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

B334 B335 B336 B337-338 B339 B340 B60 B341 B342 B343-348 B349 B350 B337, B351-353 B354 B355-356 B357 B358 B359 B360-361 B362 B363-364 B365 B366 B367 B368 B336 B351, B369 B370 B342 B371 B372-373 B374 B375 B84-85, B117, B121, B189

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Table V. Selscted Applications of Prompt y Neutron Activation Analysir and Neutron Depth Profiling

PGNAA Biological and Environmental Samples many elements in biological materials C1 and other elements in lake waters in situ Foods and Related B in foods and reference materials many elements in composite diets and mineral supplements Geological Samples Fe, Si, and Ti in bauxite C, H, and many other elements in coal many elements in ores and metallurgy samples many elements in sediments Medically Related Applications (Human and Laboratory Animal) in vivo analyses loB in tumors C for total body content Ca for total body content Cd in kidney, liver and partial body Cd C1 for total body content H for whole body content many elements for whole body content N, in muscle and total body content phantoms Cu, F, Fe, Mg, Na, P, Si, and Zn in liver and tibia phantoms tissue samples loB in blood, tissues and cultured cells Misc. Matrices Al, Fe, Si, and other elements in concrete and its raw materials B in eyewash Ca, Na, and Si in glass many elements in fuel oil, industrial materials

B376-377 B378 B379 B380 B381 B382-386 B387 B388

B389 B390, B393, B398, B402 B391-393, B398, B402 B394-396, B402 B392-393, B397, B402 B390, B393, B398, B402 B398-399 B391, B393, B398, B400-402 B403 B389 B404-406 B407 B384 B408-409

NDP Semiconductor materials B in pure Si, silica, and Cd-Hg telluride P in uure Si

B413-415 B416

Table VI. Selected Applicatione of Nuclear Activation with 14-MeV and Other Accelerator-Produced Neutrons

Archaeological Samples Cu, Pb, Sn, and Zn in Chinese bronzes and antique coins several elements in Islamic glass weights and stamps Biological Samples N in plants and crops Geological Samples fossil fuels 0 in Argonne premium coal ores, minerals, and rocks F in geological reference standards 0 in rock standards and ores several major abundance elements in rocks and ores several major abundance elements in Nile Delta black sand Human Tissues and Related Medical Applications blood and hair C, N, 0, C1, P, and other elements in vivo Materials and Industrial Products explosives and propellants C1, N, and 0 in explosives and propellants glasses and glaasware major elements in glass for industrial and household use suuerconductor materials 0 in supercondu&ing ceramics Y, B, Cu, and 0 in superconductors

B419 B420 B421-422 B423 B424 B425 B15, B426-427 B428

B429 B376, B390, B399, B403. B430-431 B432 B433 B434-436 B436

temative to NAA determination of an element that is intrinsic to the structure of the protein. As another example of adaptation of a biochemical procedure, Danko et al. (B371)have reported the simultaneous determination of Mo and W in biological samples using extraction chroma aphy employing a-benzoinoxime supported on Bio-Beads M2. 4. Prompt y Neutron Activation Analysis and Neutron Depth Profiling. The majority of prompt y neutron activation analysis (PGNAA) publications in this review period (B376B412) used isotopic neutron sources for in vivo whole body or specific organ analysea. The elements most commonly determined are C, Ca, Cd, C1, H, and N. A few publications utilizin ener etic neutrons produced by accelerators for are so included (B376, B399, B403-B404). As reactor cold neutron irradiation facilities such as those at NIST in Gaithersburg, MD (B258) and KFA in Jiilich, Germany (B377)become more available to analysts, PGNAA applications can be expected to expand significantly. Selected recent applications of PGNAA (B376-B409) are listed in Table V. Of particular interest is the use of the associated-particle technique to enhance sensitivity in PGNAA. Hollas et al. (B376) used 14-MeV neutrons from the 3H(d,n)4Hereaction with the PGNAA y-ray counting gated by detection of the a-particle roduced simultaneously with the neutron in the neutron tu\,. Aripov and Kurbanov (B387) have described the use of relatively low-energy prompt y-rays (EyI 3 MeV) for the determination of S, K, and H in ores. Franklin et al. (B395) desi ed an improved in vivo PGNAA system to measure k i g e y Cd that uses a Be premodifier to alter the of neutrons from a 238pu Be isotopic neutron source. he effectiveness of the system ased on the lower limit of detection for a given patient neutron dose was improved by 4040% over an earlier system using a 252Cfsource without the Be. However, Krishnan et al. (B401)reported in vivo N determinations using a 252Cfneutron source yielded a better signal-to-noise ratio than using =Pu-Be sources of the same strength. Kacperek et al. (B403) have enhanced the sensitivity of PGNAA for the determination of several elements by using a pulsed 4.8-MeV accelerator-producedneutron beam to ate the counting system. They have also compared P G & A methods employing (n,n'y) inelastic scattering reactions with other nuclear activation methods for Cu, F, Fe, Mg, Na, P, Si, and Zn. Macke et al. (B410) have studied the effects of neutron scattering gy hydro en on elemental sensitivities for PGNAA. Samples exhibite%an increase in the sensitivity of determination of several elements with increasing H density (g/mL). The enhancement was affected by target shape and orientation with respect to the neutron beam. Khrbish and Spyrou (B411) have explored the use of the absolute single standard method in PGNAA and have calculated K factors similar to those used in INAA for a number of elements using both Au and Fe as monostandards. In its present state of development, the method works well for some elements, while conventional specific element comparator sample irradiations yield better data for other elements. Finally, statistical considerations in the use of PGNAA in well logging have been presented by Grau et al. (B412). Two remews of PGNAA have been recent1 published (A32-A33), and the reader is referred to these pu&ications for additional information on advances in this field. Our search found relative1 few recent publications on neutron depth profiling (NDJ), although it is certain that much work is in progress on this technique. The few applications found by our search (B413-B416) deal with the determination of B in semiconductor materials (Table V). A unique approach to P depth profiling in P-doped Si that is not dependent on the measurement of the recoil particle has been published by Alfassi and Yang (B416). Both Si and P were determined by neutron activation followed by delayed liquid scintillation counting of solutions containing materials etched from successive surface layers of the Si. Concentrations as low as 10 p P / g and thicknesses of 20 nm can be determined. Chu ip8417) has used large solid angle coincidence spectrometry to improve the efficiency of NDP. The loss of angular information is compensated for by measurement of the complementary particles in coincidence. The method has been applied to 6Li depth profiling and complementary coincidence spectrometryof the associated 3H and 4Heproduced by neutron absorption. Finally, a new method for deconvo-

9

PGNJ 3

';F"h""

i:

ANALYTICAL CHEMISTRY, VOL. 84, NO. 12, JUNE 15, 1992

7R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

lution of NDP spectra has been described by Coakley (B418). 5. Fast Neutron Activation Analysis with 14-MeVand Other Accelerator-Generated Neutrons. Selected recent applications of fast neutron activation analysis (FNAA) are listed in Table VI (B4194436). Most applications of FNAA utilize Cockcroft-Walton type accelerators o erating a t an acceleration potential of 150-200 kV to pro uce 14.7-MeV neutrons by the 3H(d,n)4Hereaction. However, some groups have used charged-particle reactions on Be in other types of accelerators to produce energetic neutrons for FNAA. Due to the limited tritium target or sealed-tube life for neutron generators, short irradiation times have always been favored for FNAA. Therefore, it is natural that attention has been directed to the use of short-lived indicator radionuclides and cyclic activation techniques. One of the major problems in cyclic 14-MeV FNAA is the need for accurate corrections for the effective neutron flux, which may vary both within a specific sample irradiation period and from cycle to cycle. Ila and Murty (B426) used a dual sam le transfer system and the 16Nactivity from oxygen in a Ca8O standard to monitor cycle-to-cycle flux variations in the FdAA determination of major elements in rocks and ores. The individual cycle flux values are incorporated into an equation that uses only the total sample activity induced by the cyclic irradiations as determined by a single count at the end of the last cycle of the cyclic activation sequence. The half-life of the indicator radionuclide in the sample relative to the cycle time and the number of irradiation cycles chosen determine the effective build-up factor for the total activity observed in the single count. Ila (B425) also used cyclic activat!on to determine total 0 in rocks and ores. Analytical sensitiwties employing cyclic irradiation techniques for FNAA have been calculated by Pepelnik (B437). Interest has recently developed in the use of FNAA for whole body and bulk Sam le elemental analyses. Several of these applications based Lgely on PGNAA have been previously listed in Table V. Mitra et al. (B431)have proposed the use of a unique pulsed (1kHz) 14-MeV neutron source for the in vivo determination of H, C, N, 0, C1, P, and Ca. These data can be used to estimate nutritionally important body com onents, such as total body fat, protein, total body water, an mineral content. In their proposed system, three successive analysis phases would be used. During a fast neutron pulse of -10 ps, y-rays from inelastic scatterin reactions would be counted to measure C and 0. In the secon phase extending approximately 200 ps beyond the end of the neutron pulse, the prom t y-rays resultin from neutron capture are measured to letermine H, N, C&Ca, and P. In the third phase of -800 s before the next pulse, delayed y-rays emitted from I6N, cCl, 49Ca,and 26Alare counted to rmit independent analyses for 0, C1, Ca, and P, respectively. phe third phase counts also provide correction factors for second phase spectral interferences. Garrett and Mitra ( M O ) and Hollas et al. (B376)have studied the feasibility of usin time correlated associated particle detection to attain increase! sensitivity for a given neutron dcse when doing in vivo 14MeV FNAA. Barouni et al. (B438) have continued their extensive exploration of the use of X-ray counting in NAA with a recent publication on the determination of Br, Cd, and Se by 14MeV FNAA followed by X-ray spectrometry. An internal standard is employed in the determinations and a method is proposed for correction of matrix effects. Synthetic samples diluted with H3B03were used to test the method. Finally? a new facility for 14-MeV FNAA in India has been described by Bhoraskar (B439).

B

B

8

C. OTHER ACTIVATION METHODS 1. Charged-Particle Activation Analysis (CPAA).

General reviews of CPAA have been published by Hoste et al. (A59, A60) and Yamada (A57). The application of thinlayer activation as a method for studying wear and corrosion is reviewed by Blondiaux and Debrun (A56),E'fr'g (A61),and Eichhorn and Richter (A62),while the application Of CPAA to the analysis of biological materials has been reviewed by Hoste and Vandecasteele (A58). The excitation functions for the CPAA reactions 'OB(d,n)'lC and 12C(d,n)13Nwere measured in the energy range from 0.5 to 6.0 MeV by Michelmann et al. (CI). They report that the precision of the absolute cross sections is on the order of 8%. 8R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

The excitation functions for the 14N(p,a)11Cand 14N(d,n)150 reactions were measured by Koehl et al. (C2, C3) in the ener range of 2-7 MeV. The values were used to determine t e trace concentration of nitro en in different semiconductor matrices and to correlate the absorption coefficient for the 963-cm-l line with the absolute concentration of nitrogen in silicon. For the possibility of determinin trace amounts of sulfur in surface layers, ~ u on n et al. f 4 ) p1ave measured the excitation function for the $WHe,p) "C1 reaction from 4.0 to 12.0 MeV. The measured cross sections yield detection limits of 2 ppm and 300 ppb for sulfur in GaAs and Si, respectively. A frequent application of CPAA is in the analysis of semiconductor materials (C2-C7). Bakraji et al. (C5-C6) have combined CPAA with channeling to measure the lattice locations of the oxygen impurity atoms incorporated in GaAlks which was prepared by va or hase e itaxy from organometallic compounds. The 1$(d,rh4 an1160(t,n)18Freactions were used to measure the carbon and oxygen content of high-purity allium with a detection limit of tens of nanograms per gram ( 7). In other applications, CPAA has been used for the analysis of high-T, su erconductors (C8), fluoride glasses (CS), and industrial anc!household glasses (CIO). Of novel interest was the use of the 56Fe(p,n)56Co reaction to activate three spots on a 105-mm howtzer to investigate the erosive wear in gun barrels due to hot propellant gases (CII). 2. Photon Activation Analysis (PAA). As was the case in our revious review (A16),few new publications dealing with P h have a peared in the literature. This is most likely due to the fact t at few analysts have access to the high-intensity photon sources required. The analytical potential of comb' PAA with low-ene photon detection was i n v e s t i g a t e d 3 a t o et al. (CI2).TX practical detection limits were evaluated by analyzin the NIST SRM Orchard Leaves with 30-MeV bremsstrahfung. In a com arison with conventional y-ray spectrometry, lowenergy pioton spectroscopy lowered the detection limits for Ba, Br, I, Ni, Mo, Pb, Sb, and Zn. A simple method for self-absorption corrections for lowenergy photons in IPAA of biological materials was reported by Sat0 et al. (C13). In this a proach, a standard source of low-energy photons is used to &tennine the mass attenuation coefficients of the sample at the appropriate photon energies. The validity of the method was verified by analyzing several biological SRMs including Bowen's kale, orchard leaves, and horse kidney. One interesting application of PAA has been the development of an activation method for the detection of nitrogen in explosives. Habiger et al. (C14) describe the use of the electron-generatedbremsstrahlung from a 13.5-MeVrf linear accelerator to photoactivate nitrogen. They report that, with the detection of the two 511-keV annihilation photons, a system could screen luggage for concealed explosives with a probability of detection greater than 99% and a false-alarm probability of less than 1%. A description of such a unit capable of operating from the bed of a moving vehicle is found in ref (215.

f?

h

E

R

D. ION BEAM ANALYSIS Elemental analysis with ion-beam-inducednuclear reactions has matured to the point a t which it has moved out of the realm of the specialized "nuclear" laboratory and has found widespread use among researchers in many different areas. This is perhaps best demonstrated by the steady increase in the number of small accelerators that are dedicated solely to ion beam analysis (IBA). We find it very encouraging that in 1990 and 1991 one supplier alone delivered more than 13 dedicated IBA accelerator systems (DI).Naturally, the amount of literature in the field has grown along with the increased interest in and usage of IBA techniques. Moreover, because the field has matured, the majority of publications now focus on the applications of IBA, and the literature clearly reflects the fact that the advances in methodology are occurring a t a slower pace. In this review we have arbitraril divided ion beam analysis into three general cae~ries-PIC?E, RBS, and other nuclear reaction analysis (NRA) techniques. These divisions are simply for convenience, as all these techni ues are based upon ion-beam-induced nuclear reactions an all three are fre-

1

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Table VII. Selected Applications of PIGE and PIGE/PIXE Analysis

Table IX. Selected Applications of Other Nuclear Reaction Analysis Measurements reaction

PIGE Analysis archaeology F in fossil teeth C, 0, Si, S in Esie soapstone sculptures biology and medicine F in bone biopsy samples material science H diffusion in Al/Ti/Al stripes H adsorption on Ni(ll1) H profile in pyrolytic graphite H in amorphous silicon H in CVD diamond films H in Sic films H in SiOzfilms H in TiOz films Li and B profiles in implanted diamond Li, Si, P in amorphous electrolyte films N profiles in implanted A1 F profiles in SnOzfilms Cr profiles in implated M50 bearing steel Ni profiles in Fe alloy PIGE/PIXE Analysis archaeology bones Au jewelry solders environmental science urban aerosol coal fly ash tree rings geology fluid inclusions in minerals zeolites sediments and soils material science electroluminescent multilayer structures high T,superconductors miscellaneous

D16 D17 B141 D18 D19 D20 D21-22 D23-26 D27 D28-32 D33 D34 D35 D36-37 D38 D39 D40

application

ref

D ingress into Zr-Nb foils D profiles in polymer films He implant effect on a-C:D films D profiles in ZrOz D uptake in Pd D uptake in Ta D profiles in iron alloy

D85 D86 D87 D88 D89 D90 D91 D92 D93 D94 D95 D96 D97 D98 D99 DlOO DlOl D102

sHe implantation in sapphire B profiles in a-SiC:H/a-Si:H B ingress into N implanted A1 B implantation in Si C impurities in GaAs oxidation of Si and TiSizfilms 0 content of superconductors 0 implantation in Al,Si,Mg 0 chemisorption on Cu oxidation of Ni and Fe F plasma-etched Si

Table X. Selected Applications of Nuclear Microprobes D41 D42 D43-44 D43 D45 D46 D47 D48 D49 D50

archaeology biology and medicine urinary calculi otoliths and scales from teleost fish brain sections from Alzheimer’s patients teeth geology

F in melt inclusions olivine crystals in meteorites C, D, N in oolitic carbonate and sandstone material science Si diffusion in Au semiconductors superconductors H Drofile in Dolvimide films

D114 D108 D115 D116 D117 D118 D119 D120 D121 D122 D123 D124-125 D126-127 D128

D51

DOShe S m D S

Table VII1,Selected Applications of Rutherford Backscattering Spectroscopy alloys ceramics electronic materials glasses ion-implanted materials oxides thin films polymers superconductors

D66 D67 D68-72, D75 D73-74 D74-77 D78-79 D78, D80, D84 D81-82 D60-65, D83

quently employed simultaneously. In fact, the last portion of this section deals with the combination of these IBA techniques with nuclear microprobes. Since the nature of most ion beam analyses de ends critically on the specific problem and type of materia that is to be characterized, we have grouped the references to IBA techni ues in Tables VII-X according to application. Particle-inluced X-ra emission (PIXE) and low-energy IBA techniques such as ow-energy ion scattering and s uttering have not been included in this review because, altiou h these analytical methods do use accelerated ion beams, t%ey do not involve nuclear reactions. The one exception to this is that PIXE is included in this review when it is used in conjunction with PIGE, RBS, and other NRA techniques. The use of mega-electron-volt ion beams in surface analysis has been reviewed by Derry et al. (A63) while the use of charged-particle accelerators for trace-element analysis in the environmental sciences was reviewed by Valkovic and Moschini (A64). In the area of material science, Keinonen et al. (02)review the application of IBA to high T superconductora, and Russell (03)has reviewed the use of IdA to characterize polymer interfaces. The reader will also find helpful the

P

r

proceedings of the numerous conferences on the applications of IBA (04-07).Two other papers worth mentioning at this point because of their appeal to the general audience are the article on the a plication of IBA in the earth sciences by Petit et al. (08) anathe description of the accelerator system in the Louvre Museum by Amsel et al. (D9). 1. Particle-Induced y R a y Emission (PIGE). This technique, which is also occasionally referred to as PIGME or PIPPS analysis, is based upon the detection of the prompt y-rays that are emitted following a charged- article-induced nuclear reaction. It is most frequently u s e i in the analysis of the light elements which cannot be readily determined with PIXE or XRF. A review of elemental analysis with external beam PIGE and PIXE can be found in the article by Raisanen (A69). Selected applications of PIGE analysis are listed in Table VII. In thick-target PIGE analysis, the ratio of the ranges in the sample and standard can be used in the averqe cross-section method to determine the elemental or isotopic composition. Olivier and Morland (DIO-DII) have investi ated the idea that the appropriate range in the sample can 6e determined by spiking the sample with an element that is absent in the sample. The method was tested usin lithium as the nonanalyte spike to determine sodium anfphosphorus in ivory. Also in the area of thick-target PIGE, Raisanen (012) has measured the thick target y-ray yields induced by 12- and 1&MeV 7Li. Resulta are presented for 49 elements in a table that lists the most suitable elements for y-ray analysis. The feasibility of usin particle-y coincidences for elemental analysis by reactions of &e X( ,p’y)X and X(p,ay)Y type was ex lored by Krhtiansson and lwietlicki (013). The technique is tased on the accurate timing of the particle-photon coincidence event to determine the mass of the emitted article. The influence of different physical parameters on t i e coincidence measurements was f i s t investigated with a series of Monte Carlo simulations. The concept was then demonstrated by measuring the products from the 23Na(p,p’y)23Naand ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

OR

NUCLEAR AND RADIOCHEMICAL ANALYSIS

23Na(p,ay)20Nereactions on a thin NaCl target. The measurements verified the main features of the Monte Carlo simulation; accurate timing could be used for mass identification and the background in the particle spectrum was greatly suppressed. The advantage of the technique is its capacity to provide depth profile information. For example, the variation in the width of the a peak in the particle spectrum could be used as a measure of the size of sea spray aerosol particles collected on a thin backing. The main disadvantages of the techni ue are the complexity of the measurements and the possibjity of interfering reactions. One area in which PIGE has emerged as an especially useful technique is the depth profiling of hydro en. The use of the lH(15N,ay)12Creaction for hydro en anafysis is compared to forward recoil spectrometry and &r~amicsecondary ion mass spectrometry in the review article by Kramer (014). A compact, portable BGO detection system for de t h rofiling hydrogen via the 15N-inducedreaction is descrikd gy Horn and Lanford (015). This system can achieve hydrogen sensitivities of 10-100 */g, values that are comparable to those from much larger, dedicated NaI detection systems. 2. Rutherford Backscattering Spectroscopy (RBS). Elastic scattering of charqed particles has emerged as a powerful tool for studying the stoichiometry, structure, thickness, and im urity concentrations of surfaces. Specific applications of Rf;S analysis are listed in Table VIII. The experimental apparatus used for RBS analysis can be of widely varying degrees of com lexity. Maisch et al. (052) describe a multisegment annular 8i detector and sophisticated electronic processing system that can be used to perform trace-element RBS analysis. The system increased the detection limit of the RBS measurements by about two orders of magnitude as compared to the standard single-linedetection arrangement. The use of a low-cost PIN photodiode as a charged-particle detector has been investigated by Gujrathi et al. (053). For the heaw ions llB (0.2-16.2 MeV). 35Cl (1.0-8.2 MeV), and *lBr (0.6-8.0 MeV),'the resolution of the PIN photodiode was found to be comparable to that of a silicon surface barrier detector. We also mention here the system described by Li-Scholz et al. (054-055) that combines RBS and PIXE analysis. The simultaneous detection of the elastically backscattered protons and the particle-induced X-rays provides a particularly simple means of measuring non-Rutherford proton scattering cross sections and X-ray production cross sections. An accurate knowledge of ion energy loss is critical to most backscattering (and other IBA) analysis measurements. The semiempiricalsto ping power calculations of Ziegler, Biersack, and Littmark, wfich are frequently used for the simulation of ion beam analysis spectra, are compared with recent experimental data in an article by Sofield (056).Vickridge and Amsel (057) have developed new computer programs for straggling calculations and the simulation of excitation curves obtained in narrow-resonance depth rofiling. The programs, which are based upon the stochastic tIeory of charged-particle energy loss, perform the autoconvolutions of the primary energy loss function and the weighted summing of the convolutions needed for the straggling and excitation curve calculations. The backscattering and depth profiling analysis of materials energies above 2 MeV requires with 4Hebeams at bombar an accurate value of the non- utherford cross sections for the lighter elements. The experimental cross section data currently available for large angle scattering of 4He from the light elements (4 I2 I 20) for incident laboratory energies from 1.5 to 10 MeV have been reviewed by Leavitt ad McIntyre (058). A theoretical model which predicts the incident ion energies a t which elastic backscattering cross sections will begin to deviate from their Rutherford values has been presented by Bozoian (059).The model, which is parameterized with two nuclear constants, is based u on classical scattering in the presence of combined Coulom! and weakly perturbing nuclear fields. The model is in good a eement with the experimental data for proton, helium, anrlithium projectile beams. As an example of the power of RBS in materials analysis, we note here the work of Rehn et al. (060-065) on high T, superconductors. In a series of ion channeling measurements, they tracked the temperature dependence of the thermal vibrations in a variety of 1-2-3 superconductors. Their

9

10R

ANALYTICAL CHEMISTRY, VOL. 84, NO. 12, JUNE 15, 1992

measurements revealed a substantially stronger than normal temperature dependence for the Cu-0 atom vibrations and an abrupt change in displacements in the a-b plane of the Cu and 0 atoms at the superconducting transition temperature T,. They conclude that the large magnitude of the vibrational changes found for the Cu-0 rows across T, indicates that the atoms in these rows become strongly coupled in the superconducting state. 3. Other Nuclear Reaction Analysis (NRA) Techniques. Two additional ion-beam-induced nuclear reactions that are commonly used for elemental analysis, aside from CPAA which is discussed in Section C, are charged-particle emission and resonant-charged-particle reactions. These NRA techniques are most frequently used in the analysis of light elements. More specifically, these two techniques are generally the method of choice when one is interested in obtaining the depth profile distribution of light elements. References to specific applications of these NRA techniques are given in Table IX. 4. Nuclear Microprobes. The nuclear microprobe is a powerful analytical tool that has taken its place alongside the electron and laser microprobes; application of nuclear microprobes to a variety of research problems (see Table has become routine. General reviews of the application of nuclear microprobes can be found in refs A65-A68. Descriptions of specific microprobe facilities are given in refs 0103-0107. The application of nuclear micro robes to the field of biomedicine is reviewed by Lindh (0108f while external micro-ion-beam analysis is reviewed by Doyle et al. (0109). A new technique for facilitatin the focusing of nuclear microprobe ion beams is presented %ySwietlicki et al. (0110). The method is based on the visual observation of the pattern created when the ion beam first passes through a copper grid with a grid period of 12.7 pm and then impinges on a scintillating screen. In addition to aiding the operator in the focusing of the beam, the generated patterns provide information about the quality of the ion optics. In a novel approach, Pallon and Kristiansson (0111)have investigated the use of the ' L i ( ~ , a ) ~ Hreaction e for forming a sharper contrast image in the proton-microprobe analysis of thin biological samples. The target thickness is monitored by measurin the total energy change when the two a-particles are detectetin coincidence with each other. A sharper contrast image is produced because the energy loss of a-particles is higher than that of protons. The sensitivity of the method was estimated to be better than 20 pg/cm2. One major concern in the application of nuclear microprobes is the effect of the high current density of the beam on the sample. Both Themner (0112) and Cholewa et al. (0113)have investigated the changes in organic samples when they are irradiated with microbeams. The influences of the scanning frequency, sample temperature, and sample thickness on the mass loss from the sample are presented.

x)

E. ISOTOPE DILUTION ANALYSIS (IDA) As noted in our previous reviews, radioimmunoassay (RIA) and various related techniques, such as radioreceptor or ligand-binding assays, now dominate the IDA literature. The unique specificity of antibodies and the high selectivity of RIA'S has led to wides read use of these methods in medicine and biology. Lutz anfco-workers (El)have reported a computer-controlled device to facilitate studies of the kinetics of ligand-binding assays, while Venturino et al. (E2) have described a simplified competition data analysis procedure for radioligand specific activity determination. Amador and Hodges (E3) have desi ed two sets of programs for the analysis of data obtainegy RIA of radioreceptor assay, but these programs can be applied by virtually any immunoassay. In an interesting application, Fukal (E4) has examined the prospects for monitoring environmental pollutants with radioimmunoanalytical methods. In Section A, we have recommended several general reviews (A70-A75), but a more detailed discussion of the myriad of applications of RIA is not possible in this review. We have not considered stable isoto dilution analysis here, but are pleased to recommend tE review on "Atomic Mass Spectrometry" in this issue to the interested reader. In an engaging combination of stable isotope dilution with radioanalytical determination, Van Wouwe et al. (E5)have used neutron activation analysis for determining the isotopic

NUCLEAR AND RADIOCHEMICAL ANALYSIS

ratios of Zn in low birth weight infants. The &Zn/&Zn y-ray photopeak ratios were measured in blood plasma to indicate the degree of dilution of enriched dietary Zn over the time interval with Zn that was present in the body. A number of substoichiometric determinations of various metals-e.g., ref E6-have been reported.

F. DIRECT COUNTING OF NATURAL AND LONG-LIVED RADIONUCLIDES The counting of natural and long-lived radionuclides finds considerable application in the field of environmentalresearch, and a bibliographical collection of these papers is re ularly published in the Journal of Radioanalytical and A h e a r Chemistry. Galloway (FI)has developed a simple method of correcting for the variation of sample thickness in the determination of the activity of environmental samples by y-ray spectrometry. Y amato (F2) has described radiochemical separation techni ues for the determination of low-level artificial radionucliles in marine samples, and Rosner et al. (F3) have performed a simultaneous radiochemical determination of plutonium, strontium, uranium and iron radionuclides in atmospheric deposition and aerosol samples. Harvey and Lovett (F4)have focused on the identification and control of contamination, interference, and other errors in low-level radionuclide analysis and the threat they pose to the reliability of analytical data. The pure B emitter T3r has received special attention, and several procedures for the determination of this radionuclide in milk (F5-F7) have been reported. The ap lication of an automatic radioactive strontium (both 89SranfWSr)analyzer to environmental samples has been described by Kawamura and co-workers (F8). Rauret et al. (F9) have sought to optimize the counting conditions for the measurement of radiostrontium or tritium, another pure p emitter, by li uid scintillation counting. Zeng et al. (FIO)have develope an analyais method for tritium in seawater based on concentration by electrolysis and report tritium recoveries of around 80%. The heavy elements in the environment also receive considerable attention and can be determined by a variety of counting procedures. Stewart (FII)has reported the determination of z2eRaand uranium in fish by a spectroscopy without electrodeposition. Galloway (F12) has elaborated on the advantages of determining uranium and thorium series content of natural samples by a-@ coincidence counting. Nevissi (FI3)has described rocedures for the radiochemical separation of 210pb,%i, a n i 210Poin environmental samples with quantification by a-and f-countin and has explained in these samples quantitatively the growth of 21 Bi and following collection. As examples of direct countin of large samples, we s the studies of natural radionuclifes in building materi&8% and the whole-body counting of @K(FI5). In other interesting applications of direct counting, C o@ ‘ (F16-F18),lszEu (FIS), and 32P(FI8)activities induced in structural materials by neutrons from the Hiroshima bomb have been determined.

1

21ho

G. TRANSMISSION, ABSORPTION, AND SCATTERING METHODS In this section, we present analyses based on transmission, attenuation, or scattering reactions, primarily of neutrons and y-rays. These are generally bulk analyses, and routine applications to on-line or flow analyses have become quite common (A78-A79). Perhaps the most widely publicized application of these methods is their use in detecting explosives or narcotics in airport luggage by neutron and y-ray scattering or transmission (A33, GI). f i e tomographic systems based on these reactions are promising, a successful analysis system has et to be placed in routine operation. Gordon and Peters ($2) have used the associated-particle method for time gating the acquisition of prompt y-rays following the inelastic scattering of fast neutrons-i.e., the (n,n’y) reaction-in bulk measurements. The material to be anal zed is probed with the electronically collimated and timeB beam of fast 14-MeV neutrons which penetrates 10-20 cm in most solids, and the y-rays produced in the interrogated volume are detected and analyzed tomographically. Measurements with the (n,n’y) reaction have been performed with 14-MeV neutrons on the torso section of a Bush

phantom by Sutcliffe et al. (G3)who examined the feasibility of measuring the major soft tissue elements of the human body to high precision for lower dose than has been administered in in vivo neutron activation analysis measurements. Kacperek and co-workers (B403) have used inelastic scattering reactions with a pulsed beam of 4.8-MeV neutrons and a shielded high-purity germanium y-ray detector to measure the sensitivities for ei ht elements (F, Na, Mg, Si, P, Fe, Cu, and Zn) in tibia andgliver phantoms. They suggest that inelastic neutron scattering might be better suited for “partial-body”analyses, where the organs or tissues of interest are relatively small and have little overlying tissue. The nondestructive analysis of bulk materials by y-ray backscatterin has been reported by a number of authors, e. ., refs G4 and 85, and the merits of dual-energy y-ray baciscattering (G6)or transmission (G7) measurements have been noted. Respaldiza et al. (G8)have developed a method that combines PIXE and X-ray fluorescence measurements, near-surface techniques, with y-ray absorption for bulk analysis of archaeological bronzes. Pair production methods have been employed to measure the Fe content of iron ore on conveyor belts (G9) and the ash content of coal (GIO). In a rare example of analysis with p particles, Vulikaj (GII) has used simultaneous transmission and backscattering of @-radiationfor the analysis of hydrogen, carbon, and oxygen in organic compounds.

H. RADIOACTIVE TRACERS A survey of the literature clearly reflects the fact that radioactive tracers, hereafter referred to simply as tracers, are a powerful anal ical tool routinely used by researchers to investigate rob ems in a variety of areas. In fact, tracers are in such wigspread use that a full consideration of the extensive literature associated with them is clearly beyond the scope of this work. With this in mind, we begin our discusion of tracers by directing the interested reader to more specialized reviews of the area In the biological sciences, a general review of the use of tracers is given by Filthuth (A81),a detailed review on the use of multiple tracers in quantitative autoradiography is provided by Lear (HI),and a detailed review on the use of tracers in the sequencing of glycoprotein ohgosaccharides is given by Varki (H2). In the.medical field, the use of tracers as imaging agents has been discussed in several tutorial review articles. Specific areas include scinti raphic imaging agents (H3),myocardial imaging agents (H4,l55) and spleen imaging agents (H6). In environmental sciences, the use of tracers to study man-made radionuclides at low environmental concentrations is reviewed by Harvey and Lovett (A82). And finally, the application of element-specifictracer analyses to study adsorption kinetics and transport phenomena with special emphasis on the area of semiconductor research is reviewed by Flachowsky et al. (H7). A critical step in most tracer studies is the synthesis and labeling of the tracer compound. The labeled compound must be stable in the system being investigated and the addition of the label must not alter the ability of the compound to target a s ecific molecule or site. One area that is receiving consideratle attention is the production of labeled proteins and peptides. A new method for labeling proteins with sB”Tc is described by Blok et al. (H8).The immunoreactivity of monoclonal antibodies after radiolabeling with this method was demonstrated by the radioimmunoimaging of thrombi with a 99mTc-labeledanti-fibrin monoclonal antibod . Similarly, new procedures for radiolabeling peptides with 9C (H9), lZ5I(HIO-HII), and tritium ( H I I ) have been published. A second area of tracer synthesis research which is very active is the development of new radiotracer imaging agents. Examples include the synthesis and evaluation of a new radiotracer for mapping the sympathetic nerves of the heart (HI2) and the radioiodination of analogues of a calichemicin constituent as a possible brain imaging agent (HI3). Selected publications on the applications of tracers are resented in Table XI. This list is not meant to be exhaustive ut should provide the reader with an overview of recent radiotracer work. It was clear from a review of the literature that the most frequent use of tracers is in the biological and medical sciences. One novel tracer application was the use of radioactive labels to determine the sex of degraded DNA samples from blood stains. Yokoi and Sagisaka ( H I 4 ) report that the test enabled reliable and sensitive sex determination

yt

E

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

11R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

Table

XI. Selected Applications of Radioactive Tracers tracer

application

3H-scopolamine 3H-acetic anhydride 67Cu-PTSM derivatives lZ6I-albumin 14C-fructooligosaccharides 14C- and 3H-olvanil 14C-and 3H-palmitate “C-glucose and 3H-FDG “C-lactate and 3H-glucose 3H-noradrenaline 36S-methionine 1261-deoxyuridine W o , ‘Wu, 75Se, 65Zn 76As &Zn “Mn 141,144Ce 96Zr 96Nb 103R; ’ ’

kinetics of receptor binding quantification of membrane lipids brain, heart, kidney blood flow albumin transport sugar metabolism

H15 H16 H17 H18 H19

olvanil metabolism fatty acid metabolism glucose metabolism (brain) formation of plasma lactate

H20 H21 H22 H23

noradrenaline kinetics protein production incorporation of IdUrd in DNA optimization of liver decompn. As diffusion in silicon zinc electrode shape changes Mn(I1) solvent extraction nuclear accident risk analysis

H24-26 H27 H28 H29

nuclear accident risk analysis

H34

‘WS

ref

H30 H31 H32 H33

from blood or dried blood stains greater than 20 years old. The radioactive technique requires less than 1microliter of blood or one 0.5-cm-long blood-stained cotton fabric thread and is 30-50 times more sensitive than the (nonradioactive) photobiotin labeling method.

I. ISOTOPIC DATING METHODS We recommend the review in this issue on “Atomic Mass Spectrometry” and the Proceedings of the Fifth International

Conference on Accelerator Mass Spectrometry held in Paris, France, April 23-27, 1990, (A83) to those interested in accelerator-based dating methods. With the development of accelerator mass spectrometry (AMs)and laser mass analysis techniques, the use of conventional dating methods has declined. New applications of conventional dating methods continue to emer e, albeit at a reduced rate. Stauffer (A84) fas recently reviewed the dating of ice and determined that radioactive isotopes of gases which attained an equilibrium concentration in the atmosphere and were then trapped in ice are more suitable for age determinations than aerosol particles trapped in the ice. Ruffet et al. (11) have compared laser probe 4oAr/39Ardating of small samples with conventional methods and were able to explain the ducordant results. Sarkar (12) has reported the interlaboratory comparisons for four K-Ar dating standards. Joshi and Shukla (13) have derived the basic formulations for 210Pbdatin of sediments from fundamental considerations, while Joshi $14) has examined the common analytical errors in the radiodating of recent sediments.

J. STANDARDS FOR ELEMENTAL ANALYSIS Many of the aforementioned analytical techniques use a comparative method for quantification in which the signal for one or more elements in an unknown is compared to that from a standard. Because the use of standards is one of the most critical factors in these analyses, we devote a section of this article to a discussion of the standards that are used for nuclear and radiochemical elemental analysis. A general discussion of the use of certified reference materials in INAA is provided by Guinn and Gavrilas (A86),while Stacchini et al. ( A 8 3 review the criteria for reference value assessment of elements in human tissues. One compilation that the reader should find especially helpful is the Proceedings of the Fourth

Table XII. Selected Publications Relating t o Elemental R e f e r‘ence S t a n d a r d s reference material Beech leaves-100 Bowen’s kale

BCR CRM 274 CII vegetal samples IAEA A-11 milk powder IAEA A-13 animal blood IAEA H-4 animal muscle IAEA H-5 animal bone IAEA wheat flour IAEA bovine liver IAEA H-8 horse kidney IAEA MA-A-2 fish flesh

LUTS-1lobster hepatopancreas NIES 5 human hair NIES 6 mussel tissue

analysis method INAA RNAA RNAA RNAA PGAA RNAA INAA RNAA NAAJPAGE CINAA RNAA CINAA PGAA INAA INAA RNAA CINAA INAA PGAA INAA

INAA INAA PGAA INAA NIES 7 tea leaves PGAA INAA NIES 9 sargasso PGAA INAA NIES 10 rice flour NIES 11 fish tissue INAA NIST SRM 1549 milk powder RNAA PGAA NIST SRM 1566 oyster tissue CINAA PGAA CINAA NIST SRM 1567 wheat flour NAA NIST SRM 1568 rice flour RNAA NAA PGAA NIST SRM 1571 orchard leaves INAA NAA NIST SRM 1572 citrus leaves INAA RNAA NAA PGAA 12R

elements determined Mg

Sn Hg, Se

Mo, W B many many many

P Se V Se B many many Mo, W Se many B many many many B many B many B many many As B Se B Se As Hg, Se Ai B many

cu

many REE As B

ref

516 B367 B60 B371 B379

reference material NIST SRM 1573 tomato leaves NIST SRM 1577A bovine liver

58

522 58 B324 B220 520 B220 B379 521 521 B371 B219 517-18 B379 515 512 512 B379 512 B379 512,523 B379 512-13 510 B367 B379 B219 B379 B220 B240 B60 B240 B379 514 B171 514,517-18 B286 B240 B379

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

NIST SRM 1572 tea leaves NIST RM 8431A mixed diet

analysis method INAA NAA PGAA RNAA RNAA RNAA RNAA NAA CIPiAA NAA INAA PGAA

elements determined many As B many As, Sb Sn Hg, Se cu Se As

NIST SRM 1845 egg powder NIST SRM 1941 marine sediment NIST SRM 1974 mussel tissue Spruce Needles-101 Versieck human serum Egyptian phosphate S1, S2, S3 GSJ JB-1 basalt GSJ JG-1 granodiorite IAEA soil-5 IAEA soil-7 IAEA SL-3 lake sediment NIST SRM 98 plastic clay NIST SRM 697 Dominican bauxite NIST SRM 69B Arkansas bauxite NIST SRM 1633 fly ash NIST SRM 1645 river sediment NIES 8 vehicle exhaust particles UNS-SpS glass sand USGS BCR-1 basalt

USGS G-2 granite USGS GSP-1 branodiorite USGS PCC-1 peridotite

ref

514,517 B240 B379 58 ~~

Jll B367 B60 B171 B219 B240 B30 B379-380 B324

PGAA INAA INAA INAA NAA RNAA RNAA NAA FNAA INAA FNAA INAA INAA NAA INAA INAA INAA INAA INAA INAA IPAA INAA FNAA INAA NAA FNAA INAA FNAA RNAA

B379 53 52 516 B368 B367 519-20 531 B425 525 B425 528-29 J18,527-29 526 532 530 530 B80 517-18 512 524 533 B425 525 B18 B425 525 B425 B343 ~~

many REE REE

NUCLEAR AND RADIOCHEMICAL ANALYSIS

International Sym osium on Biological and Environmental Reference Mate& ( J I ) . Reference materials (RMs) provide laboratories with the means of evaluating existing analytical techniques, studying the effectiveness of new tschniquea or modifications to existing techniques, and comparing results between different laboratories. Nuclear and radiochemical analyses continue to play a key role in the development and certification of RMs. Neutron activation analysis was used to certify the m 'or and trace elements in two new NIST SRM~,frozen muss1 tissue SRM 1974 (J2) and marine sediment SRM 1941 (J3),and INAA was used in the homogeneity tests and certification analysis of a new Czechoslovakian (J4)coal fly ash RM. The iodine content of the RM Kentucky Tobacco 2RI and two new candidate RMs, oriental tobacco leaves and Virginia tobacco leaves, was determined by RNAA (B361).The production of thin-layer RMs for ion beam anal sis is described by Watjen et al. (J5) and the development oJa new AI-Au d o RM for use as a com arator in the lzo standardization oHNAA is described by fngelbrecht (J6).For existing reference materials, CNAA was used to investigate the homo eneity of Se in NIST wheat flour, Chinese hair,IAEA animaf muscle, and IAEA animal blood (B220).An interlaboratory comparison was made of the K-Ar isotope dating of four standards: Mica-Mg, Mica-Fe, MO-40, and A-89 (12) and of the Cd content in the RM mollusk T. combeii (J7). A listing of other selected publications that report analytical data for RMs is presented in Table XII.

K. INSTRUMENTATION While detectors have continued to increase in size and versatility, and data ac uisition instrumentation is constantly being improved, it is(aifficu1t to point to any exceptional advances in instrumentation. Several authors (e.g., refs B239-B240 and K1) have reported on the advantages of usin Compton su presaion spectrometers for y-ray detection, an! Wormalde (f2) has described a system which can be operated usin pair spectrometry and Compton-suppression modes. Simiarly, there are several re orts (K3,K4) of automated et al. (K5) have developed y-ray spectrometrysystems. S& a system for the instrumental correction of time-dependent counting losses in high rate y-ray s ectrometry, and Doerfel et al. (K6) have described a pseuzorandom pulser for the correction of counting losses in a variety of radiation measurements. A compact arrangement of electronic and material shielding in conjunction with a BGO detector has been used to improve hydro en sensitivities in the 15Nprofiling (015).Lindstrom et al. have optimized the shielding for a low-background y-ray laborator and have described the various sources of background raJation. ibilitiea of rforming spectroscopic measurements with si icon PIN diogdetectors at room temperature have been investi ated, and good performance with electrons and a-particles fK8) and with heavy ions (053) is observed Passivated ion-implanted detectors (K9)and liquid scintil: lation counting with pulse-shape analysis (KIO) have been applied for a-counting of the actinides. L. DATA ANALYSIS AND COMPUTATIONAL METHODS In this section we attempt to present advances in data analysis and computation that have not been covered in previous discussions or those which may be of general utility. A number of automatic data ac uisition and anal sis systems for activation analysis are av&ble (LI-L3),an2Jaegers and Landsberger (La)have developed a versatile PC computer code to determine the self-absorption fractions of y-rays in high-Z materials. Heimlich et al. (L5)have modified GAMANAL, the well-known y-ray spectrum anal sis rogram, to operate on a microcomputer, while Gunnic an Ruhter (U) have developed a y-ray spectrum analysis code specifically for determining plutonium isotopic abundances. A data management system, designed explicitly for a data bank of y-spectrometry measurements, has been described (L7). Pinault (L8)has examined the use of new spectral analysis methods in the deconvolution of y-ray spectra, while Kennedy (L9)has evaluated and compared various photopeak integration methods.

P B

Vizlelethy (LIO) has written a "RUMP:like" code for per-

sonal com uters for simulating and evaluatmg nuclear reaction

spectra. A)code implementingthe stochastic theory of energy loss in matter has been developed by Vickridge and Amsel (057,L I I ) who su gest that this provides an accurate computational methof for straggling calculations and for the simulation of excitation curves obtained in narrow-resonance depth profilin Zhmodik et al. (LI2)have exploited image processing tecfikques for interpreting activation autoradiograms of gold ores.

M. CONCLUSION Once again, a t the end of what has become a biennial project, we must admit our concern that many praiseworthy advances in nuclear and radiochemical analysis have been omitted from this review-through oversi ht or because of space limitations. While we have been a%le to refine our computerized literature searching techniques with each review, it is also clear that some areas are inadequately covered. We have always encour ed our readers to contact us with suggestions and, to ouxenefit, many have. We also reiterate our desire to receive reprints from those who are aware of work that will be of interest to our readers. ACKNOWLEDGMENT We thank Maggie Johnson for lending her expertise in the computer literature searching process and June Smith for organizing and producing the bibliography. Their cooperation and patience are invaluable and unending. We also acknowledge the assistance of Michael A. Deibel, David P. DiPrete, Mark A. Lovell, Daniel J. Van Dalsem, Michelle Savage, and Amy Wong in proofreading the manuscript. This work was sup orted in part by the Department of Chemistry and the Gra&ate School of the University of Kentucky. LITERATURE CITED BOOKS AND REVIEWS

(Al) Ehmann, W. D.; Vance, D. E. Radhhemlstry and Nuclear Methods of Analysis; Wiley: New York. 1991; 531 pp. (A2) Tolgyessy, J.; Kyrs, M. RadioanalyHcal Chemistry, Vol. 1 and 2 ; Ellls Horwocd Ltd.: Chichester, UK, 1989; 354 498 pp. (A3) Nuclear Technlques In the Exploration and Expb&tion of Energy and Mineral Resources; IAEA: Vienna, 1991; 627 pp. (A4) Das, H. A,; Faanhof, A.; Van der Sloot, H. A. Radioanal)rsls in ae0chemlsby; Elsevler: Amsterdam, Netherlands, 1989 482 pp. (A5) Actlwatbn Analysis, Vol. I and I I ; Alfassi, 2. 8.; Ed.; CRC Press: Boca Raton. FL. 1989; 176 496 pp. (A8) Parry, S. J.; Actiwatbn Spectrometry in Chemical Analysls; Wiley: New York, 1991; 243 pp. (A7) Komarov, F. F.; Kumakhov, M. A,; Tashlykov, I.S.; Non-desbucrlve Ion Beam Analysk? of Surfaces; Gordon and Breach: New York, 1990; 231 pp. (A8) Radloactiw@ Measurements;Mann, W. B., Rytz. A., Spernol, A,, Eds.; Pergamon: Oxford, UK, 1991; c.220 pp. (A9) Radiation and Radioactlwlty on Earth and Beyond; DraganiE, I.V., DraganiE, 2 . D., Adloff, J.-P., Eds.; CRC Press: Boca Raton, FL. 1989; 329 pp. (AlO) Eisenbud, M. "Environmental Radiochemistry" I n Encycbpedia of Physlcal Science and Technology: 1990 Yearbook; Meyers, R. A., Ed.; Academic Press: San Dlego, CA, 1990 651 pp. (A11) QuMebook on RadioisotqDe Tracers in Industry-Technical Report Serles No. 316; IAEA: Vienna, 1990; 62 pp. (A12) Modern methods for Separatbn and Determlnatkm of Radioactive f l e ments : Cdlection of Scientific Papers (SowemennyeMet@ Razdelen&a i Opredeknlya Radioaktivnykh Elementow: Sbornlk Nauchnykh Trudow ); Myasoedov, B. F., Davydov, A. V., Eds.: Nauka: Moscow, USSR, 1989; 311 pp [CA 112(18): 171339~1. (A13) Isotopes: Essential Chemistry and Applications; Jones, J. R., Ed.; CRC Press: Boca Raton, FL, 1988; 270 pp. (A14) Seaborg, G. T.; Loveland, W. D. The Elements Beyond Uranlum; WC ley: New York, 1990; 359 pp. (A15) hoceedlngs of the Robert A . Welch Foundation Conference on Chemical Research XXXIV. Fifty Years with Transuranium Elements; Welch Foundation: Houston, TX. 1990; 479 pp. (A16) Ehmann, W. D.; Robertson, J. D.; Yates, S. W. Anal. Chem. 1990, 62 (12), 50R-70R. (A17) IUPAC Commlsslon on Radiochemistryand Nuclear Technlques; Anal. Chem. Div., IUPAC. Pure Appl. Chem. 1991, 63 (9), 1269-306. (A18) Suzuki, N. Top. Cur. Chem. 1990, 757, 35-55. (A19) Mattson, S.; Alpsten. M.; Boerjesson, J.; Jonson, R.; Larsson, L.; Toelli, J. Radloblol., Radiother. 1990, 37 (2), 203-7. (A20) Heydorn, K. Fresenlus. J . Anal. Chem. 1990, 337 (5), 498-502. (A21) Bode. P. J. Trace Microprobe Tech. 1890, 8(1-2). 139-54. (A22) Lyon, W. S. J . Radioanal. Nuci. Chem. 1990, 140 (l), 205-14. (A23) Tlan, W. J . Radioanal. Nuci. Chem. 1991, 151 (l), 7-40. (A24) Woittiez, J. R. W. Comm. Eur. Communities, [Rep] EUR, EUR 12522, HFR Petten 1989, 315-32.

+

+

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

13R

NUCLEAR AND RADIOCHEMICAL ANALYSIS (A25) Heydorn, K. Roc. - Meet. Nucl. Anal. Methods, 4th, Volume A ; Nlese, S., Ed.; Cent. Inst. Nucl. Res. Rossendorf, Acad. Scl. GDR: Dresden, Ger. Dem. Rep., 1987; 33-44 pp. (A26) -1, Z. /-bHuaxue Yu Fangshe Huaxoe 1990, 72 (l), 26-39 [CA 7 73 (22): 203932eI. (A271 Dams, R. Fresenlus. J. Anal. Chem. 1990, 337(5), 492-7. (A28) Lyon, W. S. JNMM 1989, 78 (l), 66-70. (A29) De Bruin, M. C t ” . Anal. (Wars8w) 1990, 35 (1-3), 99-107. (A30) Qulnn, V. P. Bbl. Trace Elem. Res. 1990, 26-27, 1-7. (A31) Atrashkevlch, V. V.; Valvads, Ye. K.; Kolotov, V. P.; Flllppov, V. V. Zh.Anal. Khim. 1990, 45(1), 5-28 [CA 772(12): 22871121. (A321 Vourvopouios, G. Nucl. Instrum. Methods Phys. Res. 1991, B56857 (Pt. 2), 917-20. (A33) Grcdzins. L. Nucl. Instrum, Methods Phys Res. 1991, 856-857 (Pt. 2), 829-33. (A34) Herbottle. G. Top. Curr. Chem. 1990, 757, 57-91. (A39 Ohta, N. Yukagaku 1989, 38(10), 905-12 [CA 772 (13): 18355kl. (A36) Behne, D.; Scheld, S.; Hllmert, H.; Gessner, H.;Gawllk, D.; Kyrlakowulos. A. Bbl. Trace Elem. Res. 1990. 26-27. 439-47. (A37) Ward, N. I.; Abou-Shakra, F. R.; Durrant, S. F: Blol. Trace Elem. Res. 1990. 26-27. 177-87. (A38) Michel, R.; Loer, F.; Noke, M.; Reich, M.; Ziikens, J. NATO ASI Ser., ~ e rA. 1988, 158.59-75. (A39) Klesl, W. Roc. Meet. Nucl. Anal. Methods, 4th,Volume 7 ; Nlese, S., Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Scl. GDR: Dresden, Germ. Dem. Rep., 1987; 35-9 pp. (A40) Vandecasteele, C.; Dams, R. Chem. Mag. (Ghent) 1888, 74 (9), 9-10, 13-15 [CA 7 7 7 (26): 246807uI. (A41) Alfassl, 2. 8. J . Chln. Chem. Soc. (Talpel) 1990, 37 (2), 101-16. (A42) Allan, A.; Sansonl, 8. Spez. Ber. Kernforschungsankge Juellch, JueCSpez-475, 1988; 99 pp. (A43) Bode, P.; Wokerbeek, H. T. J . Trace Microprobe Tech 1990, 87 (1-2), 121-38. (A44) Rosenberg, R. J.; Braun, T.; Zsindely, 2 . Nucl. Tech. f x p b . Exploit. EnergyMlner. Resow., Roc. Int. Sym., Meeting Date 7990, IAEA: VIenna, Austria, 1991; 501-20 pp. (A45) Orvlnl. E. J. Coel Qual. 1989, 8 (3-4), 88-95. (A46) Sowerby, 8. D. Nucl. Tech. fxpbr. Expb/t. Energy Miner. Resow., Roc. Int. Symp., Meetlng Date 7990; IAEA: Vienna, Austria, 1991; 3-31 pp. (A47) Hoffman, E. L. Nucl. Oeophys. 1991, 5(1-2), 131-6. (A48) Gomez, G. H.; Duque 0. J. Nucfeares (Bogota) 1988, 3 (5-6), 19-23 [ CA 7 72 (20): 182950~1. (A49) Digenis, G. A.; Sandefer, E. Crlt. Ref. mer. Drug Carrier Syst. 1991, 7 (4), 309-45. (A50) Zhan , W. Yuanzlneng Kexue Jlshu 1989, 23 (4), 78-83 [CA 7 73 (20): 18375008. (A51) Kt&ra, J. Radblsotopy 1989, 30 (3-4), 218-31 [CA 775 (18): 196832hl. (A52) Makilmov. 0. A.; Plmenov, V. G. Vysokochlst. Veshchestva. 1990, (3), 27-46 [CA 773(12): 108123h]. (A53) Karpov, Yu. A.; Shchulepnlkov, M. N.; Kormiiksyn. D. V.; Flrsov, V. I. Vysokochlst. Veshchestva, 1991, ( 4 ) , 31-7 [CA 775 (18): 197220~1. (A54) Krlvan, V. Nachr. Chem., Tech. Lab. 1891, 39 (5), 536, 538-40, 542-3 [CA 775(8): 842531. (A55) Plilay, A. E.; Pelsach, M. J . Radloanal. Nucl. Chem. 1991, 753 (2), 75-84. (A56) Blondiaux, 0.; Debrun, J. L. Roc. High Energy Heavy Ion Beams Mater. Anal. Workshop, Meetlng Date 7989; Tesmer, J. R., Ed.; Mater. Res. Soc.: Plttsburgh, PA, 1990; 221-33 pp. (A57) Yamada. K. Toyota Chuo Kenkyusho RBD Rebyu 1990, 25 (2), 55-66 [CA 7 74 (6): 54855~1. (A58) Hoste, J.; Vandecasteele, C. Blol. Trace Elem. Res. 1990, 26-27, 119-31. (A59) Hoste, J.; Vandecasteele, C. Nucl. Instrum. Methods Phys. Res ., vo/ume mte 1988 1089, 840-841 (2). 1182-8. (A601 Hoste, J.; Vandecasteele, C.; Strljckmans, K. Roc. - Meet. Nucl. Anal. Methods, 4th, Volume 7; Nlese. S., Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1987; 10-33 pp. (A6l) Eifrlg, C. Schmbrungstechnlk 1989, 20 (7), 199-201 [CA 7 7 7 (22): 203592cl. (A62) Elchhorn, K.; Richter, E. ZfI-Mm. 1990, 757, 65-77 [CA 775 (8): 80383hl. (A63) Deny, T. E.; Madiba, C. C. P.; Harrls. P. E.; Sptts, R. A,; Sellschop, J. P. F. S . Afr. J . Phys. 1888, 72(1), 52c-57c. (A64) Valkovic, V.; Moschlnl, G. Nucl. Instrum. Methods Phys. Res. 1989, A280 (2-3), 459-69. (A651 Grime, G. W.; Wan, F. Nucl. Instrum. Methods Phys. Res. 1990, B50 (1-4), 197-207. (A66) Legge, G. J. F. Nucl. Instrum. Methods Phys. Res. 1989. 840-847 (l), 675-9. (A671 Tapper, U. A. S.; Malmqvist, K. G. Anal. Chem. 1991, 63(14), 715A725A. (A66) Codtson, J. A. Nucl. Instrum. Methods Phys. Res. 1991, B54(1-3), 433-40. (A69) Raisanen, J. Nucl. Instrum. Methods Phys. Res ., Volume Date 7988 1989. 840-84 7 , 638-42. (A70) Rehfeld, J. F.; Bardram. L.; Cantor, P.; Hlisted, L.; Johnsen, A. H. S a n d . J . Clln. Lab. Invest., Suppl. 1989, 49 (194), 41-4. (A71) Woestenborghs, R.; Geuens, I.; Lenolr, H.; Janssen, C.; Heykants, J. Methodol. Surv. Blochem. Anal. 1990, 20, 241-6. ZfI-MRt. 1989, 750, 133-50. Herzman, H. (A72) (A73) Vold, 8 . S. J . Chrom8togr. Llbr. 1990, 45A (Chromatogr. Mcdlf. Nucleosides, Pt. A), A317-A344.

.

-

-

14R

ANALYTICAL CHEMISTRY, VOL. 64,

NO. 12, JUNE 15, 1992

(A74) Cullleron, C. Y.; Forest, M. G. Nucl. A M . BM. 1990, 77(7), 661-6. (A79 Schnlttler, M.; Liebmann, C.; Opfermann, J. phemzk 1991. 46 (1). 2-8 [CA 774 (17): 156452~1. (A76) Yu, Y.; Salbu, 8.; Bjoemstad, H. E. J . Radkmnal. Nucl. Chem. 1991, 748 (1). 163-74. (A77) Ikeda. N. Nlppon Bunsekl Senta Koho 1990, 78, 2-1 1 [CA 7 73 (22): 199567~1. (A78) Clayton, C. 0.;Wormald, M. R.; Schweltzer, J. S. Nucl. Tech. EJ@Y. Expblt. Energy A”. Resow., Roc. Int. Symp ., Meeting Date 7990; IAEA: Vienna, Austria, 1991; 107-34 pp. (A79) Mathew. P. J. Nucl. Tech. Exp&r. ExpknY. Energy Mlner. Resow., Roc. Int. Symp., Meetlng Date 7990; IAEA: Vienna, Austria, 1991; 93-103 pp. (A8O) Warren, P. L. Anal. Roc. (London) 1990, 27(9), 242. (A81) Fllthuth, H. 0”.Anal. (N.Y.) 1990, 108, 167-63. (A82) Harvey, 8. R.; Lovelt, M. 8. Low-Level M a s . Man-Mde Rac#onuc l h s Environ ., Roc. Int Summer Sdr Znd, Mwlng Date 7880; Qarclaleon, M., Madwga, G., Eds.: Waid Scl.: Singapore, 1991; 217-38 pp. (A83) Roceedlngs of the Flfth Intemetknel Confwena, on Accdsralw Mass SpeCtrometrY; Andersen, H. H., Plaaux, S. T.. Eds., Nucl. hi”. ~ e l h o d smys. . Res. 1990, ~52(3,4),211-637. (A84) Stauffer. 8. Phys. Chem., EBlth &I. Res. Rep. 1989, 8, 123-39. (A85) Patchett, P. J. Rev. Mlnerel. 1889, 21, 25-44. (A86) Gulnn, V. P.; Gavrllas, M. Fresen/us. J . Anal. Chem. 1990, 338(4), 551-3. (A87) Stacchlni, A.; Coni, E.; Beccakni, E.; Fornard, L.; Alhnonti, A.; Bob, G. 8.; Crlstallinl, E.; Sabbloni. E.; Pietra, R.; Caroil, S. Ann. Ist. S u p c ~ . Sent& 1989. 25 (3), 379-84. (A88) Yoshlhara, K. Top. Cum. Chem. 1990, 757, 1-34. (A89) Cheng, K. L.; Jean, Y. C.; Luo. X. H. Crir. Rev. Anal. Chem. 1989, 27 (3), 209-24. (A90) Siivegh, K.; V a e s , A. J . Radioanal. Nucl. Chem. Letters 1990, 146 (4), 283-285.

.

..

NUCLEAR ACTIVATION METnODS

(81) Kesslssoglou. M.;MMsou, E.; MlsaeHdes, P.; Wolf, G. J . Trace Microprobe Tech. 1989, 7 (3), 195-202. (82) hila, M.; Keomley, G.; Rosner, G. J . Radioanal. Nucl. Chem. 1990, 747 (l), 7-16. (83) Bellid0 Bernedo, A. V. Dlss. Abstr. Int. B 7880 1989, 57 (2). 700. (84) Gunneweg, J.; Mommsen, H. Archawmeby 1990, 32(1), 7-18. (85) Heydorn, K.; Thuesen, 1. Chemom. Intell. Lab. Syst. 1989, 7 (1-2), 181-8. (88) Killkogiou, V.; Karayannis, M. I.; Qrlmenls, A. P. J . Radhnal. Nucl. C M . 1890, 747 (2). 347-55. (87) Rosslnl, I.; Trlpler, T.; Abbe, J. C.; Guevara, 8.;Tenorio, R. J . R a w nal. Nucl. Chem. 1991. 754 (3), 173-83. (88) Brlssaud, 1.; Chevalller, P.; Dardsnne, C.; Deschamps, N.; Frontler, J. P.; Gruel, K.; Taccoen, A.; Tarrats, A.; Wang, J. X. Nucl. Insbum. Methods Phys. Res., 1990, 849 (1-4), 305-8. (89) Hancock, R. 0. V.; Pavllsh, L. A.; Farquher, R. M.; Salloum, R.; Fox, W. A.; Wilson, G. C. Archaeomefry 1991, 33 (l), 69-86. (810) Hirai, S.; Maeda. K. Bunsekl Kagaku 1989, 38(12), 667-73 [CA 772 (5): 3497483. (811) Pernlcka, E.; bgemann, F.; Schmitt-Strecker, S.; (Mmanis, A. P. Max-Plenck-Inst. Kernphys., [Re .] MPI H, MPI H 7989 V 29, 1989; 70 pp [CA 773 (7): 58048qf. (812) Suzuki, S.; Hlral, S.; Hirano, Y. MuseSM Kogyo Da@aku Genshhyoku Kenkyusho Kenkyu Shoho , Volume Date 1990 1991, (17). 81-7 [ CA 7 75 (9): 207091u]. (813) Wayman, M. L. MASCA Res. Pap. Scl. Archaeol. 1989, 6 , 66-71. (814) De Paepe, P.; Moens, L.; Roos, P.; Waelkens, M. NATO AS1 Ser., SW. E 1988, 753, 389-96. (815) Dokmen, S.; Atasoy, H.; Ozblr, Y.; Tarcan, G. Nucl. Instrum. Methods Phys. Res.. 1991, B56-B57(Pt. 2), 915-16. (816) Grlmanis, A. P.; Vassllaki-Grlmanl, M. NATO ASI Ser., Ser. E 1988, 753, 275-81. (817) Lee, C.; Czae. M. 2.; Kim, S.; Kang, H. T.; Lee. J. D. Bull. Koraen Chem. Soc. 1990, 7 7 (5). 450-5. (818) Meloni. S.: Oddone. M.: Mello. E.: Monna. D. NATO A S I Ser.. Ser. E 1988, 753, 293-301. (819) Umezu, T.; Mural, M.; Mlki, M.; Kurata, Y. Nlppon S u k n GakkalshlBulletin of the Japanese Soclety of SclentNlc F/sheries 1991, 57 (6), 1115-1120. (820) K n a k R. M. Eur. J . Solid State Inorg. Chem. 1991, 28 (S), 379-382. (821) Augler, H.; Ronneau, C.; Roucoux, P.; Lion, R.; Charlent, 0. Mar. Bbl. (Berlin) 1991, 709 (2), 345-53. (822) Yamazaki, M.; Tanlzakl, Y.; Shlmokawa, T. Tokyo-toritso AIsotopu s w Kenkyusho Kenkyu~okoku1990, 7,67-86 [CA 774 (6): 49124eI. (823) Wood, C. M.; McDonald, D. 0.; Ingersoll, C. G.; Mount, D. R.; Johannsson, 0. E.; Landsberger, S.; Bergman, H. L. Can. J . Flsh. Aquet. SCl. 1990. 47 (E), 1593-603. (824) Wroblewskl, R.; Wroblewskl, J.; Lundstroem, H.;Edstroem, L.; Jansson, E. Scennlng Mlcrosc. 1989. 3 (2), 467-72. (825) Igbal, M. 2 . ; Abdul Qadlr, M. J. R 8 d h n d . Nucl. Chem. 1990. 745 (3), 189-95. (826) Iqbai. M. 2. Abdul Qadlr, M. J . RedlOen8l. Nucl. Chem. 1990, 744 (I), 34-45. (827) Szabo, A. S.; Sashln, I.L. Acta Agron. Hung. 1988, 37 (3-4), 209-13. (828) Oladipo, M. 0. A.; Rehman, F. Spectrosc. Lett. 1991, 24 (4), 577-87. (829) Wyttenbach, A.; Bajo, S.; Tobler, L. 8101. Trace Ebm. Res. 1990, 26-27, 213-21. (830) Saiki, M.; Vasconcelios, M. 8. A.; Sertle, J. A. A. Bbl. Trace Elem. Res. 1990, 26-27, 743-50.

-

-

NUCLEAR AND RADIOCHEMICAL ANALYSIS

(831) Umar, I. M.; Blackburn, R. J . Radioanal. Nucl. Chem. 1080, 732(1), 93-8. (832) Zayed, J.; Andre, P.; Kennedy, G. Water Air Sol/ Polluf. 1801, 55 (3-4),337-344. (833) Dick, A. Geochlm. Cosmochlm. Acta 1001, 55(7), 1827-1836. (834) Glover, D. M.; Hopke, P. K.; Vermette, S. J.; Landsberger, S.; Dauben, D. R. J . Alr Waste Manage. Assoc. 1091, 47 (3),294-305. (835) Greenberg, R. R. ASTM Spec. Tech. Pub/. 7052, 1000, 175-84. (836) Krivan, V.; Franek, M.; Baumann, H.; Pavei, J. Fresenlus. J. Anal. Chem. 1000, 338 (5), 583-7. (837) Lobo, K. K.; Tshlasheia, M. D.; Lumu, 8. M.; Matamba, K.; Ronneau, C. Bbl. Trace Elem. Res. 1000, 26-27,295-305. (838) Obrusnik, I.Chem. Anal. (Warsaw) 1000, 35 (1-3).221-35. (839) Pahra, R. P.; Munita, C. J. S.; Cunha, I.I.L.; Romano, J.; Alonso, C. D. Blol. Trace Elem. Res. 1000, 26-27. 231-42. (840) Wankhade, H. K.; Garg, A. N. Indian J. Environ. H k h . 1080. 37 (2), 125-130. (841) Wleslnger, 0.; Ismail, S. S. Hyperfine Interact. 1890, 57 (1-4), 2319-25. (842) Yoshizumi, K. Energy and Bulkllngs 1081, 76 (1-2),71 1-717. (843) Bode, P.; De Bruin, M.; Aalbers, T. G.; Meyer, P. J. Bid. Trace Elem. Res. 1090, 26-27,377-83. Raupach. D. C.; Sahadewan, K.; Shane, 8. S.; Rutzke. (844) Mumma, R. 0.; M.; Bache, C. A.; Gutenmann, W. H.; Lisk, D. J. Chemosphere 1001, 23 (3),391-395. Kim, A. P.; Simakhin, Yu. F.; Idrisov, Kh. Dokl. Akad. (845) Orestova, 1. I.; NeUk UZSSR 1088, (ll),21-3 [CA 774 (6): 4475913. (848) Ozyol, H. J. Radioanal. Nucl. Chem. 1000, 739 (2),339-46. (847) Aibedri, M. 8. H.; Aljobori, S. J. Radioanal. Nucl. Chem. 1801, 747 (2),235-241. (848) Arunachalam, J.; John, A.; Gangadharan, S. J . Radioanal. Nuci. Chem. 1001, 755(1),33-43. (849) Heaton, R. W.; Rahn, K. A.; Lowenthal. D. H. Atmos. Envlron. 1080, 24A (I),147-53. (850) Klkawada, Y.; Honda, T.; Oi, T.; Ossaka, T.; Kaklhana, H. J. Radioanal. N w l . Chem. 1901, 753 (5), 357-364. (851) Potin-Gautier, M.; Astruc, M.; Vermeulin, P. Analusis 1001, 79 (6), m57-m62 [CA 175(12): 125903~1. (852) Dletz, M. L. J . Radioanal. Nucl. Chem. 1800, 742(2),453-7. (853) Anita, F. P.; Vege, A.; Swarup, S.; Turel, 2. R. J . Radioanal. Nucl. Chem. 1090, 746(5), 311-21. (854) Fardy, J. J.; McOrlst, G. D.;Farrar, Y. J. J. Radioanal. Nucl. Chem. 1980, 733 (2),397-405. (855) Liu, S. M.; Chung, C.; Chuang. J. T.; Wang, C. F.; Aras, N. K. J. Radioanal. Nucl. Chem. 1001, 750 (2), 397-415. (858) Reis. M. F.; Hoizbecher, J.; Martinho, E.; Chatt, A. Blol. Trace Elem. Res. 1000, 26-27,629-35. (857) Itawl, R. K.; AIJobori, S. M.; Jalll, M.; Farhan, S. S.; Mheemeed, A,; Saaeed, K.; Ahmed, E. J. Radioanal. Nucl. Chem. 1001, 749(2),333-7. (858) Langenauer, M.; Kraehenbuehi, U. Chimia 1901, 45 (1/2),8-10 [CA 774 (19): 18392281. (859) Lin, L.; Wen, H. He Dianzixue Yu Tance Jishu 1000, 70 (2),117-21 [CA 773(5): 39156gl. (860) Maihara, V. A.; Vasconcellos, M. 8 . A. J . Radioanal. Nucl. Chem. 1080, 732 (2),329-37. (861) Mlzumoto, Y.; Ishikawa, T.; Kusakabe, T.; Katsurayama, K.; Iwata, S. Radlolsotopes 1080, 38 (12),509-12 [CA 772 (25): 234184~1. (862) Qureshi, I.H.; ZaMi. J. H.; Arif, M.; Fatima, I.Int. J . Environ. Anal. Chem. 1001, 43 (l),25-31. (863) Rajurkar, N. S.; Shah, N. P.; Purwhottam, J. Appl. Radiat. Isot. 1800, 47 (e), 579-81. (864) Rajurkar, N. S.;Bhamare, C. S. J. Radioanal. Nucl. Chem. 1091. 754

(e), 427-434.

(865) AI-Jobori, S. M.; Itawai, R. K.; Saad, A.; Shlhab, K. M.; Jaiii, M.; Farhen, S. S. J . Radioanal. Nucl. Chem. 1900, 744 (3),229-39. (868) Meng, M.; Ma, C.; Ding, W.; Zhu, X. He Huaxue Yu Fangshe Huaxue 1000, 72(3), 185-7 [CA 775(19): 202531~1. (867) Li, 2. Yuanzlneng Kexw Jlshu 1880, 23 (3), 1-7 [CA 772 (15):

133932hl. (868) PmS, S. J.; Kratochvii, 8. J. Forensic Sci. 1001. 36 (I),122-137. (869) Bakhterev, V. V.; Ryzhii, 8. P. Do&/. Akad. Nauk SSSR 1000, 374 (5), 1187-9 [CA 774(6): 46821~1. (870) Fardy, J. J.; McOrist, G. D.; Farrar, Y. J. J . Radloanal. Nuci. Chem. 1080, 733 (2),217-26. (871) Just, J.; Wischnewski, C.; Zwanziger, H. UmweitschutzUmwe#gestaitung 1080, (1).32-54 [CA 113 (10): 81823~ (872) Kunze, 8. Energletechnik (Leipzlg)1080, 40 (e), 295-8 {CA 773 (24):

.

217151mI. (873) Gerbish, S.;Kucher, A. M.; Leonhard, M.; Teterev, Yu. G. Isotopenpraxls 1000, 26 (lo),491-3 [CA 774 (14): 125603~1. (874) Provance, D. R.; Glascock, M. D.; Applin, K. R. J . Radioanal. Nucl. Chem. 1000, 740 (2),271-83. (875) Goeldner, R.; Maul, E.; Wagner, D. ZfI-Min. 1000, 767, 39-42 [CA 775 (4): 32375kl. (878) Mueller, U.; Loescher, 8.; OoeMner, R.; Rabe, W. Neue Bergbautech 1080, 79 (8). 231-3 [CA 7 7 7 (22): 198230bI. (877) Kizil’shtein, L. Ya.; Peretyat’ko, A. 0.; Gofen, 0. I. Litol. Poiezn. IskOp. 1080, (8). 29-38 [CA 773(12): 100577~1. (878) Mercer, G. E.; Fltzgerald, S.; Day, J.; Fiiby, R. H. Prepr. Pap.-Am. Chem. Soc., Dlv. Fuel Chem. 1081, 36 (3),1180-9. (879) Chai, C. A.; Ding, 2. G.; Fu. J. M.; Sheng, G. Y. J. Radloanal. Nuci. Chem. 1001, 757 (I),177-184. (880) Palmer, C. A. Energy Fuels 1800, 4 (9,436-9. (881) Koba, M.; Kaigara, T. Kyoto Dalgaku Genshiro Jik&ensho, [Tech. Rep.], KURRI-TR-337 1880,21 [CA 774 (16): 147544111],

(882) Lindstrom, D. J. Nuci. Inshum. Methods Phys. Res. 1000, A299 (1-3),584-8. (883) Holzbecher, J.; Ryan, D. E. J . Radioanal. Nucl. Chem. 1901, 757 (I), 185-90. (884) Niese, S.;Loos, G.; Gleisberg, 8.; Heibig, W. J. Radioanal. Nucl. Chem. 1080, 736(2),127-31. (885) Yuan, L.; Lin, Y.; Ouyang, 2. He Huaxue Yo Fangshe Huaxw 1888, 70 (4),226-31 [CA 7 7 7 (24): 224325hl. (886) Siegel. F. R.; Paguaga, A. S. J. Geochem. ExplcK. 1081. 47 (1-2),

169-180. (887) AMobori, S. M.; ACAtia, M. J.; Jalll, M.; Hussien, A. K. J . Radioanal. Nucl. Chem. 1080, 739 (l),31-8. (888) Tong, C.; Li, 0. He/lshu 1000. 73 (e), 494-7 [CA 774 (6): 549eOd]. (889) Gerler, J.; Schnier, C. Nucl. Geophys. 1080, 3 (l),41-8. (890) Junge, F.; Geisler. M.; Reuge, P. Proc.-Meet. Nucl. Anal. Methods. 4B, Volume 7; Niese. S.; Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1987; pp 225-30 [CA 773 (24): 223632kl. (891) Chai, 2.; Ma, S.; Zhao, Z.; Zhao, H.; Mao, X.; Ma, J.; Zhou, Y. Chin. Sci. Bull. 1080, 34 (lo),856-9. (892) Hall, G. E. M.; Vaive, J. E.; Coope, J. A.; Weiiand, E. F. J. Oeochem. Explor. 1888, 34 (2),157-71. (893) Batra, R. J.; Garg, A. N. J. Radioanal. Nucl. Chem. 1888, 729 (2), 335-342. (894) Hannington. M. D.; Gorton, M. P. Geostand. News/. 1081, 75 (I), 145-54. (895) Keedy, C. R.; Parson, L.; Shen, J. J . Radioanal. Nucl. Chem. 1080, 737 (3),191-9. (898) Munoz, L.; &as, N.; Thieck, M. Nucl. Tech. Explor. Exploit. Energy Miner. Resour., Proc. Int. Symp., Meetlng Date 7990; IAEA: Vienna, Austria, 1081; pp 585-9. (897)Nuchanong, T.; Lavin, 0. P.; Nlchol, I. J . Geochem. Explor. 1901, 40

(1-3).49-71. (898) Todorov, T. Terra Nova 1801, 3 (3),311-318. (899) Vaganov, P. A. Zap. Lenlngr. Gorn. Inst. im. G . V . P/e&hanova 1887, 7 7 7 , 97-103 [CA 172(10): 81134~1. (8100) Ward, C. 8. Nucl. Geophys. 1801, 5 (3),291-298. (8101) Rlzk, R. A. M.; Ashmawy, L. S.; Hussein, A. 2. N w l . Geophys. 1080, 3 (3).217-22. (8102) Khatoon, 1.; Turel, 2. R. J . Radloanal. Nucl. Chem. 1080, 744 (l), 57-82. (8103) Zovko, E.; Pujic, 2. J . Radioanal. Nucl. Chem. 1001, 154 (6), 385-370. (8104)Janczyszyn, J.; Wyszomirski, P. Nuci. Geophys, 1888, 3 (3),275-9. (8105)Dlm, L. A.; Adetunji, J.; Okujeni, C. D.; Elegba. S. 8.; Agaja, S. A. J . Radioanal. Nucl. Chem. 1001, 748 (l),145-53. (8106) Leeder. 0.;Mueiier, S.; Degering, D.; Unterricker, S.; Stoiz, W. Proc.-h4eet. Nocl. Anal. Mthod~, 4B, Volume 7; Niese, S., Ed.. Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1087; pp 270-8. (8107)Li, G.;Tong, C. J . Radioanal. Nucl. Chem. 1081, 747(2),383-70. (8108) Morishita, Y.; Sasakl, Y.; Kimura, K. Chishitsu Chosasho Geppo 1001, 42(3), 149-66 [CA 775(8): 75651qI. (8109)Stentoft, N.; Frykman, P.; Rasmussen, K. L.; Koch, C. J. W. Gedogie En MJnbouw 1081, 70 (2),115-128. (8110) Janczyszyn, J.; Wyszomirski, P.; Domanska, G. Nucl. Geophys. 1088, 3 (1).31-9. (8111) Wyszomirski, P.; Janczyszyn, J. Nucl. Geophys. 1801, 5 (1-2),

53-64. (8112) Minai, Y.; Ishii, T.; Nakamura, Y.; Wakita, H.; Tominaga, T. J . Radioanal. Nucl. Chem. 1000, 746 (6), 375-84. (8113) Minal, Y.; Ishii, T.; Tominaga, T. J. Radloanal. Nuci. Chem. 1088, 737 (4),299-308. (8114) MonteroGabrera, M. E.; Herrera-Peraza, E.; DlazRizo. 0.; Rod+

guez-Garcia, R. Nucl. Tech. Explor. Explolt. Energy Mlner. Resow., R o c . Int. symp., MeetingDate 7990; IAEA: Vienna, Austria, 1991;pp

521-8. (8115) Almerey, R.; Bowen, H. J. M. J. Radioanal. Nuci. Chem. 1001, 753 (3),221-234. (8116) Chang, P. S.;Lin, Y. M.; Glascock, M. D. Ho Tzu K ’ o Hsueh 1800, 27 (2),95-104. (8117)Krogner, K.; Niese, S.; Loos, G.; Werner, C. D. Isotopenpraxls 1080, 25 (I),37-9. (8118)Lewis, R. R.; Kramer, W. Zentralinst. Kernforsch.,Rossen&rfLkesden, [Ber.]ZfK 1800, Z~K-713. 71-2. (8119) Minal, Y.; Nakamura, Y.; Wakita, H.; Tominaga, T. J . Radioanal. Nucl. Chem. 1891, 754 (3),215-225. (8120) Pham, V. D. Nucl. Tech. Explor. Exploit. Energy Miner, Resow., R o c . Int. Symp., Meeting Date 7990; IAEA: Vienna, Austria, 1991;pp 547-55. (8121) Vasconcellos, M. 8. A.; Figueiredo, A. M. 0.; Marques, L. S.; Saiki, M.; Armelln, M. J. A. Nucl. Tech. Explor. Exploit. Energy Miner. Reswr ., Proc. Int. Symp., MeetingDate 7990; IAEA: Vienna, Austria, 1991;pp 597-608. (8122) Zhong, H.; Jiang, L.; Zeng, R.; Yang, X.; Hu, 0.; Yi, W.; Wang. D. Fenxi Ceshi Tongbao 1088. 8 (2).22-4 [CA 7 72 (12): 1 1 1059bl. (8123) Bajo. S.; Wyttenbach, A.; Tobler, L.; Conradin, H. J . Radioenel. N w l . Chem. 1888, 734 (l),181-91. (8124) Cosma, C.; Znamirovschi, C.; Saiagean, M.; Pantelica, A. stud. Unlv. Babes-Bolyai, Chem. 1088, 34 (2),23-7. (8125)Esser, K. 8.;Heimke, P. A.; Bockhelm, J. G. J. Envlron. Qual. 1801, 20 (2),492-496. (8128) Golchert, 8.; Landsberger, S.; Hopke, P. K. J. Radioanal. N w l . Chem. 1001, 748(2),319-337. ANALYTICAL CHEMISTRY, VOL. 64, NO.

12,JUNE 15, 1992

15R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

(8127) Hamroush, H. A.; Stanley, D. J. Episodes 1990. 73 (4), 264-269. (8128) Hancock, R. G. V.; Mahaney, W. C. J. Radloanal. Nucl. Chem. 1991, 748 (2), 285-294. (8129) Knaus, R. M. J. Radioanal. Nucl. Chem. 1991, 757 (l), 191-199. (8130) Koopmann, C.; FTange, A. Spechmhlm. Acta Part &At. Specfrosc. 1991, 46 (lo), 1395-1402. (8131) Minai, Y.; Tominaga, T. J. Radloanal. Nucl. Chem. 1989, 737 (5), 351-63. (8132) Ralurkar, N. S.; Bailari, P. R. Appl. Radiat. Isot. 1991, 42 (3), 275-8. (8133) Hail, G. E. M.; Bonham-Carter, G. F.; MacLaurin, A. I.; Baiiantyne, S. 8.Taianta 1990, 37(1), 135-55. (8134) Kennedy, G.; Hobelka, S. J. Radloanal. Nucl. Chem. 1991, 757 (l), 47-53. (8135) Benn, H. P.; Schnier, C.; Bauer, E.; Seiler, K. U.; Elhoft, H.; Loffler, H. 2.Rheumatol. Wgl, 50 (l), 32-38. (8136) Schnier, C.; Benn, H. P. J. Radloanal. Nucl. Chem. 1990, 742 (2), 433-43. (8137) Elbow, K.; Mundal, H. H. Clln. Chem. (Winston-Salem, N . C . ) 1990, 36 ( l l ) , 1902-5. (8138) Kucera. J.; Senft, V.; Huzl, F.; Soukal, L. f r o c . Meet. Nucl. Anal. Methods, 4th Vdume A ; Nlese, S.; Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1987; pp 56-63. (8139) McOrlst, G. D.; Fardy, J. J. J. Radioanal. Nucl. Chem. 1989, 734 (1). 65-72. (8140) Versieck, J.; Vanballenberghe, L.; Wittoek, A,; Vermeir, 0.; Vandecasteele, C. Blol. Trace Elem. Res. 1990, 26-27, 683-9. (8141) Spyrou, N. M.; Ahaf, W. J.; Glil, 8. S.;Jeynes, C.; Nicolaou, G.; P i a tra, R.; Sabbioni, E.; Surian, M. Biol. Trace Elem. Res. 1990. 26-27, 161-8. (8142) Andrasi, E.; Oyimesi, 2.; Berczi, J.; Bezur, L. Acta Chim. Hung. 1989, 726 (3),341-6. (8143) Corrigan, F. M.; Reynolds, G. P.; Ward, N. I.Trace €/em. Med. 1991, 8 (I), 1-5: (8144) Khare, S. S.; Ehmann, W. D.; Kasarskis, E. J.; Markesbery, W. R. Neuroroxicology 1990, 7 7 , 521-532. (8145) Mitchell, J. D.; East, 8 . W.; Harris, I.A.; Pentiand, 8. Eur. Neurology 1991, 37 (I), 7-11. (8146) Wenstrup, D.; Ehmann, W. D.; Markesbery, W. R. Brain Res. 1990, 533, 125-131. (8147) Yasui, M.; Yase, Y.; Ota, K.; Garruto, R. M. NeuroToxlcology 1991, 72 (3),615-620. (8148) Buoso, M. C.; Fazlnic, S.;Galassinl, S.; Lecis, P. E.; Moschini, G.; Makarewicz, M.; Naccarato, R.; Ogrls, R.; Shao, H. R.; Sturniolo, G. C.; Valkovic, V. Nucl. Instrum. Methods fhys. Res. 1991, 856-7, 1287-1 290. (8149) Choi, I.S. Dlss. Abstr. Int. 8 , 1990, SO(12, Pt. l), 5853. (8150) Langenauer, M.; Krahenbuhl, U. Chlmia 1991, 45 (1-2). 8-10, (8151) Sabbioni, E.; Pietra, R.; Ubertalll, L.; Berlin, A.; Speziali, M.; Brancacclo, D.; Barbesti, S. Scl. TotalEnvlron. 1989, 8 4 , 13-23. (8152) Lln, S. M.; Ker, C. G.; Tseng, C. L.; Yang, M. H. Appl. Radiat. Isot. 1990, 47 (12), 1217-22. (8153) Muddukrlshna, S. N.; Hoizbecher, J.; Ryan, D. E. J. Radloanal. Nucl. Chem. 1991, 748 (l), 27-32. (8154) Ohmori, S.; Kobayashi, T. J . Radloanal. Nucl. Chem. 1989, 733(2), 271-8. (8155) Vance, D. E.; Ehmann, W. D.; Markesbery, W. R. Blol. Trace Elem. Res. 1990, 26/27, 461-470. (8156) Wiesener, W.; Schaefer, G.; Baldauf, K. R o c . Meet. Nucl. Anal. Methods, 4th, Vol. 2; Nlese, S., Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1987; pp 388-93. (8157) Mlchel, R.; Nohe, M.; Reich, M.; Loer, F. Arch. Orthopaedic and Trauma Surg. 1991, 710 (2), 61-74. (8158) Sarmani, S.;Kuan, L. L.; Bakar. M. A. A. Blol. Trace Elem. Res. 1990, 26-27, 497-502. (8159) Alimonti, A.; Coni, E.; Caroll, S.; Sabbionl, E.; Nicolaou, G. E.; Pietra, R. J. Anal. At. Spectrom. 1989, 4 (7), 577-80. (8160) Otoshi, T.; Oklmlne, K.; Hashimoto, N.; Yamada, H.; Kawabata, Y.; Iwai, K. Talki Osen Gakkaishi 1991, 28 (3), 176-83 [CA 775 (16): 165424x1. (8161) Sabbloni, E.; Nicolaou, G. R.; Pietra, R.; Beccalonl, E.; Coni, E.; Aiimonti, A.; Caroli, S. Biol. Trace Elem. Res. 1990, 26-27, 757-68. (8162) Sherson, D.; Maltbaek, N.; Hqdorn, K. Eur. Respiratory J. 1990, 3 (lo), 1227-1229. (8163) Parr, R. M.; Demaeyer, E. M.; Iyengar, V. G.; Byme, A. R.; Kirkbright, 0. F.; Schoch, G.; Niinisto, L.; Pineda, 0.; Vis, H. L.; Hofvander, Y.; OmoIoIu, A. Blol. Trace €/em. Res. 1991, 29(1), 51-75. (8164) Digenis, 0. A. Congr. Int. Technol. fharm.. 5th, Vol, 4 ; Assoc. Pharm. Galenique Ind.: Chatenay Malabry, Fr., 1989; 80-9 pp. (8165) Inoue, K.; HinoMe, M.; Imai, S.; Nisizawa, T.; Nakamura, H.; Takaesu, Y. Koku Eisei Gakkai Zasshi 1989, 39 (4), 494-5 [CA 7 7 2 (1): 5257eI. (8166) Imanishi, Y.; Ehara, N.; Morl, J.; Shimokawa, M.; Sakuyama, K.;

-

-

Ishikawa, T.; Shlnagawa, T.; Hirose, C.; Tsujino, D. J. Computer Asslst. Tomography 1981, 75 (2), 287-290. (8167) Kvicala, J.; Haveika, J.; Zeman, J.; Nemec, J. J. Radioanal. Nucl. Chem. 1991. 749.(2), 267-74. (8168) McNelll, K. G.; Krishnan, S. S. J. Radioanal. Nucl. Chem. 1989, 737

(3),229-33. (8169) Czauderna, M.; Rochalska, M. J. Radioanal. Nucl. Chem. 1989, 734

(2), 383-92. (8170) Czauderna, M.; Wranicz, M.; Sowa, J. J . Radloanal. Nucl. Chem. 1991, 753 (2), 101-10. (8171) Dever, M.; Bresee, R. R. Anal. Chim. Acta 1989, 225 (l), 185-92.

16R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

(8172) Gana, T. J.; MacPherson, 8. R.; Ng, D.; Koo, J. J. Surg. Res. 1990, 48 (l), 78-83. (8173) Haverland, G. W.; Wlebe, L. I.Appl. Radlat. Isot. 1991, 42 (E), 775-6. (8174) Huijev, D. J. Radioanal. Nucl. Chem. 1989, 733 (2), 237-40. (8175) Nakakura, T. Shlgaku 1990, 78(6), 1207-24 [CA 775(9): 84710kl. (8176) Okada, Y.; Hirai, S.; Sakurai, H.; Haraguchi, H. BunseklKagaku 1990, 39 (5), 271-5 [CA 773 (5): 3431621. (8177) Zhang, R. Q.; Ellis, K. J. Am. J. fhysbl. 1989, 257 (5, Pt. 2), R1136-RI140. (8178) Batra, R. J.; Garg, A. N.; Sinvhal, R. C. Indian J. Technol. 1989, 27 (6),289-92. (8179) Bokhinyuk, V. S.; Voronich, 0. G.; Sudarikov, A. V.; Fradkin, A. M. Zavod. Lab. 1989, 55(6), 47-8 [CA 772(4): 2997891. (8180) Carrillo, H. R. V.; Martinez, C. R.; Torres, L. L. Q.; Hertel, N. E.; Iskander, F. J . Radloanal. Nucl. Chem. 1991, 750 (l), 171-175. (8181) Nirel, Y.; Lavi, N. J . Radloanal. Nucl. Chem. 1991, 748 (2), 265-272. (8182) Rajurkar, N. S.; Phuisundar, A. 8 . J. Radioanal. Nucl. Chem. 1989, 737 (2), 135-43. (8163) Garland. M.; Baiker. A.; Wokaun. A. Indust. Eng. Chem. Res. 1991, 30 (3),440-447. (8184) Haukka, S. Ana/yst (London) 1991, 776 (10). 1055-7. (8185) Dorner, G.; Linhardt, P.; Breiter, M. W. Mlkrochim. Acta 1990, 2 (1-6), 281-5. (8186) Smilskalne, G.; Vaivads, J.; Millers, T. Law. Kim. 2.1991, (l), 65-70 [ CA 7 74 (26): 252475nl. (8187) Shea, P.; Gozani, T.; Bozorgmanesh, H. Nucl. Instrum. Methods fhys. Res. 1990, A299 (1-3), 444-8. (8188) Tsekhiadze, T. V.; Tsibakhashvili, N. Ya.; Cherkezishvlli, L. I.; Chikhladze, L. A.; Rcheullshvili, A. N. Zh. Anal. Khim. 1989, # (lo), 1885-7 ICA 772 116): 150894a1. (8189) Gil'bert,' E. N.; Ob&ovskii, E. G.; Buzlaeva, I. P.; Glukhov, G. G.; Merkulov, V. G.; Reznikov, V. 1. Vysokochlst. Veshchestva 1988, (5), 113-20 [CA 7 7 7 (26): 246915CI. (8190) Szaloki, I.;Patko, J.; Papp, L. J. Radloanal. Nucl. Chem. 1990, 747

(2), 279-87. (8191) Yankovskaya, T. A.; Karamnova, V. S.; Azovtseva, L. N. Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk 1989, (4), 74-8 [CA 774 (10): 9 1231y]. (8192) Ai-Medainy, H. S.; ACMohawes, N. A.; Chou, H. P. J. Radloanal. Nucl. Chem. 1989, 737 (5), 341-50. Mir-Babaev, M. F.; Kam' anov, V. F. (8193) Aleshin, G. N.; Samedov, F. I.; Nef?ekhlm/ya1990, 3 0 (2), 175-83 [CA 772 (26): 237654aj: (8194) Harper, W. A.; Beeiey, P. A.; Bennett, L. G. I.; Page, J. A. J. Radioanal. Nucl. Chem. 1989, 732 (2), 369-76. (8195) Harper, W. A.; Beeley, P. A.; Bennett, L. G. I.; Page, J. A. J. Radloanal. Nucl. Chem. 1989, 732 (2), 409-22. (8196) Rausch, H.; Sziklai, 1. L.; Nazarov, V. M.; Bodon, P.; Erdeiyvarl, I.; Toth, 8 . J. Radloanal. Nucl. Chem. 1991, 748(2), 217-25. (8197) Sutcllffe, C. R.; Gladney, E. S.;Seitz, D. M.; Brooks, G. H. Anal. Chem. 1989, 67 (23), 2682-6. (8198) Porges, K. G. A.; Cox, S. A.; Herzenberg, C.; Kampschoer, C. J. NUUSEng. 1989, 7 7 1 (3),337-41. (8199) Rizk, R. A. M. Nucl. Geophys. 1989, 3(3),223-30. (8200) Hwng, X.; Huang, L. Nucl. Sci. Tech. 1991, 2 (l), 19-24. (8201) Kennedy, G. G. ACS Symp. Ser. 1990, 440, 128-34. (8202) Zovko, E.; Pujic. Z . J . Radioanal. Nucl. Chem. 1991, 754 (6), 365-70. _..

(8203) Bohm, G.; Kim, J. I.; Kemmer, J. Nucl. Instrum. Methods fhys. Res, 1991, A305 (3),587-99. (8204) Jiranek, V.; Janu, M.; Tiuchor, D. Radlosotopy 1988, 29 (1-2), 192-201 ICA 1 7 7 1241: 224286~1. (8205) Murti: M. R.; Reddy, K. V. Indkn J. Pure Appl. fhys. 1991, 29 (l), 51-4. (8206) Niese, S.; Icker, K.; Blrnstein, D.; Dubnack, J.; Boettger, M. L. Isotopenpraxls 198% 25 (6),237-9. (8207) Ross, R. Zsotopenpraxls 1989, 25 (I), 25-7 [CA 7 7 7 (26): 247 loge]. (8208) Lee, C.; Kwun, 0. C.; Kim, H. K.; Lee, J. D.; Chung, K. S. Bull. Korean Chem. SOC. 1989, 70 (l), 30-2. (8209) Verheijke, M. L.; Jaspers, H. J. J.; Hansssn, J. M. G. J. Radloanal. Nucl. Chem. 1989, 7 3 7 (l), 197-214. (8210) Prigge, H.; Gerlach, P.; Hahn, P. 0.; Schnegg, A.; Jacob, H. J. Electrochem. SOC. 1991, 738 (5), 1385-1389. (8211) Iia, P.; Frey. F. A. J. Radioanal. Nucl. Chem. 1989, 731(1), 37-42. (8212) Mao, X. Y.; Ward, 8 . J.; Grossman, L.; Keck, 8. D. J. Radioanal. Nucl. Chem. 1991, 749 (l), 97-108. (8213) Yonezawa, C.; Hoshi, M. BunsekIKagaku 1990, 39(1), 25-31 [CA 7 72 (16): 150814pl. (8214) Itawa, R. K.; AI-Jobori, S. M.; Jalll, M.; Farhan, S. S.;Weemeed, A.; Saaeed, K.; Ahmed, E. J . Radioanal. Nucl. Chem. 1991, 749 (2), 339-43. (8215) Moharram, 8 . M.; El-Khatib, A. M.; Ammar, E. A. IsotopenDraxis . . 1989, 25 (lo), 461-3. (8216) Janu, M. Jad. fnerg. 1989, 35(7), 246-53 [CA 773(10): 90454el. (8217) Ratcheva, T.; Nanova, M.; Kinova, L.; Penev, I.Thln SolM Films 1991. 202 (21. 243-247. (8218) bsmariova, M. M.; Akmarov, A. A.; Dzhumakulov, D. T.; Kaganov, L.

K.; Mukhamedshina, N. M. I z v . Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk 1989, (5), 69-72 [CA 774 (10): 94230x1. (8219) Chatt, A.; Rao, R. R.; Jayawickreme, C. K.; McDoweil, L. S. Fresenius. J . Anal. Chem. 1990, 338(4), 399-407. (8220) Rao, R. R.; McDoweli, L. S.: Jayawickreme, C. K.; Chatt, A. J. Radioanal. Nucl. Chem. 1991, 157 (1). 167-75.

NUCLEAR AND RADIOCHEMICAL ANALYSIS

(8221) Yamamoto, J.; Datemichi, J.; Kanaoka, T.; Takayama, T.; Takahashi, A.; Sumlta, K. Nippon GenshltyokuKenkyusho, [Rep.] JAERZ-M, JAERI64-90-025, Roc. Semln. Nucl. Data, 7989 1880,259-67 [CA 774(10):

9033Ogl. (8222) Papadopoulos, N. M.; Tsagas, N. J . Radloanal. Nucl. Chem. 1881, 757 (l), 95-101. (8223) Bakiev, S. A.; Kist, A. A.; Rakhmanov, Zh.; Flltsiyan, E. S. J . Radhxnal. Nucl. Chem. 1881, 147(1), 59-68. (8224) Batra, R. J.; Garg, A. N. J . Indlan Chem. SOC. 1888, LXV, 705-708. (8225) Pillay, A. E.; Mboweni, C. J. Redloanal. Nucl. Chem. 1880, 747 (2). 393-9. (8226) Piilay, A. E.; Mboweni, R. C. M. Nucl. Geophys. 1880, 4 (3), 383-7. (8227) Pillay, A. E.; Mboweni, R. C. M. X-Ray Spectrom. 1881, 20 (5), 239-243. (8228) Piilay, A. E. J. Redbanal. Nucl. Chem. 1881, 753 (5). 313-326. (8229) Teterev, Yu. G. At. Energ 1888, 67 (4), 271-4 [CA 772 (2): 15741x1. (8230) Barouni, A. M.; Bakos, L.; Zemplen, E. P.; Keomley, 0.J. Radloanal. Nucl. Chem. 1888, 737 (2), 457-66. (8231) Bradbury, D.; Elder, G. R.; Dunn, M. J. R o c . Symp. Waste Manage. 1880,V d . 2, 327-9. (8232) Ermolaev, N. P. Geokhimiya 1888, (lo), 1379-85 [CA 172 (6): 39897dI. (8233) lyengar, G. V.; Clarke, W. 8.; Downing, R. G. Fresenius. J . Anal. Chem. 1880,338 (4), 562-6. (8234) Ikeda, N.; Seki, R.; Kamemoto, M.; Otsuji, M. J . Rad/oanal. Nuci. Chem. 1888, 737 ( l ) , 85-71. (8235) Landsberger, S. Chem. Geol. 1888, 77(1), 65-70. (8236) Saleh, S. 1.; WoMez, J. R. W.; Wals, G. D.; Das, H. A. J . Radioenel. Nucl. Chem. 1880, 744 (3), 165-72. (8237) Trubert, D.; Dupiatre, G.; Abbe, J. C. Appl. Radiat. Isot. 188';,42 (E), 699-705. (8238) Tanir, G.; Oimez, I. J. Radloanal. Nucl. Chem. 1880, 745 (5), 369-75. (8239) Petra, M.; Swift, G.; Landsberger, S. Nucl. Instrum. Methods Phys. Res. 1880, A299 (1-3), 85-7. (8240) Petra, M.; Landsberger, S.; Swift, G. Fresenlus. J . Anal. Chem. 1880,338 (4), 567-8. (8241) Smakhtin, L. A.; Fiiippova, N. V.; Shokel, E. S. J . Radloanal. Nucl. Chem. 1881, 755(1), 1-8. (8242) Chappeil, 8. W.; Hergt, J. M. Chem. Geol. 1888, 78 (2), 151-8. (8243) Smakhtin, L. A.; Shevaklin, 0. A. J . Radloanal. Nucl. Chem. 1881, 754 (6), 403-12. (8244) Westphai, 0. P. J. Redbanal. Nucl. Chem. 1880, 747 (2). 407-16. (8245) Das, M. S.; Yegnasubramanian, S. J . Indlan Chem. SOC.1888,66 (E), 728-9. (8246) Cetnar, J.; Janczyszyn, J. Anal. Chlm. Acra 1880,236(2),417-22. (8247) Cohen, I. M. J. Radioanel. Nucl. Chem. 1881, 748 ( l ) , 155-61. (8248) De Corte, F.; Freitas, M. C.; De Wispelaere, A. Nucl. Instrum. Methods Phys. Res. 1880,A299 (1-3), 335-43. (8249) De Corte, F.; Simonits, A. J. Radioanal. Nucl. Chem. 1888, 733 (I), 43-130. (8250) De Corte, F.; Simonits, A.; De Wlspelaere, A.; Elek, A. J. Radloanai. Nucl. Chem. 1888, 133(1),3-41. (8251) De Corte, F.; Simonits, A.; De Wispelaere, A. J . Radioanal. Nucl. Chem. 1888, 133(1),131-51. (8252) Elnimr, T. Arabian J. Sci. Eng. 1888, 74 (2), 191-6. (8253) Ingeibrecht, C.; Peetermans, F.; De Corte, F.; De Wispelaere, A,;

Vandecasteeie, C.; Courtijn, E.; Dhondt, P. Nucl. Instrum. Methods Phys. Res. 1881,A303(1), 119-122. (8254) Jovanovic, S.; Smodls. 8.; Jacimovic, R.; Vukotic, P.; Stegnar, P. Vestn. Slov. Kem. Drus. 1888,35 (4), 409-24. (8255) Lin, X.; Van Renterghem, D.; De Corte, F.; Cornelis, R. J . Radioanal. Nucl. Chem. 1888, 733 ( l ) , 153-65. (8256) Tlan, W. He Huaxue Yu Fangshe Huaxue 1888, 70 (4), 217-25 [CA 7 7 7 (26): 246823~1. (8257) Dyer, F. F.; Emery, J. F.; Robinson, L.; Teasiey, N. A. Report DOE / OR/274OO-T400; Avail. NTIS., 15 pp [CA 772 (24): 225129el. (8258) Anon., Neutron Standard, U. S. Dept. of Commerce, NIST, April, 1991; pp 1-4. (8259) Robinson, L.; Dyer, F. F.; Emery, J. F. Nucl. Instrum. Methods Phys. Res. 1880,A299 (1-3), 413-15. (8280) Tobier, L.; Furrer, V.; Wyttenbach, A. Blol. Trace Hem. Res. 1880,

26-27, 623-7. (8261) Tobler, L.; Furrer, V.; Wyttenbach, A. J. Radbanal. Nucl. Chem. 1881, 753 (2), 85-99. (8262) Dowiati, R.; Jervis, R. E. J . Radloanal. Nucl. Chem. 1881, 750 (2), 455-63. (8263) Piilay, A. E. J. Radloanal. Nucl. Chem. 1881, 753 (5), 313-26. (8264) Hirakawa, N.; Matsuyama, S.;Nara, H.; Ito, N.; Kimiyama, H.; Kobayashi, K.; Shiroya, S.; Hayashi, M.; Ichihara, C.; Nakamura, H. Kyoto Dalgaku Genshlro Jlkkensho, [Tech. Rep.] 1888. KURRI-TR-326, 54 [CA 7 72 (28): 241 731al. (8265) Niese, S. Isotopenpraxls 1888,25 (I), 28-30. (8266) Nir-Ei, Y.; Lavi, N. J . Radioanal. Nucl. Chem. 1881, 748(2), 265-72. (8267) Tian, W.; Zhang, S. He Huaxue Yu Fangshe Huaxue 1888, 7 7 (2), 84-90 [CA 772(14): 131217el. (8268) Li, H. He Dlanzlxue Yu Tance Jishu 1888, 9 (4), 211-15 [CA 7 7 7 (23): 213879rl. (8289) Lindstrom, R. M.; Lutz, G. J.; Norman, 8 . R. J . Trace Microprobe Tech. 1981,9 (I), 21-32. (8270) Papadopoulos, N. N.; Tsagas, N. J . Radioanal. Nucl. Chem. 1881. 749 (2), 217-22.

(8271) Kikawada, Y.; Honda, T.; 01,T.; Ossaka, T.; Kakihana, H. J . Radloanal. Nucl. Chem. 1881, 753 (5). 357-64. (8272) Honda, T.; 01,T.; Ossaka, T.; Nozaki, T.; Kakihana, H. J . Radioanal. Nucl. Chem. 1888, 733 (2), 301-15. (8273) Landsberger, S.; Vermette, V. G.; Woife, M.; Powell, M. A. J. Coal Que/. 1888,8 (3-4), 95-7. (8274) Flerov. G. N.; Gerbish, S.; Zhuchko, V. E.; Kezhek, I.; Popeko, 0.C.; Sodnom, N.; Ter-Akopyan, G. M.; Khristov, K. Isotopenpraxls 1888,25 (7), 281-6 ICA 773 (41: 33923h1. (8275) Shubha, N. A:;'Koiesov, G. M. Zh. Anal. Khim. 1881, 46 (3), 468-77 [CA 775(2): 21167tI. (8276) Pillay, A. E.; Mashllo, N. J . Radioanal. Nucl. Chem. 1880, 744 (6), 477-27. (8277) iernois, V.; Deschamps, N.; Revel, G. J . Trace Elem. Elecholytes H d t h Dls. 1888. 3 12). 67-70. (8276) Landsberger; S.i Swift, G.; Neuhoff, J. Biol. Trace Elem. Res. 1880, 26-27, 27-32. (8279) Landsberger, S.;Bode, P. Geostand. News/. 1880, 74 ( l ) , 149-52. (8280) Van Eiteren, J. T.; Das, H. A.; De Ligny, C. L.; Agterdenbos, J. Anal. Chim. Acta 1888,222(1),159-67. (8281) Lan, C. R.; Tseng, C. L.; Yang, M. H.; Alfassi, 2 . 8. Analyst (London) 1881, 776 (I), 35-8. (8282) Kuznetsov, Yu. V.; Rosyanov, S. P.; Vinogradova, V. K.; Gavriiov, V. M. Radlokhlmiya 1880,32(3),150-3 [CA 773(20): 183910rl. (8283) Rao, R. R.; Chatt, A. Anal. Chem. 1881,63(13), 1298-303. (8264) Honda, T.; 01,T.; Ossaka, T.; Nozaki, T.; Kakihana, H. Musashl Kogyo Dalgaku Genshltyoku Kenkyusho Kenkyu Shoho , Volume Date 7988

1888,(15), 77-91. (8265) Honda, T.; 01, T.; Ossaka, T.; Nozaki, T.; Kaklhana. H. Musashl Kogyo Dalgaku Genshiryoku Kenkyusho Kenkyu Shoho , Volume Date 7989 1880,(l6), 26-43. (8286) Iwata. Y.; Imura, H.; Suzuki, N. Anal. Chim. Acta 1880,239 ( l ) , 115-20. (8287) 01,T.; Kikawada. Y.; Honda, T.; Ossaka, T.; Kaklhana, H. J. Radbanal. Nucl. Chem. 1880, 740 (2), 365-77. (8288) 01,T.; Kikawada, Y.; Honda, T.; Ossaka, T.; Kakihana, H. J . Radbanal. Nucl. Chem. 1881, 750 (l), 103-16. (8289) Saleh, A. I.; Woinimz, J. R. W.; Wals, G. D.; Das, H. A. J. Redloanal. Nucl. Chem. 1880, 740 (2), 357-63. (8290) Mincher, 8. J.; Baker, J. D. J . Radioanal. Nucl. Chem. 18S0, 739 (2), 273-6. (8291) Honda, T.; 01, T.; Ossaka, T.; Nozaki, T.; Kakihana, H. J . Radbanal. Nucl. Chem. 1880, 739 ( l ) , 65-77. (8292) Honda, T.; 01,T.; Ossaka, T.; Nozaki, T.; Kakihana, H. Musashl Kogyo Dalgaku Genshltyoku Kenkyusho Kenkyu Shoho , Volume Date 7989

1880, (16), 44-62. (8293) Lan, C. R.; Sun, Y. C.; Chao, J. H.; Chung, C.; Yang, M. H.; Lavi, N.; Alfassl. Z.8. Radlochlm. Acta 1880, 50 (4), 225-9. (8294) Kaplin, A. A.; Sudyko, A. F.; Vertman, E. G.; Obraztsov, S. V.; Markov, L. E. Zh. Anal. Khim. 1880, 45 (3), 468-75 [CA 772 (26): 240195sl. (8295) Lavi, N.; Alfassi, 2. 8 . Analyst(London) 1880, 775(6),817-22. (8296) Tsukada, M.; Yamamoto, D.; Endo, K.; Nakahara, H. J. Radloanal. Nuci. Cham. 1881, 757 (I), 121-130. (8297) Arunachalam, J.; John, A.; Gangadharan, S. J. Radioanal. Nucl. Chem. 1881, 755(1),33-43. (8298) Dmitriev, S. N.; Krasnov, A. V.; Lebedev, V. Ya. Anal. Chim. Acta 1881,248 (2), 579-82. (8299) Doshi, G. R.; Joshl, S. N.; Piliai, K. C. J . Radioanal. Nucl. Chem. 1881, 755 (2), 115-27. (8300) Katagki, H.; Narita, 0.; Yamato, A.; Kinoshita, M. J . Radioanal. Nucl. Chem. 1880, 738 (I), 187-92. (8301) Martin, J. E.; Marcinowski, F.; Cook, S. K. Appl. Radiat. Isot. 1880, 47 (E), 727-31. (8302) Sekl. R.; Kimura, E.; Takahashi. T.; Ikeda, N. J . Redbanel. Nucl. Chem. 1880, 738(1), 17-31. (8303) AI-Bedrl, M. 8. H.; AiJobori, S. J . Radloanal. Nucl. Chem. 1881, 747 (2), 235-41. (8304) Liu, R. S.; Chen, P. Y.; Alfassi, 2. 8.; Yang, M. H. J. Redloanal. Nucl. Chem. 1880, 747 (2), 317-26. (8305) Shah, N. K.; Wai, C. M. J . Radioanal. Nucl. Chem. 1888, 730(2), 451-9. (8306) Shishkina, T. V.; Dmitriev, S. N.; Shishkin, S. V. Anal. Chlm. Acta 1990,236 (2), 483-6. (8307) Wang, X.; Chen, Y.; Wang, X.; Sun, Y.; Fu, Y.; Guo, G. J . Radioanal. Nucl. Chem. 1881, 747(2), 377-84. (8306) Devl, P. R.; Naidu, G. R. K. J . Radioanal. Nucl. Chem. 1880, 746(6), 267-72. (8309) WoMiez, J. R. W.; Vandersloot, H. A,; Wals, G. D.; Nleuwendijk, 8. J. T.; Zonderhuis, J. Marlne Chem. 1881,34 (3-4). 247-259. (8310) Smakhtin, L. A.; Mekhryusheva, L. I.; Fllippova, N. V.; Migllna, N. V.;Sinitsyna, T. S. J . Radbanal. Nucl. Chem. 1881, 754 (4), 293-8. (8311) Smith, A. D.; Giilis, K. M.; Ludden, J. N. Chem. Ged. 1880,81 (1-2). 17-22. (6312) Navarrete, M.; Cabrera, L.; Deschamps, N.; Boscher, N.; Revel. 0.; Meyer, J. P.; Stampfler, A. J. Radioanal. Nucl. Chem. 1880, 745 (6), 445-52. (8313) Sasaki, Y.; Takeishi, H.; Adachi, 1.;Izawa, K. J . Redbanal. Nucl. Chem. 1880, 139 ( l ) , 143-51. (8314) Blotcky, A. J.; Duckworth, W. C.; Ebrahim, A.; Hamel, F. K.; Rack, E. P.; Sharma, R. 8. J. Radloanal. Nucl. Chem. 1888, 734 (l), 151-60. (8315) Devi, P. R.; Gangaiah, T.; Naldu, G. R. K. Anal. Chim. Acta 1881, 249 (2). 533-7. (8316) Devi, P. R.; NaMu, G. R. K. Analyst (London) 1880, 775 ( l l ) , 1469-71. '

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

17R

NUCLEAR AND RADIOCHEMICAL ANALYSIS

(8317) Dum, S.J.; Hay, G. W.; Mlcklethwake, R. K.; Vanloon, G. W. Scl. Total Envlron. 1888,87-88,189-97. (8318) Greenberg, R. R.; Klngston, H. M.; Zelsler, R.; Woittiez. J. Biol. Trace Hem. Res. 1880,26-27, 17-25. (8319)Yeh, S. J.; Tsena, C. L.; Wel, J. C. J. Radioanal. Nucl. Chem. 1881, 757 (l),131-138. (8320) Jaskolska, H.; Walls, L. J. Radioanal. Nucl. Chem. 1880, 745 (5), 355-60. ___ (8321) Tang, J.; Wal, C. M. Talenta 1888,36 (1I), 1129-33. (8322)Dlng, 2.; Chal, 2.; Fu, J.; Shen G ; Un, Q.; Wu, D. Hs/lshu 1890, 73 (4),203-9 [CA 773 (24): 2149798. ’ (8323) Jayawlckreme, C. K.; Chatt, A. Bo/. Trace Elem. Res. 1880, 26-27,503-12. (8324) Stone, S.F.; Zelsler, R.; Gordon, G. E. Biol. Trace Elem. Res. 1880, 26-27,85-91. (8325) Stone, S. F.; Zelsler. R.; Gordon, G. E.; Viscidl, R. P.; Cerny, E. H. ACS Symp. Ser. 1881,445, 265-77. (8326) Stone, S. F. Dlss. Abstr. Int. B 1880,57 (3),1233. (8327) Aslf, M.; Parry, S. J. Mlneral. Petrol. 1980,42 (1-4),321-6. (8328) Aslf, M.; Parry, S. J. Analyst 1881, 716(10), 1071-1073. (8329) Blchler, M. J . Radioanal. Nucl. Chem. 1891, 153 (4),301-9. (8330) Das, N. R.; Baidya, T. K.; Chakraborty, P. S.; Bhattacharyya, S. N. Nucl. Oeophys. 1091,5 (3),297-302. (8331)Perlwitz, A.; Erasmus, C. S.; PHiay, A. E. Nucl. Geophys. 1991,5(3), 303-308. (8332)Vanderfllerkeller, E. Economic oedogy and the Bulletin of the Soc/efy of Economic Geologists 1881,86 (2),387-395. (8333)Ryabukhln, V. A.; Volynets, M. P.; Myasoedov, 8 . F. Zh. Anal. Khlm. 1880,45 (2).279-68 [CA 7 72 (26): 245240nl. (8334) Chen, Y.; Wang, X. J. Radioanal. Nucl. Chem. 1891, 757 (l), 103-8. (8335) Kraehenbuehl, U.; Burger, M. Radlochim. Acfa 1888,47(1),21-4. (8338) Henke, G. Fresenlus. J. Anal. Chem. 1981,339(4),245-8. (8337) Mlsugashlra, T.; Koma, Y.; Hiral. S.; Okada, I.; Kurashlma, N.; Sakrt rei, H. J. Radioanal. Nucl. Chem. 1881, 747 (I), 69-77. (8338)Sunta, C. M.; Dang, H. S.; Jaiswal, D. D.; Soman, S. D. J . Radioanal. Nucl. Chem. 1880, 738(1),139-44. (8339) Wolttlez, J. R. W.; Geusebroek, M. 6/01. Trace Elem. Res. 1880, 26-27,561-9. (8340) Blchler, M. J. Radlaenal. Nucl. Chem. 1881, 754 (4),255-263. (8341)Muramatsu, Y.; Uchlda, S.; Ohmomo, Y. J. Radloanal. Nucl. Chem. 1880, 738 (2),377-84. (8342) Park, K. S.;Kim, N. 8.; Woo, H. J.; Yoon, Y. Y.; Lee, K. Y. BO/. Trace Elem. Res. 1080,26-27,347-54. (8343) Armelln, M. J. A.; Vasconcellos, M. 8. A.; Perelra, E. 8.; Slrcllll Neto, F. J . Radioanal. Nucl. Chem. 1880, 732(2),261-7. (8344) Fleet, M. E.; Stone, W. E.; Crocket, J. H. Geochim. et Cosmochlm. Act8 1881,55 (9),2545-2554. (8345) Gafurova, R. N.; Yuidasheva, K. T.; Khudalbergenov, U.; Ernazarov, M.; Ganlev, A. 0. Uzb. Khlm. Z h . 1980, (4),5-8 [CA 715 (IO): 105052q]. (8346)Jin, L. Y.; Ll, Y.; Yang, M. J. Radlaenal. Nucl. Chem. 1981, 757 (l),

-

107-11 . . . . 1...

(8347) Ma, S.; Chal, C.; Mao, X. He Huaxue Yu Fangshe Huaxue 1889, 7 7 (I), 43-6 [CA 7 7 7 (24): 224327kI. (8348) Shetty, S. S.;Turel, 2. R. J. Radloanal. Nucl. Chem. 1891, 749 (2), 355-359. (8349) Dybczynskl, R.; Samczynskl, 2. J. Radloanal. Nucl. Chem. 1881, 750 11). 143-53. (8350)Aherey, R.; Bowen, H. J. M. J. Radioanal. Nucl. Chem. 1881, 753 (3),221-34. (8351)Oleisberg, 8.; Ly, 8. M.; Gorskl, 8. J . Radioanal. Nucl. Chem. 1881, 147 (l), 95-107. (8352) Okada, Y.; Hlral, S. Bunseki Kagaku 1881,40 (lo),549-555. (8353) Thelmer, K. H.; Krlvan, V. Anal. Chem. 1980,62 (24),2722-7. (8354) Zhuang, G.; Cheng, Y.; Tan, M.; Wang, Y.; Zhl, M. J . Radioanal. Nucl. Chem. 1881, 749 (2),305-15. (8355) Amianl, A. M.; Turel, 2. R. J . Radloanal. Nucl. Chem. 1990, 746 (2), 107-13. (8356) Weginwar, R. G.; Lanjewar, R. 8.; Garg, A. N. J. Radioanal. Nucl. Chem. 1888, 734 (I),173-180. (8357)Shetty, S.S.;Turel, 2. R. J. Radioanal. Nucl. Chem. 1891, 749 (2), 355-9. (8358) Itawl, R. K.; Subramanlan, S.; Turd, 2. R. J. Radloanal. Nucl. Chem. 1880, 738(1),63-6. (8359)Amiani, A. M.; Turel, 2. R. J. Radioanal. Nucl. Chem. 1980, 744(1), 27-33. (8380) Dermelj, M.; Slejkovec, 2.; Byrne, A. R.; Kenda, 8.; Cerk, T.; Gorenc, 0. Mlkrochlm. Acta 1991, 1 (3-4),151-7. (8361)Dermelj, M.; Slejkovec, 2.; Sorak-Pokrajac, M.; Rossbach, M. J. Radioanal. Nucl. Chem. 1880, 744 (4),251-62. (8362) DerMlJ, M.; Stlbllj, V.; Stekar, J.; Byrne, A. R. Fresenlus. J. Anal. them. 1881,340 (4),258-61. (8363) Samudralwar, D. L.; Weginwar, R. G.; Garg, A. N. J. Radlaenal. Nucl. Chem. 1888, 737 (l), 3-10. 18364) Shew. ~. S. S.: . Turel. 2. R. J. Redloanal. Nml. Chem. 1880. . 74513). ... . 223-9. (8365)Kayasth, S.R.; Desal, H. 8.; Sundaresan, M. Anal. Chlm. Acta 1888, 279 (2),313-15. (8366)Shetty, S. S.;Turel, 2. R. J. Radioanal. Nucl. Chem. 1880, 145(3), 215-21. (8367) Versieck, J.; Vanballenberghe, L. Anal. C t ” . 1981, 83 (ll), 1 143-6. (8388)Vandecasteele, C.; Vanhoe, H.; Dams, R.; Vanballenberghe, L.; Wltoek, A.; Versieck, J. Talent8 1880,37(8),819-23. 18R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

(8369) Byrne, A. R.; Benedlk, L. Scl. Tofal Envkon. 1881, 707, 143-157. (8370)Kucera, J.; Simkova, M.; Lener, J.; Mravcova, A.; Kinova, L.; Penev, I.J. Radioanal. Nucl. Chem. 1800, 747 (I), 49-59. (8371) Danko, 8.; Lobinski, R.; Dybczynski, R. J. Radioanal. Nucl. Chem. 1888, 737 (2).145-57. (8372) Blchler, M. Nucl. Tech. Explor. Drploil. Energy Mlner. Resour., R o c . Int. Symp., MeetlngDate 7990;IAEA: Vienna, Austria, 1991;pp 541-5. (8373) Bruegmann, G. E.; Gorton, M. P.; Hancock, R. G. V. J . Oeochem. E ~ p l c r 1980, . 37 (l),25-36. (8374) Sakamoto. K.; Sarkar, S. R.; Ohura, Y.; Kosanda, S.; Ohmorl, S.; Ishlwatari, A.; Matsuzawa, M. Kyoto Daigeku Genshlm Jlkkensho, [Tech. Rep.] 1889,KURRI-TR-326,29 [CA 773(18): 164597~1. (8375) Franek, M.; Krivan, V. Fresenlus. J. Anal. Chem. 1990, 338 (l),

26-33. (8376) Hollas, C. L.; Ussery, L. E.; Butlerfield, K. 8.; Morgado, R. E. 6 M . Trace Elem. Res. 1880,26-27, 103-10. (8377) Rossbach, M. Anal. Chem. 1881,63 (19),2156-2162. (8378) Chao, J. H.; Chung, C. Nucl. I n s f ” . Mefhods Phys. Res. 1880, A299 (1-3),651-5. (8379) Anderson, D. L.; Cunnlngham, W. C.; Mackey, E. A. Fresenius. J. Anal. Chem. 1880,338 (4),554-8. (8380) Anderson, D. L.; Cunnlngham, W. C.; Mackey, E. A. 6&/. Trace Elem. Res. 1890,26-27,613-22. (8381) Pinaul, J. L.; Daudu, F. Nucl. Tech. Explor. Expion. Energy Mlner. Resour., R o c . Int. Symp., Meeting Date 7990;IAEA: Vienna, Austrla, 1991;pp 203-14. (8382) He, G.; Jln, 2.; Qlng, Y. Hunan Shlfan &xue Zlran Kexue Xuebao 1880, 73(2),120-6 [CA 775(14): 139385rl. (8383) He. G.; Jin, 2.; Qlna, Y. Fenxi Huaxue 1881, 79 (4),453-5 ICA 775 (14): 139392rl. (8384) Herzog, W. Nucl. Geophys. 1988,3 (4),467-73. 445-511 Marshall, J. H., 111; Zumberge, J. F. Nucl. Geophys. 1888, 3 (4), (8385)

. .-

(8386) Ollvelra, C.; Salgado. J. Nucl. Gsophys. 1881,5 (3),329-337. (8387) Arlpov, G. A.; Kurbanov, 8. I.Izv. Akad. Nauk UzSSR, Ser. F k . Mat. Nauk 1888,(6),85-7 [CA 7 1 7 (26): 24694OgI. (8388) Ivanenko, V. V.; Kovalenko, V. V.; Kustov, V. N.; Grigor’ev, A. I.; Metelev, A. Y. J. Radlonucl. Chem. 1881, 747(2).321-32. (8389) Matsumoto, T.; Alzawa, 0. Appl. Radiat. b o t . 1880, 47 (9), 897-903. (8390) Sutcllffe, J. F.; Mitre, S.; Hill, G. L. Phys. Med. Biol. 1890,35 (8), 1089-98. (8391) Krishnan, S. S.;McNelll, K. G.; Mernagh, J. R.; Harrison, J. E. 6/01. Trace Elem. Res. 1090,26-27,415-21. (8392) Ryde. S. J. S.; Morgan, W. D.; Compston, J. E.; Williams, A. J.; Evans, C. J.; Sivyer, A.; Dutton, J. Basic Llfe Scl. 1880,55, 353-6. (8393)Ryde, S.J. S.; Morgan, W. D.; Compston, J.; Evans, C. J.; Slvyer, A.; Dutton, J. Biol. Trace Elem. Res. 1880,26-27,429-37. (8394) Chen, W. K.; Chung, C. J. Radioanal. Nucl. Chem. 1888, 733 (2), 349-58. (8395) Franklin. D. M.; Armstrong. R.; Chettle, D. R.; Scott, M. C. Phys. Med. B b / . 1880, 35 (lo), 1397-408. (8396)Franklin. D. M.; Guthrie, C. J. G.; Chettle, D. R.; Scott, M. C.; Mason, H. J.; Davlson, A. G.; Taylor, A. J. N. 6/01.Trace Elem. Res. 1080, 26-27,401-6. (8397) Blagojevic, N.; Allen, 8. J.; Rose, A. Basic Llfe Sci. 1880, 55, 401-8. (8398)Heymsfleld, S.8.; Wakl, M.; Kehayias, J.; Llchtman, S.; Dllmanian. F. A.; Kamen, Y.; Wang, J.; Plerson, R. N. Am. J. of Physiol. 1881,267 (2), E190-E 198. (8399) Kehayias, J. J.; Heymsfleld, S. 8.; Lomonte, A. F.; Wang, J.; Plerson. R. N. Am. J. Clln. Nu@. 1881. 53(6),1339-1344. (8400)Friedman, P. J. NufrMn 1881. 7 (3),223-226. (8401) Krlshnan, S. S.;McNelll, K. 0.;Mernagh, J. R.; Bayley, A. J.; Harrlson, J. E. Phys. M e d . Biol. 1880,35(4),489-99. (8402) Ryde, S.J. S.; Morgan, W. D.; Evans, C. J.; Slvyer, A,; Dutton, J. Phys. Med. 6lol. 1880,34 (IO), 1429-41. (8403) Kacperek. A.; Morgan, W. D.; Shryer. A.; Dutton, J.; Evans, C. J. J . Radioanal. Nucl. Chem. 1880, 140 (1).141-51. (8404) Baron, J. P.; Barnavon, T.; Alexandre, J.; Debray, L. Nucl. Tech. Explor. Explon. Mergy Mlner. Resour.. Roc. Int. Symp., Meetlng Date 7990;IAEA: Vienna, Austria, 1991;pp 569-83. (8405) Glorieux, G.; Lanz, V.; Woodward, R. Clm., Betons, Pletres, Chaux

1081, 789,77-83. (8406) Pllle, F.; Rommel, M.; Stuchllk, W. Isotopenpraxls 1888,25 (IO), 467-9 [CA 772(16): 41505t3. (8407) Trubert, D.; Abbe, J. C.; Paulus, J. M. J. Redloanal. Nucl. Chem. 1888, 134 (2), 405-14. (8408) Clgeroglu, F. Isotopenpraxls 1880,26 (lo),494-496. (8409) AWuCMomen, M. A.; Hameedel-Deen, S.; Hassan, A. M. Arabian J. Scl. EnQ. 1990, 75 (2A), 205-12. (8410)Mackey, E. A,; Gordon, G. E.; Llndstrom. R. M.; Anderson, D. L. Anal. Chem. 1891,63 (3).288-92. (8411) Khrblsh, Y. S.; Spyrou, N. M. J. Radloanal. Nucl. Chem. 1881, 757 (l),55-61. (8412)eau, J. A.; Schwettzer, J. S.; Hertzog, R. C. I€€€ Trans. Nucl. Scl. 1880,37(8,Pt. 2), 2175-8. (8413) Bowman. R. C., Jr.; Knudsen, J. F.; Downing, R. G. Mater. Res. Soc. S P P . ROC. 1880, 766, 331-6. (8414) Downing, R. G.; Lavlne, J. P.; Hossain, T. 2.; Russell, J. 8.; Zenner, G. P. Mater. Res. SOC. Symp. Roc. 1880, 166, 323-30. (8415)Lavlne, J. P.; Hossain, T. 2.; Losee, D. L.; Downing, R. G.; Carducci, T. R.; Mehra, M.; Cumbo, M. J. Roc. Elecfrochem. SOC. 1880,90-7, 1041-51.

NUCLEAR AND RADIOCHEMICAL ANALYSIS (5416) Alfassl, 2. B.; Yang, M. H. J . Radioanal. Nucl. Chem. 1989, 732(1), 99-104. (8417) Chu, W. K. Radiat. Eff. Defects Sol& 1989, 708 (I), 125-6. (8418) Coakley, K. J. I€€€ Trans. Nucl. Scl. 1991,38(1),9-15. (B419) Tlen, Y. H.; Pepelnik, R.; Fanger, H. U. J. Radioanal. Nucl. Chem. 1990, 739 (l), 43-53. (8420) Oratuze, 8.; Barrandon, J. N. Arcbeometry 1990, 32 (2), 155-62. (8421) Alarcon, A.; Soto, I.; Cuevas, L.; Burgoa, A. Rev. &liv. Quim. 1989,8 (I), 22-7 [CA 773 (19): 170918~I. (8422) Stoeva, L.; Pantalwv, Ts.; Damyanova, A. J. Radioanal. Nucl. Chem. 1989. 734 (2), 285-92. (8423) Jung, B.; Stachel, S. J.; Calkins, W. H. Frepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1991,36 (3), 869-76. (8424) Randle, K.; Croudace, I. W. Geostand. News/. 1989, 73 ( I ) , 69-73. (8425) Ila. P. J. Radioanal. NUCl. Chem. 1991, 748 (2). 415-22. (8426) Ila, P.; Mum, D. S. J . Radioanal. Nucl. Chem. 1989, 734 (1). 27-37. (8427) Zaganjori, S.; Fuga, P. J. Radioanal. Nucl. Chem. 1990, 744 (2), 115-23. (8428) Mharram, B. M.; Shaklr, N. S.; Hafez, A. F. Isotopenpraxls 1991,27 (4), 199-202. (8429) Khanchl, R. S.; Jain, S. K.; Mohlndra, R. K. Roc. Indian Met/. Sci. Aced., Part A 1989, 55 (3), 550-6. (8430) Garrett, R.; Mitre. S. Med. Phys. 1991, 78(5), 916-920. (8431) Mltra, S.; Sutcllffe, J. F.; Hill, G. L. 6iol. Trace Elem. Res. 1990, 26-27, 423-8. (8432) Dlghe, P. M.; Karkhanls. U. R.; Bhoraskar, V. N.; Kulkarnl, S. G. Indian J . Phys., A 1990,64A (l), 70-6. (8433) Ditrol, F.; Takacs. S.; Mahunka, I.; Gemesl, 2. Nffil. Instrum. Methods Phys. Res. 1990,650 (1-4), 62-4. (8434) Afanasenko, S. I.; Zaletlna, M. M.; Efremova. R. I.; Mlroshln, I.V.; Nikolaenko, 0. K.; Yudelevlch, I.0. Izv. Slb. Otd. Akad. Me& SSSR, Ser. Khlm. Nauk. 1990,(l), 33-7 [CA 772(24): 228949hl. (8435) OoMshtein, M. M.; Mkotin, I.V.; Nlkolaenko, 0. K.; Yudelevlch, I. G. J. Radiaenal. Nucl. Chem. 1991, 747 (2). 341-6. (8436) Selma, I.; Zemplen-Papp, E. J. Radioanal. Nucl. Chem. 1990. 746 (6), 407-13. (8437) Pepelnik, R. Nucl. Instrum. Methods Phys. Res., Volume Date 7988 1989. 640-647 (2), 1205-7. (8438) Barouni, A. M.; Bakos, L.; Zemplen, E. P. J. Radlmnal. Nucl. Chem. 1989, 737 (2), 445-55. (8439) Bhoraskar, V. N. Indkn J . Pure Appl. Phys. 1989. 27 (%IO), 648-55. OTHER ACTIVATION METHODS (CI) Mlchelmann, R. W.; Krauskopf, J.; Meyer, J. D.; Bethge, K. Nucl. Instrum. Methods Phys. Res. 1990, 657 (I), 1-4. (C2) Koehl, F.; Krauskopf, J.; MisaelMes, P.; Mlchelmann, R.; Wolf, G.; Bethge, K. Nucl. Instrum. Methcds Phys. Res. 1990, 650 (I-4), 19-22. (C3) Koehl, F.; Bethge, K.; Wolf, 0.; Mlchelmann, R. W.; Krauskopf, J. Nucl. Instrum. Methods Phys. Res. 1991,853 (l), 80-6. (C4) Runyon, N.; MlsaelMes, P.; Wolf, G.; Bethge. K. J . Radioanal. Nucl. Chem. 1991, 753 (4), 273-81. (C5) Bakrajl, E. H.; Blondlaux, G. B.; Ducouret, 0.; Debrun, J. L. Nucl. Instrum. Methods Phys. Res. 1991,656-657(Pt. 2), 896-9. (C6) Bakrajl, E. H.; Ducouret, G.; Blondlaux, 0.; Debrun, J. L. Nucl. Instrum. Methods Phys. Res. 1091,658-657 (Pt. 2), 619-20. (C7) Bakrajl, E. H.; Giovagnoll, A.; Blondlaux, G.; Debrun, J. L. Nucl. Instrum. Methods Phys. Res. 1990,650(1-4), 65-7. (CB) Kao, Y. H.; Song, L. W.; Yao, Y. D.; Tao, 2.; Jones, K. W. Mater. Res. Soc. Symp. R o c . 1990, 769, 213-15. (C9) Barthe, M. F.; Giovagnoll, A.; Blondlaux, G.; Debrun, J. L.; Tregoat, Y.; Barraud. J. Y. Nucl. Instrum. Methods Phys. Res. 1990, 645 (1-4), 105-6. (C10) Dltroi, F.; Takacs, S.; Mahunka, I.; Gemesi, 2. Nucl. Instrum. Methods Phys. Res. 1990,650 (I-4), 62-4. (C11) Neumann, W.; Stalder, C. Nucl. I n s t ” . Methods Phys. Res. 1990, 645 (1-4), 126-9. (C12) Kato, T.; Sato, T.; Morl, K. Anal. Scl. 1990,6(1), 103-9. (C13) Sato, T.; Morl, K.; Kato, T. Anal. Scl. 1991, 7(2), 217-21. (C14) Hablger. K. W.; Clifford, J. R.; Miller. R. B.; McCullough, W. F. Nucl. Instrum. Methods Phys. Res. 1991,656-B57(Pt. 2), 834-6. (C15) Whltham, K.; Miller, R. C.; Anamkath, H.; Clifford, J. R.; Mlller, R. B.; Habiger. K. Nucl. Instrum. Methods Phys. Res. 1991,656-b57(Pt. 2), 825-0.

ION BEAM ANALYSIS (Dl) Nolan, J. T. National €lectrostaHcs Corp., Wvate Commun., 1991. (D2) Kelnonen, J.; Ralsanen, J.; Rauhala, E. I n Studles of High Temperature Superconductors Advances in Research and Appllcations , Volume 4 ; Narllkar, A., Ed.; Nova Science: Commack, NY, 1990; 239-62 pp. (D3) Russell, T. P. I n Annual Revlew of Mater/ak Sclence. Volume 27; Hugglns, R. A., Giordmaine, J. A., Wachtman, J. B., Jr., Eds.; Annual Reviews: Palo Alto, CA, 1991; 249-68 pp. (D4) Analysis by a Combination of Ion-Beam (Accelerator-Based)and Surface-Specific Techniques. IB-SA90 Conference, 5-7 Sept 1990, Namur, Belgium, Vacuum 1991,42 (13). [PA: A911397051 (D5) First European Conference on Accelerators In Applied Research and Technology, 4-9 Sept 1989, Frankfurt am Main, West Germany, Nucl. Instrum. Methods Phys. Res. 1990,650 (1-4). [PA: A90092815] (D6) International Conference on Beam-Solld Interactions, 24-24 April 1989, Ankara, Turkey, Doga Turk Fizk Astrofkik Dergki 1900. 74 (l), Suppl. [PA A90103620] (D7) Proceedings of the 11th Int. Conf. on the Appl. of Accelerators In Research and Industry, Denton. Texas, Nuclear Instr. Me1991, 856-657, 1-1330.

.

(DE) Petit, J.C.; b a n , J.C.; Della Mea, G. Nature 1990,344 (6267), 621-6. (D9) Amsei, G.; Menu, M.; Moulin, J.; Salomon, J. Nucl. Instrum. Methcds Phys. Res. 1990,845(1-4), 296-301. (D10) Olhrler, C.; Morland, H. J. S. Afr. J. Chem. 1990, 43 (3-4), 131-4. (D11) Olhrier, C.; Morland, H. J. J. Radioanal. Nucl. Chem. 1990, 745 (3), 239-44. (D12) Raisanen, J. Nucl. Instrum. Methods Phys. Res. 1990,A299 (1-3), 387-93. (D13) Krlstlansson. P.; Swietllckl, E. N w l . Instrum. Methods Phys. Res. 1990,649 (1-4), 98-105. (D14) Kramer, E. J. Physica B 1991, 773 (1-2), 169-98. (D15) Horn, K. M.; Lanford, W. A. Nucl. Instrum. MeUois Phys. Res. 1990, 645 (1-4), 256-9. (016) Shui, Y.; Wang, L.; Lei, G. Chin. Scl. Bull. 1989, 34 (lo), 877-9. (D17) Olabanjl, S. 0.; Cherubini, R.; Fazlnic. S.; Moschlni, 0.; Zaflropoulos, D. Nucl. Instrum. Methods Phys. Res. 1991, 656-B57(Pt. 2). 726-9. (D18) Guo. X. S.; Lanford, W. A.; Rodbell, K. P. Nucl. Instrum. Methcds Phys. Res. 1990,645(1-4), 123-5. (Dl9) Fallavier, M.; Benmansour, M.; Thomas, J. P. Nucl. Instrum. Memods Phvs. Res. 1990. 645(1-41. 130-4. (D20f Davis, J. W.’; Haasz, A. A.; Walsh, D. S. J. Nucl. Mater. 1990, 776- 777, 992-9. (D21) van den Heuvel, J. C.; Geerts, M. J.; Metselaar, J. W. Soiar Energy Materlek 1991. 22 (2-31. 185-94. (D22) Neltzert, H.’C.; Brie& M. J. Non-Crystalllne Solids 1989, 775(1-3), 75-7. (D23) Hartnen, T. M.; Miller, R. P. Pfoceedlngs of the SPIE-The Intwnat b M / Society for Optlcal Engineering 1990, 7307, 474-84. (D24) Bruley, J.; Madakson, P.; Llu, J. C. Nucl. Instrum. Methods In Phys. Res., Sect. 6 1990,645(1-4), 618-21. (D25) Windlschmann, H.; Epps, G. F. J. Appl. Phys. 1990, 68 (Il), 5665-73. (D26) WMlschmann, H.; Epps, G. F. J. Appl. Phys. 1991,69(4), 2231-7. (D27) Wlndlschmann, H. J. Vacuum Sci. Tech. A (Vacuum, Surfaces, and Fllms) 1991,9 (4). 2459-63. (D28) Brlere, M. A,; Wulf, F.; Braunig, D. ESSDERC ’89. 79th European SOlM state Devices Research Conference; Heuberger, A., Ryssei, H., Lange, P., Eds.; Springer-Verlag: Berlin, West Germany, 1989; 954-7 pp. (D29) Brlere. M. A,; Wulf, F.; Braunlg, D. Nucl. Instrum. Methods Phys. Res. 1990. 645 (I-4), 45-8. (D30) Lu, 2. H.; Grlffiths, K.; Norton, P. R.; Sham, T. K. Phys. Rev. S(C0ndensedMatter) 1991,44 ( l l ) , 5648-50. (D31) Nguyen, S. V.; Dobuzlnsky, D.; Dopp, D.; Gleason, R.; Gibson, M.; Frldmann. S. Thln SolM Fllms 1990, 793-794 (1-2), 595-609. (D32) Stein, H. J.; Peercy, P. S. J . Electrochem. SOC. 1990, 737 (IO), 3169-73. (D33) Bange, K.; Ottermann, C. R.; Anderson, 0.; Jeschkowski, U.; Laube, M.; Felle. R. Thin SolM Fllms 1991, 797(1-2). 279-65. (D34) Spits, R. A.; Derry, T. E.; Prlns, J. F.; Sellschop, J. P. F. Nucl. Instrum. Methods Phys. Res. 1991,659-660 (Pt. 2), 1366-71. (D35) Robertson, J. D.; Bates, J. B.; Dudney, N. J.; Zuhr, R. A. Nucl. Instrum. Methods Phys. Res. 1991,656-657 (Pt. 2), 722-5. (D36) Terwagne, 0.; Lucas, S.; Bodart, F. Nucl. Instrum. Methods Phys. Res. 1991,659-660 (Pt. I), 93-7. (D37) Lucas, S.; Terwagne, G.; Bodart, F. Nucl. I n s t ” . Methods Phys. Res. 1990,650 (I-4), 401-5. (D36) Asomoza, R.; Maldonado, A.; Rlckards, J.; Zlroni, E. P.; Farlas, M. H.; Cota-Araiza, L.; Soto, G. Thin Solid Fllms 1991,203 (I), 195-201. (D39) Nlelsen, B. R.; Torp, B.; Rangel, C. M.; Simpllclo, M. H.; Consigllerl, A. C.; DaSlhra, M. F.; Pasztl, F.; Soares, J. C.; Dodd, A.; Kinder, J.; Pitaval, M.; Thevenard, P.; Wing, R. G. Nucl. Instrum. Methods Phys. Res. 1991, 659-680 (Pt.2), 772-7. (D40) Tosello, C.; Granon, L. M.; Keune, W.; Brand, R. A.; Lo Rwso, S.; Parellada, J.; Fernandez, J. M.; Marest, G.; El Khakanl. A.; Prlncipl, G.; Gupta, A. Nucl. Instrum. Methods Phys. Res. 1991, B59-660 (Pt. I), 545-9. (D41) Tapper, U.; Vuorinen. H.; MussaioRauhamaa, H. Nucl. Instrum. Methods Phys. Res. 1990,849 (I-4), 245-9. (D42) Demortler, G. Spectroscopy (Eugene, Oreg.) 1989,4 (6), 35-40. (D43) Bonl, C.; Caridl, A.; Cereda, E.; B r a g Marcazzan, G. M.; Redaelll, P. Nucl. Instrum, Methods Phys. Res. 1990,649 (1-4)> 106-10. (D44) Bonl, C.; Caridl, A.; Cereda, E.; Marcazzan, G. M. B. Nucl. Instrum. Methods Phys. Res. 1990, 647 (2), 133-42. (D45) Hall, G. S. Nucl. Instrum. Methods Phys. Res. 1990, 649 (I-4), 60-4. (D46) MacArthur, J. D.; Ma, X. P.; Palmer, G. R.; Anderson, A. J.; Clark, A. H. Nucl. Inshum. Methods Phys. Res. 1990,645 (1-4), 322-6. (D47) Frey, H. U.; Otto, G. Froc.--Meet. Nucl. Anal. M e w , 4th. Volume 7 ; Niese, S., Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1987; 88-91 pp. (D48) Vogt, J.; Zscheu, H. E.; Otto, G. Proc.--Meet. Nucl. Anal. Methods, 4th, Volume 7; Nlese, S., Ed.; Cent. Inst. Nucl. Res. Rossendorf Acad. Sci. GDR: Dresden, Ger. Dem. Rep., 1987; 304-10 pp. (D49) Lappalainen, R.; Hiwonen, J. P.;Pokela. P. J.; Alanen, J. Thln SoM Fllms 1989, 787, 259-66. (D50) Kelnonen. J.; Ralsanen, J.; Rauhaia. E. Stud. H/gh Temp. Supercond. 1990,4,239-61. (D51) Hall, 0. S.; Lee. M. L. Nucl. Instrum. Methods Phys. Res. 1990,649 (I-4), 573-6. (D52) Malsch. T.; Schuele, V.; Ouenzler, R.; Oberschachtslek, P.; Welser, M.; Jans. S.; Izsak, K.; Kalbitrer. S. Nucl. Instrum. Methods Phys. Res. 1990,650 (I-4), 1-9. (D53) Gujrathl, S. C.; Hetherington, D. W.; Hlnrichsen. P. F.; Bentourkla. M. Nucl. Instrum. Methods Phys. Res. 1990,645 (1-4), 260-4.

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

19R

NUCLEAR AND RADIOCHEMICAL ANALYSIS (D54) LCScholz, A.; Scholz, W.; Stevenson, K. A. Appl. Phys. Lett. 1990, 56 126). 2696-8. (D55) 'LCScholz, A.; Scholz. W.; Stevenson, K. A. Nucl. Instrum. Methods Phys. Res. 1991, 656-657 (Pt. 2), 772-5. (D56) Sofleld, C. J. Nucl. Instrum. Methods Phys. Res. 1990, 645 (1-4), 684-8. (D57) Vlckrldge, I.; Amsei, G. Nucl. Instrum. Methods fhys. Res. 1990, 645(1-4). 6-11. (D58) Leavitt, J. A.; McIntyre, L. C., Jr. Nucl. Instrum. Methods Phys. Res. 1991, 656-657 (Pt. 2), 734-9. (D59) Bozoian, M. Nucl. Instrum. MethodsPhys. Res. 1991, 656-657(Pt. 2), 740-3. (D60) Sharma, R. P.; Rehn, L. E.; Baldo, P. M.; Llu, J. 2. Phys. Rev. Lett. 1989, 82 (24), 2869-72. (D61) Rehn, L. E.; Sharma, R. P.; Baldo, P. M.; Llu, J. 2. "9.Instrum. Methods Phys. Res. 1990, 648, 200-6. (D62) Sharma, R. P.; Rehn, L. E.; Baldo, P. M. Phys. Rev. 6 1991, 43 (l6), 13711-13. (D63) Rehn, L. E.; Sharma, R. P.; Baldo, P. M.; Chang, Y. C.; Jiang, P. 2. Phys. Rev. 6 1990. 42(7), 4175-82. (D64) Rehn, L. E.; Sharma, R. P.; Baldo, P. M. Thin Fllms and &am-Sol@ Interactions; Huang, L., Ed.; Elsevier Science Publlshers B. V.; Amsterdam, 1991; 287-96 pp. (D65) Sharma. R. P.; Rotella, F. J.; Jorgensen, J. D.; Rehn. L. E. Physlca C 1991, 774, 409-422. (D66) Jervls, T. R.; Nastasl. M.; Hirvonen, J.-P.; Zocco, T. G. AIP Conference Roceedlngs 1991, (231), 652-5. (D67) Kobayashi, T.; Mlshlma, 0.; Iwakl, M.; Sakalrl, H.; Aono. M. Nucl. Instrum. Methods Phys. Res. 1990. 645 (1-4), 208-11. (D68) Dobeli. M.; Haubert. P. C.; Tombrello. T. A.; Chyl, J.4; Huang. D.; Morkoc, H. Nucl. Instrum. Methods Phys. Res. 1990, 652 (1). 72-8. (D69) Paln, 0. N.; Russo, S. P.; Eiiiman, R. 0.; Wleiunski, L. S.; Gao, D.; Glanvlll, S. R.; Rossouw, C. J.; Stevenson, A. W.; Rowe. R. S.; Deacon, G. B.; Dickson, R. S.; West, B. 0. Meter. Forum 1991, 75(1), 35-43. (070) Russo. S. P.; Elllman. R. G.; Johnston, P. N. Long-Wave/ength Semlconductor Devlces, Meterials and Rocesses Symposium; Katz, A., Biefeld, R. M., Gonshor, R. L., Malik. R. J.. Ed.; Mater. Res. SOC.: Pbburgh, PA, 1991; 23-8 pp. (D71) Kin Man Yu.; Chan, K. T. Appl. Phys. Lett. 1990, 56(1), 45-7. (D72) Paccagnella, A.; Callegarl, A.; Carnera, A.; Gasser, M.; Latta, E.; Murakaml, M.; Norcott, M. J . Appl. Phys. 1981, 69 (4), 2356-64. (D73) Della, Mae, G. Doga Turk Flzlk Astrollzlk Derglsl 1890, 74 (3), 179-214. (D74) Arnold, G. W.; Brow, R. K.; Myers, D. R. J. Non-Crystalllne SolMs 1990, 720 (1-3), 234-40. (D75) Mader, A.; Meyer, J. D.; Thee, P.; Bethge, K. Nucl. Instrum. Methods Phys. Res. 1990, 650 (1-4), 35-8. (D76) Akes, E.; Da Slka, M. F.; Soares, J. C.; Melo, A. A.; May, J.; Haslar, V.; Seidl, P.; Feuser, U.; Vianden, R. Nucl. Instrum. Methods Phys. Res. 1991, 655 (1-4), 580-4. (D77) Pivln, J. C. J . Meter. Scl. 1990, 25 (6), 2743-53. (D78) Montero, I.; Jlmenez, C.; Perrlere, J. Surf. Scl. 1981, 257-252, 1038-43. (D79)-Jervis, T. R.; Williamson, D. L.; Hirvonen, J.-P.; Zocco, T. G. Meter. Lett. 1990. 9 110). 379-83. (D80) Cere&, E.; B r a g Marcarzan, G. M.; Parmlgianl, F.; Scagliotti, M. Nucl. I n s t " . Methods Phys. Res. 1990. 650(1-4). 48-51. (D81) Arnold, G. W.; Rye, R. R. Nucl. Instrum. Methods Phys. Res. 1990, 646 (1-4), 330-3. (D82) b u m , E. M.; LI, H.; Guarr, T. F.; Robertson, J. D. Nucl. Instrum. Methods Phys. Res. 1991, 956-657, 761-3. (D63) Slngh, R. K.; Narayan, J. J . Meter. Res. 1990, 5 (9), 1793-8. (D84) Pretorius, R.; Bezuidenhout, D. Nucl. Instrum. Methods Phys. Res. 1990, 650 (1-4), 105-8. (D85) Forster, J. S.; Alexander, T. K.; Phlillps, D.; Tapping, R. L.; Laursen, T.; Leslle, J. R. Nucl. Instrum. Methods Phys. Res. 1891, 6515-657(Pt. 2), 821-4. (D86) Chaturvedl, U. K.; Stelner, U.; Zak, 0.; Krausch, G.; Schatz, G.; Kleln, J. Appl. Phys. Lett. 1990, 56(13), 1228-30. (D87) Boutard, D.; Gudowska, I.; Scherzer, B. M. U.; Moiler, W. J. Appl. PhyS. 1990, 68 (9,2068-72. (D88) Laursen, T.; Leslie, J. R.; Tapping, R. L. J . Nucl. Mater. 1981, 782, 151-7. (D89) Wampier, W. R.; Richards, P. M. Phys. Rev. 6 1990, 47 ( l l ) , 7483-90. (D90) Wampler, W. R. J . Appl. Phys. 1991, 69(5), 3063-7. (091) Roblnson, S. L.; Moody, N. R.; Myers, S. M.; Farmer, J. C.; Greulich, F. A. J. Electrochem. Soc.1990, 737(5). 1391-7. (D92) Allen, W. R. Nucl. Instrum. Methods Phys. Res. 1991, 967 (3), 325-36. (D93) Zhang. F.; He, D.; Song, 2.; Chen, G. Physlca Status SolMl A 1990, 778 (I), K17-20. (D94) Terwagne. 0.; Lucas, S.; Bodart, F.; Sorensen, 0.; Jensen, H. Nucl. Instrum. Methods Fhys. Res. 1990, 845(1-4), 95-9. (D95) Scanion, P. J.; Rldgway, M. C.; Brongersma, H. H. Nucl. Instrum. Methods Phys. Res. 1990, 645 (1-4). 615-17. (D96) Bethge, K.; Mader. A.; Meyer, J. D. Nucl. Instrum. Methods Phys. Res. 1991, 956-657 (Pt. 2), 806-8. (D97) PerezCasero, R.; Perrlere, J.; Enard, J. P.; Straboni, A.; Vulllermoz, B.; Cilment, A.; Martinez-Duart, J. M. J . Appl. Phys. 1991, 69 (3). 1407-10. (D98) Stoquert, J. P.; Fogarassy, E.; Stuck, R.; Gulllaume. G.; Slffert, P.; Perriere, J. S I A , Surf. Interface Anal. 1990, 75 (l), 57-61. (D99) Allen, W. R.; Lewls, M. B. Nucl. Instrum. Methods Phys. Res. 1990, 657 (4), 330-8.

20R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

(D100) W w l , M.; Balkenende, A. R.; Qljzeman. 0. L. J.; Lelbbrandt, 0. W. R.; Habraken. F. H. P. M. Surf. Scl. 1991, 254(1-3), L428-32. (D101) Lelbbrandt. 0. W. R.; Deckers, S.; Wiegel, M.; Habraken, F. H. P. M. Surf. Scl. 1991 244 (1-2). L101-6. (D102) Brault, P.; Ranson, P.; Estrade-Szwarckopf, H.; Rousseau, 6. J . Appl. Php. 1990, 68 (4), 1702-9. (D103) Ren, C.; Zhou, S.; Che, J.; Hu, Y.; Chen, J.; Fang, D.; Yang, F. Nud. SCl. Tech. 1991, 2(1), 13-18. (D104) Zhu, J.; Ll, M.; Mao, Y.; Chen, H.; Gu. Y.; Yang, C.; Sheng, K. Nucl. SCl. Tech. 1990. 7 (4), 203-10. (D105) Trocelller, P.; Mosbah, M.; Toulhoat, N.; Tlrlra, J.; Gosset, J.; Masslot, P.; Engelmann, C. Nucl. I n s t " . Methods Phys. Res. 1990, 650 (1-4), 247-51. (D106) (;rime, G. W.; Dawson, M.; Marsh, M.; McArthw, 1. C.; Watt, F. Nucl. Instrum. Methods Phys. Res. 1991. 654 (1-3), 52-63. (D107) Sunde, T.; Nystroem, J.; Llndh. U. Nucl. Instrum. Methods Phys. Res. 1991, 954 (1-3), 80-3. (D108) Lindh, U. Nucl. Instrum. Methods Phys. Res. 1990, 6.49 (1-4), 451-64. (DlO9) Doyle, B. L.; Walsh, D. S.; Lee, S. R. Nucl. Instrum. Methods Phys. Res. 1991, 954 (1-3), 244-57. (D110) Swletllckl, E.; Loevestam, N. E. G.; Waetjen, U. Nucl. Instrum. Methods Phys. Res. 1991. 667 (2). 230-5. ( D l l l ) Pallon, J.; Krlstlansson, P. Nucl. Instrum. Methods Phys. Res. 1090, B49 (1-4), 70-3. (D112) Themner, K. Nucl. Instrum. Methods Phys. Res. 1991, 654 (1-3), 115-17. (D113) Cholewa, M.; Bench, 0.; Kirby, B. J.; Legge, G. J. F. Nucl. Instrum. Methods Phys. Res. 1981, 654 (1-3), 101-8. (D114) Demortier, G.; Decroupet, D.; Mathot. S. Nucl. Instrum. Methods Phys. Res. 1991 654 (1-3), 346-52. (D115) Saint, A,; Dyson, N. A. 6r. J . Urol. 1990, 66(3), 232-9. (D116) Coote, 0. E.; Gauldie, R. W.; West, I. F. Nucl. Instrum. Methods Phys. Res. 1981, 654 (1-3), 144-50. (D117) Plnhelro, T.; Tapper, U. A. S.; Stwesson. K.; Brun, A. Nucl. Insbum. Methods Phys. Res. 1991, 654 (1-3), 186-90. (D188) Chaudhrl, M. A. BIOI. Trace Elem. Res. 1890, 26-27, 149-59. (D119) Courel, P.; Trocellier, P.; Mosbah, M.; Toulhoet. N.; Gosset, J.; Masslot, P.; Plccot, D. Nucl. Instrum. Methods Phys. Res. 1991, 654 (1-3), 429-32.

(D120) Mosbah, M.; Metrlch, N.; Masslot, P. Nucl. Instrum. Methods Phys. Res. 1991. 658(2), 227-31. (D121) Bah, S . ; Traxel, K. Nucl. Instrum. Methods Phys. Res. 1991, 654 (1-3). 317-24. (D122) "Toulhoat, N.; Trocelller, P.; Masslot, P.; Gosset, J.; Trabelsl, K.; Rouaud, T. Nucl. Instrum. Methods Phys. Res. 1991, 654 (1-3), 312-16. (D123) Mathot, S.; Demortler, G. Nucl. Instrum. Methods Phys. Res. 1990, 650 (1-4), 52-6. (D124) Seklguchi, H.; Nlshijlma, T.; Nashiyama, I.; Kobayashi, N.; Misawa, T.; Yoshlda. S. Nucl. Instrum. Methods Phys. Res. 1991, 654 (1-3), 225-30. (D125) Jamleaon, D. N. Meter. Forum 1990. 75(1). 51-6. (D126) Jamieson. D. N.: Romano. L. T.: Grime. G. W.: Watt. F. Meter. &fact. 1890, 25 (I), 3-15. (D127) Bakhru, H.; Morris, W. G.; Haberl, A. Nucl. Scl. Tech. 1980, 7(1-2), 70-5 . - -. (D128) Trocelller, P.; Tlrira, J.; Masslot, P.; Gosset, J.; Costantlnl, J. M. Nucl. Instrum. Methods Phys. Res. 1991, 654 (1-3), 118-22.

ISOTOPE DILUTION ANALYSIS (El) Lutz, R. A.; Steiner, F. P.; Benke, D.; Mertens, S.; Mlnder, E.; Vonderschmitt, D. J . Recept. Res. 1881, 7 7 (1-4), 79-89. (E2) Venturino, A.; Rlvera, E. S.; Bergoc, R. M.; Caro, R. A. Nucl. Med. Biol. 1990, 77 (2). 233-7. (E3) Amador, A. G.; Hodges, S. L. Comput. 6/01. Med. 1989. 79 (5), 343-51. (E4) Fukal. L. Chem. Rum. 1989, 39(8), 430-3 [CA 112: 131192tl. (E5) Van Wouwe, J. P.; Perelra, R.; Rodrlgues, R. ACS Symp. Ser. 1981, 445, 344-9. (E6) Reddy, P. C.; Polalah, B.; Rangamannar, B. Radlolsotopes 1990, 39 (1I), 496-8.

DIRECT COUNTING OF NATURAL AND LONG-LIVED RADIONUCLIDES (Fl) Galloway, R. B. Meas. Scl. Techno/. 1891, 2(10), 941-5. (F2) Yamato, A. Low-Level Meas. Men-Made Radionudkjes Envbon., Roc. Int Summer Sch ., 2nd, h4eetlng Date 7990; Garcialeon, M.; Madurga, G.; Eds.; World Sci.: Singapore, 1991; 195-216 pp, (F3) Rosner, G.; Hoetzl. H.; Winkler, R. Fresenlus. J. Anal. Chem. 1990, 338 (5). 606-9. (F4) Harvey, B. R.; Lovett, M. B. Low-Level Meas. Men-&& Radionuclides Envlron., Roc. Int. Summer Sch.. 2nd. Meeting Date 1990; GarclaLeon. M.; Madurga, G., Eds.; World Sci.: Singapore, 1991; 239-62 pp. (F5) Vaney, 8.; Frledll, C.; Geering, J. J.; Lerch. P. J . Radioanal. Nucl. Chem. 1989, 734 (l), 87-95. (F6) She, L.; Wang, 2.; Wang, F.; Su, H.; Qlu, Y. Huen/lng Kexue 1990, 17 (2), 51-5 [CA 773(23): 207501ml. (F7) Bunzl. K.; Kracke, W. J. Radioanal. Nucl. Chem. 1991, 748 (l), 115-19. (F8) Kawamura, K.; Nagasawa, T.; Takizawa, Y.; Fuzitanl. S.; Arlma, S.; Nagayama, N.; Klmura, T. Nlppon 6unsekl Senta Koho 1990, 78, 58-68 [CA 173 (22): 199569x1. (F9) Rauret, G.; Mestres, J. S.; Ribera, M.; Rajadel, P. Analyst (London) 1990, 775(8), 1097-101. (F10) Zeng, X.; Chen, Y.; Xu, S.; Liu, J. Halyang Xuebao (Zhongwenban) 1990, 72 (6), 723-32 [CA 7 75 (6): 59098]].

.

NUCLEAR AND RADIOCHEMICAL ANALYSIS (F11) Stewart, B. D. J. Radioanal. Nucl. Chem. 1989, 737(2), 213-218. (F12) Galloway. R. B. M a s . Scl. Techno/. 1990, 7 (E), 725-30. (F13) Nevlss, A. E. J. Radbanal. N w l . Chem. 1991, 748(1), 121-31. (F14) Mrnustlk, J.; Kominek, A.; Mrnustikov, M. Radbisotopy 1989, 30 (6). 408-20. (F15) Lan, C. Y.; Weng, P. S. Malth Phys. 1989, 57 (9,743-6. (F16) Kerr. G. D.; Dyer, F. F.; Emery, J. F.; Pace, J. V., 111; Brodzinski, R. L.; Marcum, J. Report, ORNL-6590, From: Energy Res. Abstr. 1990, 75(9), Abstr. NO. 22760, 1990; 83 pp [CA 714 (16): 15269711. (F17) Kknura, T.; Takano. N.; Iba, T.; Fujlta, S.; Watanabe, T.; Maruyama, T.; Hamada, T. NippOn Bunseki Senta Koho 1991, 19, 30-6. (FIE) Hoshl, M.; Yokoro. K.; Sawada, S.; Shlzuma, K.; Iwatanl, K.; Hasai, H.; Oka, T.; Morlshlma, H.; Brenner, D. J. Health Phys. 1989, 57(5), 831-7.

(H29) Yang, J. Y.; Yang, M. H.; Lin, S. M. Anal. Chem. 1990, 62 (2), 146-50. (H30) Yokota, K.; Ochi, M.; Nishkla, K.; Salto, T.; Kimura, I.; Ishhara, S.; Sasajlma, K. Kyoto Dalgaku Genshho Jlkkensho, [Tech. Rept.] 1989, KURRI-TR-326, 31 [CA 773 (12): 108331~]. (H31) Elnerhand, R. E. F.; Vlsscher, W.; De Goelj, J. J. M.; Barendrecht, E. J . Electrochem. SOC. 1991, 738(1). 7-17. (H32) Samudralwar, D. L.; Weginwar, R. G.; Garg. A. N. J . Radbenal. Nucl. Chem. 1989, 737 (l), 3-10. (H33) Lang, S.; Raunemaa, T. Radlet. Res. 1991, 726(3), 273-9. (H34) Hansen, H. S.; Hove, K. Health Phys. 1991, 60 (9,665-73.

TRANSMISSION, ABSORPTION, AND SCAllERINQ METHODS

(11) Ruffet, 0.; Feraud, G.; Amourlc, M. Gmchlm. Cosmochlm. Acta 1991,

(Gl) Huaseln. E. M. A.; Lord, P. M.; Bot. D.L. Nucl. Instrum. Methods Phys. Res. 1990, A299 (1-3), 453-7. (G2) Gordon, C. M.; Peters, C. W. Appl. Radlet. Isot. 1990, 47, 1111. (G3) Sutcllffe, J. F.; Waker, A. J.; Smkh, A. H.; Barker, M. C. J.; Smith, M. A. i'.hvs. Med. Bbl. 1991, 36, 87. (G4) MacKenzle, I.K. Can. J . Phys. 1989, 67(8), 827-35. (05) Wan, C.; Blan, 2.; Wu, T.; Tang, X. Chln. Sci. Bull. 1989, 34 (13). 1076-80. . - . - - -. (06) Wesolinskl, E. S.; De Jesus, A. S. M. Nucl. Tech. .€~plor. Exploit. Energy Mlner. Resour., R o c . Int. Symp., Meeting Date 7990; IAEA Vienna, Austrla, 1991; 33-46 pp. (07) Watt, J. S.; Zastawny, H. W.; Rebgetz, M. D.; Hartley, P. E.; Ellis, W. K. Nucl. Tech. Explor. Exploir. Energy Mlner. Resour., Roc. Int. Symp ., Meeting Date 7990; IAEA: Vienna, Austria, 1991; 481-98 pp. (G6) Respaldlza, M. A.; Barranco, F.; Gomez-Camacho, J.; Gomez-Tublo, E. M.; Rulz-Ddgado, M. M. Nucl. Instrum. Methods Phys. Res. 1990, B50 (1-4), 226-30. (G9) Holmes. R. J.; Downie, S. P.; Aylmer, J. A.; Braunshausen, 0. Nucl. Tech. E x p h . Expldt. Energy Miner. Resour., Roc. Int. Symp .) Meeting Date 7990; IAEA: Vienna. Austrla, 1991; 169-65 DD. (G10) Frenzel, M.; Wa ner, D.; (beldner, R.; Urbanski, P. Isofopenpraxis 1989, 25(3), 120-3yCA 7 7 7 (22): l98235gl (G11) Vullkaj, I. Bul. Shkenceve Net. 1989, 43 (3), 64-9 [CA 174 (14): 13534211. '

ISOTOPIC DATING METHODS 55 (6), 1675-88. (12) Sarkar, A. Indlen Miner. 1989, 43 (2), 151-3. (13) Joshi, S. R.; Shukla, B. S. J . Radioanal. Nucl. Chem. 1991, 748(1). 73-9. (14) Joshl, S. R. Environ. Geol. Water Sci. 1989, 14 (3), 203-7.

STANDARDS FOR ELEMENTAL ANALYSIS

(J1) Wolf, W. R.; Stoeppler, M. Fresenius. J . Anal. Chem. 1990, 338(4). 359-581. (J2) Wise, S. A.; Benner, 8. A.; Christensen, R. G.; Koster, B. J.; Kurz, J.; Schantz, M. M.; Zelsler, R. Environ. Sci. Tech. 1991, 25 (loo), 1895-1704. (J3) Schantz, M. M.; Benner, B. A., Jr.; Chesler, S. N.; Koster, B. J.; Hehn, K. E.; Stone. S. F.; Kelly, W. R.; Zeisler, R.; Wise, S. A. Fresenius. J . Anal. Chem. 1990, 338 (4), 501-14. (J4) Kucera, J.; Soukal, L. J . Radioanal. Nucl. Chem. 1989, 734 (I), 209-19. (J5) Watjen, U.; Schroyen, D.; Bombelka, E.; Rietvekl, P. Nucl. Instrum. Methods Phys. Res. 1990, B50(1-4), 172-6. (J6) Ingelbrecht, C.; Peetermans, F.; De Corte, F.; De Wlspelaere, A.; Vandecasteeie, C.; Courtljn, E.; D'Hondt, P. Nucl. Instrum. Methods Phys. Res. 1991, A303 (I), 119-22. (J7) Queirolo, F.; Ostapczuk, P.; Valenta, P.. Stegen, S.; Marin. C.; Vlnagre, F.; Sanchez, A. Fresenius. J . Anal. Chem. 1991, 340 (l), 63-4. (J8) Woittiez, J. R. W. Fresenlus. J . Anal. Chem. 1990, 338 (4), 575-9. (J9) Das, H. A. J. Radioanal. Nucl. Chem. 1990, 740(2), 387-93. RADIOACTIVE TRACERS (J10) Suzukl, S.; Katsuragl, N.; Hiral. S. Buns&/ Kagaku 1991, 40 (E), 421-424 [11023605]. (Hl) Lear, J. L. J . Cereb. B M F l o w M e t a b . 1988, 8(4), 443-8. (J11) WdweZ, J. R. W.; Geusebroek, M. ECN [Rep.],ECN-221, 1989; 16 pp (H2) Varkl, A. FASEB J. 1991, 5 (2), 226-35. [ CA 7 I 7 (25); 226705fl. (H3 Chatal, J. F. Ann. Endocrinol. (Paris) (France) 1990, 57 (3-4), 144-7 (J12) Suzuki, S.; Hiral, S. ACS Symp. Ser. 1991, 445, 221-39. lMedlIne 91151015]. (J13) Suzuki, S.; Hiral, S. Bunseki Kagaku 1990, 39 (5), 255-60. (H4) Bergmann, S. R. Mol. Cell Blochem. 1989, 88 (1-2), 201-9. (H5) Ceraueira. M. D.; Jacobson, A. F. J . Radio. (France) 1991, 72 (l), (J14) Smcdk, B.; Jacimovlc, R.; Jovanovic, S.; Stegnar, P. B M . Trace Elem. Res. 1990, 26-27, 43-51. ' 23-34 [Medllne 911663531. (J15) Motkosky. N.; Fernando. A. R.; Kratochvil, 8. Can. J . Chem. 1990, 68 (H6) Spencer, R. P.; Gupta, S. M. Cr/t. Rev. Clln. Lab. Sci. 1989, 27(4), (9,735-40. -299-318. - - - .-. (J16) Lavi, N.; Heydorn, K. J. Radioanal. Nucl. Chem. 1991. 748 (2). (H7) Flachowsky. J.; Fiedler, P.; Hoentsch, E.; Mauersberger, K.; Rudolph, K. 257-63. P.; Wagler, H.; Deicke, H. H.; Lange, A. ZfI-Mltt. 1989. 750, 239-50. (J17) Freltas, M. C.; Martinho, E. Talenta 1989, 36 (4), 527-31. (HE) B M . D.; Fekma, R. 1.; Wasser, M. N.; Nleuwenhuken, W.; Pauwels, E. (J18) Freltas, M. C. Bbl. Trace Elem. Res. 1990, 26-27, 189-94. K. Int. J . Rad. Appi. Instrum [ B ] 1989, 76(1), 11-6. (J19) Byrne, A. R.; Versieck, J. B b / . Trace Elem. Res. 1990, 26-27, (H9) van Nlspen, J. W.; Janssen, W. P.; Melgers, P. A.; Janssen, P. S.; 529-40. Jansen, J. F.; Vaalburg, W. Int. J . Pept. Rotein Res. (Denmark) 1990, (J20) Byrne, A. R.; Kucera, J. Fresenius. J. Anal. Chem. 1991, 340 (I), 36 (2), 167-72. 46-52. (H10) Sharma, S. D.; Toth, G.; Hruby, V. J. J . Org. Chem. 1991, 56(6), (J21) AMoborl. S. M.; Shihab. K. M.; Jalil, M.; Saad, A.; Mohsln, A. Bid. 4981-3. Trace Elem. Res. 1990, 26-27. 637-45. (H11) PI'",P.; Ramombordes, C.; Perret. C.; Ronco, P.; Budisavljevlc, M.; (J22) Moauro, A.; Carconl, P. L. J . Radioanal. Nucl. Chem. 1989. 132(1), Verroust, P.; Beaucourt, J. P. J. Labelled Compd. Radbpharm. 1991, 29 87-75. (5), 575-61. (J23) Suzukl, S.; Salto, K.; Hiral, S. Musashl Kogyo Dalgaku Genshkyoku (HI21 Rosenspire, K. C.; Haka, M. S.; Van Dort, M. E.; Jewett, D. M.; GilderKenkyusho Kenkyu Shoho, Volume Date 7988 1989, (15), 109-13 [CA sleeve. D. L.; Schwaiger, M.; Wleland, D. M. J . Nucl. Med. 1990, 37 (E), 7 7 7 (24): 219031el. 1328-34. (J24) Masumto, K.; Yagi, M. Kakuriken Kenkyu Hokcku (Tohoku Dalgaku) (H13) Patel, H. 8.; Hosain, F.; Spencer, R. P.; Scharf, H. D.; Skulskl. M. S.; 1990. 23 (2), 234-43 [CA 715 (2): 1436961. Jansujwicz, A. N w l . Med. Bbl. 1991, 78(5), 445-7. shi, S.; Kambka, H.; Tanaka, T.; Ando, A. Ganko 1990, 85 (3), (H14) Yokoi, T.; Sagisaka, K. Forensic Sci. Int. 1989, 47 (1-2), 117-24. (J25) 91-7 CA 774(12): 106233rl. (H15) Frey, K. A.; Hichwa, R. D.; Ehrenkaufer, R. L.; Agranoff, B. W. R o c . (J26) NI, B.; Tlan, W. J . Radioanal. Nucl. Chem. 1991, 157 (I), 159-65. Natl. Acad. Scl. U . S . A . 1985, 82(19), 6711-5. (J27) Freltas, M. C.; Martinho, E. Anal. Chim. Acta 1989, 279 (2), 317-22. (Hl6) Stein, J. M.; Smith, G. A.; Luzlo, J. P. Biochem. J. 1991, 274 (2), (J28) Ismall, S. S.; Grass, F. Chem. Erde 1989, 49 (3), 235-40. 375-9. (J29) Spevackova, V.; Kucera, J. Int. J . Environ. Anal. Chem. 1989, 35 (H17) John, E. K.; Green, M. A. J . Med. Chem. 1990, 33 (6), 1764-70. (4), 241-51. (H18) Galls. 2.; Ghltescu, L.; Slmlonescu, M. Eur. J . Cell Bbl. 1988, 47(2), (J30) Ochsenkuhn-Petropoulou, M.; Ochsenkuhn, K.; Luck, J . Spectrochlm. 358-65. Acta, Fart B 1991, 468 (1). 51-65. (Hl9) Hosoya, N.; Hldaka, H. Spec. Pubid?. Soc.Chem. 1989, 72.325-6. (J31) Ismail, S. S.; Grass, F. Mlkrochlm. Acta 1989, 2(4-6), 219-24. (H20) Wehmeyer, K. R.; Kastlng, 0. B.; Powell, J. H.; Kuhlenbeck, D. L.; (J32) Frost, J. K. Geostand, News/. 1991. 75 (l), 43-50. Underwood, R. A.; Bowman, L. A. J . pharm. B i d . Anal. 1990. 8 (2). 177-R.1 (J33) Gerler, J.; Peucker-Ehrenbrink, B. J . Radioanal. Nucl. Chem. 1991, ,. 755 (1). 55-63. (H21) Jensen, M. D.; R w r s , P. J.; Eiiman, M. 0.; Miles, J. M. Am. J. Phys/o/. 1988, 254 (5, Pt. l), €562-5. INSTRUMENTATION (H22) Miller, A. L.; Hatch, J. P.; Prihoda, T. J. Metab. Brain Dis. 1990, 5 (4). 195-204. (Kl) Rossbach, M.; Zelsler, R.; Woittiez, J. R. W. Bid. Trace Elem. Res. (H23)-&nsoll, A.; Nurjhan, N.; Gerich, J. Clin. physiol. Biochem. 1989, 7 1990, 26-27, 63-73. (2), 70-8. (K2) Wormald, M. R. Nucl. Oeophys. 1989, 3 (4). 461-6. (H24) Mac(3lchrkt, A. J.; Hawksby, C.; Howes, L. G.; Reid. J. L. GerontologV (K3) Edward, J. B.; Beeley, P. A.; Bennett, L. 0. I.; Anderson, A.; Burbldge, 1989, 35 (l), 7-13. G. A. Nuci. Instrum. Methods Phys. Res. 1990, A299 (1-3), 276-60. (H25) Elsenhofer, 0.; Esler, M. D.; Meredith, I . T.; Ferrier, C.; Lambert, 0.; (K4) Delmastro, J. R.; Lewis, A. L.; Wade, M. A.; Dykes, F. W. Roc. Conf. Jennings, 0. Clin. Sei. 1991, 80 (3). 257-63. Remote Syst. Technoi., Volume Date 7989. 1990. 37th, 21-32. (H26) McCance, A. J.; Forfar, J. C. Clln. Sci. 1991, 80 (3), 227-33. (K5) Selma, I.; Almasl, L.; Zemplen-Papp, E. J . Radioanal. N w l . Chem. (H27) Clarke, M. S. F.; Klff, R. S.; Kumar, S.; Kumar, P.; West, D. C. Int. J . 1990, 740 (2), 263-70. Radlet. B M . 1991, 60 (1-2), 17-23. (K6) Doerfel,G.: Kubsch, M.; Manek. M.; Schoeps, V. Isotopenprexk 1989, (H28) Laster, B. H.; Popenoe, E. A.; Wleloplskl, L.; Commerford, S. L.; Gah. 25 (5), 215-19. bauer, R.; Goodman. J.; Meek, A.; Falrchlkl, R. G. RadiOther. Oncol. (K7) Lindstrom, R. M.; Lindstrom. D. J.; Salback, L. A.; Langland, J. K. Nucl. 1990, 79 (2), 169-78. Instrum. ~ e t h o d sm y s . Res. W ~ OA299 , (1-3), 425-9.

'"8"

. --.

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

21 R

Anal. Chem. l W 2 , 64, 22R-49R (K8) Asmad, I.; Betts. R. R.; Happ, T.; Henderson, D. J.; Wolfs, F. L. H.; Wuosmaa, A. H. Nucl. Instrum. Methods Phys. Res. 1990, A299, 201-4. (K9) Aggarwal, S. K.; Shah, P. M.; Duggal, R. K.; Jain, H. C. J . Radioanal. Nucl. Chem. 1890, 145(6), 369-401. (K10) Yang, D.; Zhu, Y.; Moeblus, S. J. Radloanal. Nucl. Chem. 1981, 747 (I), 177-89.

DATA ANALYSIS AND COMPUTATIONALMETHODS (L1) Edward, J. B.; Beeley, P. A.; Bennett, L. G. 1.; Poland, J. S. Biol. Trace €/em. Res. 1990, 2 6 - 2 7 , 53-61. (L2) Vanska, L.; Romberg, R. J. J. Radbanal. Nucl. Chem. 1991, 750 (2), 337-82. (L3) Ma, J. ICR-Rep.--Univ. Tokyo, Inst. Cosmic Ray Res., 204-89-21, 139 pp [CA 713 (4): 3383603. (L4) Jaegers, P.; Landsberger, S. Nffil. Instrum. Methods phvs. Res. 1990, 844 (4), 479-83.

-

(L5) Heimlich. M.: Beelev. P. A.: Pam. J. A. J . Radbanal. Nucl. Chem. 1989, 732 (2), 281-91.. (L6) Gunnink, R.; Ruhter, W. D. Report, UCRL-LR-103220-Vol. 2; From: EnergyRes. Abstr. 1990, 75(23), Abstr. No. 51373. 1990; 22 pp [CA 774 1221: 21636941. (L7j D’Ademo, D.; Franklin, M.; Guardini, S.; Varasano, G. Nucl. Meter. Manage. 1990, 79, 487-92. (L8) Pinauit, J. L. Nucl. Instrum. Methods Phys. Res. 1990, A305 (2), 462-474. (L9) Kennedy, 0. Nucl. Instrum. Methods Phys. Res. 1990, A209 (1-3). 349-353. (L10) Vlzkelethy, G. Nucl. Insfrum. Methods Phys. Res. 1890, 845 (1-4), 1-5. (L11) Amsel, G.; Vickrldge, I . Nucl. Instrum. Methods Phys. Res. 1990, B45(1-4), 12-15. (L12) Zhmodik, S. M.; Zolotov, B. N.; Shestel. S.T. Geol. Geoflr. 1989, (9, 132-6 [CA 714 (6):4671211.

Chemometrics Steven D. Brown,* Robert S. Bear, Jr., and Thomas B. Blank Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, Delaware 19716

INTRODUCTION Chemometrics is the discipline concerned with the application of statistical and mathematical methods, as well as those methods based on mathematical lo ic, to chemistry. This review, the ninth of the series, and t k seventh with the title “Chemometrics”, covers the more significant developments in the field from Dec 1989 to Nov 1991. The format follows that of the previous review ( A l ) of this subject. Not surprisingly, the number of citations of chemometrics in general continues to show steady growth in all areas. Approximately 15000 computer-generated citations were screened for this review. Table I gives some indication of the areas of growth and decline of interest and effort. As before, important articles on chemometrics were not detected in the searches of Chemical Abstracts. Unfortunately, hand searches of the journals where chemometrics articles were most likely to appear were still necessary to find many citations. In this review, about 10% of the citations appearing here resulted from hand searches. Apparently, work remains to be done on perfectin the chemometrics database and search methods. Keyword sefection by many authors remains the biggest obstacle to locating work on chemometrics. The automated searches located a good deal of work not relevant to a chemometrics review. The simplex category, in particular, can be pruned of many irrelevant citations (from 1078 to 38!)by choosing the search words more carefully. Another difficulty with automated searches-finding all relevant citations when many citations refer to misspelled or incorrect keywords-also hampered efforts to fully automate the gathering of references for the review. For example, 160 citations used “principal components” as a key word, but 17 citations referred to “principle components” in their list of key words. Fortunately, the misspellings continue to be minority members of searches, but they point out the need for better reviewing, editing, and more careful abstracting of chemometrics, because a database is no better than ita weakest entries. The citation frequencies given in the table, like many statistics, do not tell the whole story. Much of the field of chemometrics’ rapid owth is occurring in its breadth. The number of papers ap G n g chemometrics to fields on the edge of chemistry is muc: larger in this reported period than the last. Some novel applications in medicine, biology, biochemistry, and even information science were noted in this search. Chemometrics has clearly found a place in environmental studies, in clinical chemistry, and in the petroleum and food chemistry research laboratory, to name but a few. Duri the past 2 years, there was a significant increase in the nm%r of papers reporting a plications of chemometrics by workers in the Far East. SUC work accounted for about one-fith of all of the applications of chemometrics published during this review period. A few novel methods accompanied

R

22 R

0003-2700/92/036~22R%10.00/0

Table I. Number of CAS Entries Detected in Search

1/76l0/79

key word calibration chemometrics sampling theory multivariate analysis parameter estimation time series analysis spectral analysis optimal control systems analysis evolutionary operation operations research regression mathematical analysis statistics pattern recognition data reduction experimental design curve fitting spectral resolution deconvolution factor analysis principal components feature selection Fourier transform information theory signal processing peak fitting digital filtering least squares nonlinear regression nonparametric statistics simplex nonlinear calibration multiple regression multivariate calibration multivariate prediction artificial intelligence partial least squares image analysis expert systems neural networks

2312 8 2 52 68 20 1102 119 80

1 6 912 116 2072 232 70 266 120 21 133 175 46 8 34 227 44 6 4 315 30 1 27 7 61

period 1 /88ii/ag

L2/89-11/91

941 68

1114 69 2 69 69 60 198

1 59 46 4 225 39 22 2

0 379 26 2872 46 27 56 42 14 142 84 94

2 1359 35 76 3

11 143 24

10 984 3 16 21

0 85

0 1 414

19 1433 148 12 68 46 22 143 125 160 2 1588 14 62 5 9 176 23 2 1078 10 14 39

1

1

83 29 3 119 2

59 45 191 338 117

the flood of applications apers during this eriod. Because most of the work was pubLhed in journals wkch are difficult to obtain outside of the Far East, and most research was 0 1992 American Chemical

Society