(S44) Stevens, J. G., Stevens, V. E., Deason, P. T., Jr., Muir, A. H., Jr.. Coogan, H. M., Grant, R. W., Ed., "Mossbauer Effect Data Index. Covering the 1966-1968 Literature", IFVPlenum, New York, 1975,522 pages. 6 4 5 ) Stevens, J. G., Stevens, V. E., Ed., "Mossbauer Effect Data Index. Covering the 1973 Literature", IFI/Plenum. New York. 1975. 495 pages. (546) Stevens, J. G., Stevens, V. E., Ed.. "Mbssbauer Effect Data Index, Covering the 1974 Literature", IFl/Plenum, New York, 1975, 397 pages. (S47) Stohr. J., Phys. Rev. B, 11, 3559 (1975). (S48) Swartzendruber, L. J., Bennett, L. H., Schoefer, E. A., Delong, W. T., Campbell, H. C., Welding J., 53(1), S1 (1974). (S49) Szczephnski, A,. Bull. Acad. Pol. Sci., Ser. Sci. Tech., 23, 47 (1975). ( T l ) Taft. C. A., Raj, D., Danon, J., J. Phys. Chem. Solids, 36, 283 (1975). (T2) Takeda, M.. Tominaga, T., Saito,.N., J. inorg. Nuci. Chem., 36, 2459 (1974). (T3) Tennakoon, D. T. E., Thomas, J. M., Tricker, M. J., J. Chem. Soc., Dalton Trans., 2211 (1974). (T4) Thomas, J. M., Tricker, M. J., Winterbottom, A. P., J. Chern. SOC.,Faraday Trans. 2, 71, 1708 (1975). (T5) Thornton, E. W., Harrison, P. G., J. Chem. Soc.. Faraday Trans. 1, 71, 461 (1975). (T6) Tominaga, T., Gendai Kagaku (46), 32 (1975); Chem. Abstr., 62, 161913h (1975). (T7) Toriyama, T., Kigawa, M., Fujioka, M., Hisatake, K., Jpn J. Appl. Phys., Suppi. 2, Part 1, 733 (1974). (T8) Trautwein, A., "Structure and Bonding, Volume 20", J. D. Dunitz et al., Ed., Springer-Verlag, Berlin, 1974, p 101. (T9) Trautwein, A,, Harris, F. E., Dezsi, I., Theor. Chim. Acta, 35, 231 (1974). (T10) Trautwein, A,, Harris, F. E., Freeman, A. J.. Desclaux, J. P., Phys. Rev. B, 11, 4101 (1973). (T11) Trautwein, A., Kreber, E., Gonser, U.,
Harris, F. E., J. Phys. Chem. Solids, 36, 325 (1975). (T12) Tricker, M. J., inorg. Chem., 13, 742 (1974). (T13) Tricker, M. J., Thomas, J. M., Omar, M. H., Osman. A., Bishay, A,, J. Mater. Sci., 9, 1115 (1974). (T14) Turcanu. C. N., Filoti, G., Radiochem. Radioanai. Lett., 16, 23 (1974).
Kaindl, G., 2.Phys., 266, 223 (1974). (W3) Weyer. G.. Andersen, J. U., Deutch, B. I., Golovchenko, J. A.. Nylandsted-Larsen. A,. Radiet. Eff., 24, 117 (1975). (W4) Wildner, W., Pfannes. H.-D., Gonser, U., Z.Metaiikd., 66, 161 (1975). (W5) Williams, J. M.. Cryogenics, 15, 307 (1975). (W6) Window, E., Dickson, B. L., Routcliffe. P., Srivastava, K. K. P., J. Phys. E, 7, 916 (1974). (W7) Wissel, Ch., Solid State Commun., 17, 1011 (1975). (W8) Wittmann, F. H., lnd. Chim. Beig., 39, 693 (1974). (W9) Wood, L., Chapline, G., Nature (London), 252, 447 (1974). (W10) Woodhams, F. W. D., Howie, R. A,, Knop, O., Can. J. Chem., 52, 1904 (1974). (W11) Wooten, J. B., Long, G. G., Bowen, L. H., J. inorg. Nuci. Chem., 36, 2177 (1974).
(Ul) Uhrich. D. L.. Stroh, J., D'Sidocky, R., Fishel, D. L., Chem. Phys. Lett., 24, 539 (1974). (U2) Uhrich, D. L.. Aimiuwu, V. O., Ktorides. P. I., LaPrice, W. J., Phys. Rev. A, 12, 211 (1975). (U3) Uskov, V. A,, Prudovskii, V. I., Inorg. Mater. (USSR), 11, 131 (1975). ( V l ) van Diepen. A. M., Lotgering. F. K., J. Phys. Chem. Solids, 35, 1641 (1974). (V2) Varret. F., Imbert, P., J. Phys. Chern. Soiids, 35, 215 (1974). (V3) Varret, F., Imbert, P., Jehanno, G., SaintJames, R., Phys. Status Solidi A, 27, K99 (1975). (V4) Verma, R. N., Emery, G. T., Phys. Rev. B, g, 3666 (1974). (V5) Vertes, A,, Gaizer. F., Beck, M. T., Acta Chim. Acad. Sci. Hung., 60, 343 (1974). (V6) Vertes, A,, "5th Int. Conf. Mossbauer Spectroscopy, Proc.", M. Hucl, T. Zemcik. Ed., Czechoslovak Atomic Energy Commission, Praha 5,Zbraslav, 1975, p 179. (V7) Viegers, M. P. A,, Trooster, J. M., Nucl. instrum. Methods, 118, 257 (1974). (V8) Violet, C. E., Pipkom. D. N.. J. Appl. Phys., 42, 4339 (1971). (V9) Vogl, G.. J. Phys. (Paris), Colioq. C6, 35, 165 (1974). (V10) Vogl, W., Vogl, G., Solid State Commun., 17, 1029 (1975). (V11) von Meerwall. E., Comput. Phys. Commun., 9, 117 (1975). (Wl) Wagner, F. E., Potzel, W., Wagner, q., Schmidtke, H. H., Chem. Phys., 4, 284 (1974). (W2) Wagner, F. E., Kucheida, D., Zahn, U.,
( Y l ) Yagnik, C. M., Mazak. R. A,, Collins. R. L., Nuci. lnstrum. Methods, 114, 1 (1974). (Y2) Yajima, T., Hafner, S. S., Geochim. Cosmochim. Acta, Suppi. 5, 1, 769 (1974). (Y3) Yajima, S.,Omori. M.. Chem. Lett., 277 (1974). (Y4) Yakinthos, J. K., Chappert, J., Solid State Commun., 17, 979 (1975). (Y5) Yoshihashi, T., Sano, H., Chem. Phys. Lett., 34, 289 (1975). , (Y6) Yoshimura, T., Fujiwara, M., Wakabayashi. N., Jpn J. Appi. Phys., 14, 691 (1975). ( Z l ) Zaheer, A. H., Liss, I. B., Keck, N. B., 60s. W. G., Ouseph, P. J., J. lnorg. Nuci. Chem., 36, 2515 (1974). (22) Zarubin, V. N., Marinin. A. S..Russ. J. inorg. Chem., 19, 1599 (1974). (23) Zemcik, T., Raclavsky. K., Geochem. int., 11, 751 (1974). (24) Zimmermann, R., Spiering. H.. Ritter, G., Chem. Phys., 4, 133 (1974). (25)Zimmermann, R., Chem. Phys. Lett., 34, 416 (1975).
Nuclear Magnetic Resonance Spectroscopy John R. Wasson* Department of Chemistry, University of North Carolina, Chapel Hill, N.C. 27514
David R. Lorenr Institute of Molecular Biophysics and Department of Chemistry, Florida State University, Tallahassee, Fla. 32306
This review covers the published literature from July 1973 to July 1975. Many thousands of abstracts were screened in the course of preparation of this review. Space limitations have forced us to limit ourselves to only about half the number of references in our previous effort (1).Accordingly, this review is less comprehensive than earlier ones in this series. However, the cited review literature should compensate somewhat for this deficiency. The enormity of the literature surveyed has led to the omission of many fine contributions. We apologize to the authors whose publications were deleted and are grateful to all who were kind enough to supply us with reprints of their work. I t is again hoped that where this review fails as a review, it succeeds as a useful guide to current advances and applications of NMR spectroscopy in chemistry. BOOKS AND REVIEWS Several elementary and advanced texts and monographs on NMR spectroscopy have appeared (2-19), the book by Kasler (19) being of particular interest to analytical chem246R
*
ANALYTiCAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
ists. Access to the NMR literature, in a--.tion to hand and computer searching of Chemical Abstracts, has been facilitated by the appearance of a number of abstract services in this country and abroad (20). The NMR Specialist Reports of the Chemical Society (London) continues to provide excellent general coverage of the subject (21). Numerous general reviews (22-45) summarize current efforts as well as provide varying amounts of introductory material. Reviews have appeared concerning: correlation of NMR and ESCA shifts (46), experimental techniques (47), auxiliary techniques (48), s ectral analysis (49, 50), chemical shifts (51), nuclear shiel8ng (52), nuclear spin-spin cou ling (53, 54), the trans effect in inorganic compounds (557, hydrides of light (56) and heavy (57) metals, high symmetry chiral molecules (58), dynamical processes in boranes, borane complexes, and related compounds (59), glasses (60), longrange carbon-proton and carbon-carbon spin-spin coupling constants (61), liquids containing compounds of aluminum and gallium (62), polymers (63-65), liquid helium3 (66), sulfur (67) and selenium compounds (68), fluorine-
John R. Wasson is currently a research associate at the University of North Carolina-Chapel Hill. He was born in St. Louis, Mo., and received his education at the University of Missouri-Columbia (B.S., 1963: M A , 1966) and Illinois Institute of Technology (Ph.D., 1970). He is the author or co-author of more than 100 research papers, reviews and technical articles. His publications and research interests are in the areas of transition metal chemistry, magnetic resonance spectroscopy, and inorganic colloids and polymers. He is a member of the American Chemical Society, the Chemical Society (London), and Phi Lambda Upsilon.
Davld R. Lorenr is a graduate student in Chemistry at the Florida State University. studying molecular spectroscopy with Professor Michael Kasha. He was graduated with a B.S. degree in chemistry in 1975 from the University of Kentucky. His research interests include magnetic resonance, inorganic photochemistry, and molecular luminescence. He has also co-authored several scientific publications in related areas of research.
19 NMR (69, 70, 7 0 ~ 1magnetic , shielding and susceptibility anisotropies (71, 72), NMR in liquid crystals (73-781, NMR shift reagents (79-87), membranes and phospholipids (88-91), proteins (92-95), peptides (96-99), nucleic acids (lOO-I04), double and multiple resonance techniques (105-110), Fourier, Hadamard, and pulse techniques (211-123), nomenclature for non-proton NMR (124), identification of microquantities of organic materials (125), detection and determination of hydroxyl groups (126), quantitative aspects of NMR spectrometry (127), identification of opiates and anorectics (128), pharmaceutical analysis (129), and applications of NMR in the perfumery industry (130) and to paints and coated films (131). Reviews discussing the NMR spectra of heterocyclic compounds (132), hemoglobin (133),ferredoxin (134), cis and trans effects in hemes and hemins (135), carbohydrates (136-138), pesticides (139, 140), metal enzymes (141), biochemical substances (142-1451, drug-protein interactions (146), drug metabolites (147), phosphorus compounds (148-150), and solids (151-163) have appeared. A collection of reviews on the application of NMR spectroscopy to biopolymers (164) has been published. A number of reviews of NMR studies of dynamic, including conformational, processes (2, 1652 77) have become available as have extensive reviews of the applications of carbon-13 NMR spectroscopy (174, 178191). The NMR spectra of organometallic compounds (185, 191, 192-197), nuclear spin relaxation (198-2021, CIDNP (203-205), selenium-77 (206), tin-119 (207) and heavier element (208) NMR spectra, nitrogen NMR spectroscopy (209-212), pattern recognition (213) and applications of computers (214-216), solvent effects on NMR spectra (217-219), solvation (220), ionic association of organic compounds (221) and structure of electrolyte solutions (222) have also appeared. Two books on hydrogen bonding survey the results of NMR studies (223,224).
ANALYTICAL APPLICATIONS In addition to the book by Kasler (19) numerous applications of NMR spectroscopy to properly analytical purposes have been described. The determination of phenols by fluorine-19 NMR of hexafluoroacetone derivatives (225), a-olefinsulfonic acids (226), naphthalenesulfonic acids (227), methyl acrylate (228),adamantadine hydrochloride in soft capsules and syrups (229), isomeric toluenesulfonic acids (230), mixtures of arenemono- or - d i d fonic acids (231), the amount of solid phase in cottonseed
oil hydrogenation products (232), hydroperoxides in methyl linoleate and sunflower oil (233), ketoximes (234), hydroxy(acetoxy)alkanes (235), isomers of cresol, toluic acid, and toluidine (236) and methyl groups on a carbon bearing a hydroxyl group (237) have been reported. Applications of NMR spectroscopy have also been described for assigning hydrogen bonds (238), analysis of microstructure of polymers (239), determination of 4-methylimidazole as the 1acetyl derivative (240), automated identification of monoalkenes (241), analysis of fatty acid methyl ester mixtures with tris(dipivaloylmethanato)europium(III) (242), fatty acid derivatives (243), pharmaceutical analysis (244), and certifiable food colors (245). Estimation of potential oil yields from oil shales by pulsed NMR studies (2461, use of trifluoroacetic acid in magnetic susceptibility measurements (247) by NMR, magnetic titrations by an NMR method (248), carbon-13 NMR as a technique for distinguishing between cis and trans dianionobis(ethy1enediamine)cobalt(III) complexes (249), identification of penicillins, cephalosporins (250) and flavor components (251), simultaneous quantitation of water and hydroxyl groups (252), broad-line NMR measurement of water accessibility in cotton and wood pulp celluloses (253), irradiation dosimetry based on magnetic resonance spectra (254), dual standard addition for quantitative NMR analysis (255) and disulfuram determination (256) have also been reported.
CHEMICAL SHIFTS, COUPLING CONSTANTS, A N D SPECTRAL ANALYSIS A criticism of explanations of I3C chemical shifts of carbon atoms bound to transition metals has been presented (257) as have shielding parameters for the calculation of chemical shifts in the NMR spectra of substituted pyridines (258). Internal shift correlations for disubstituted benzenes (259), estimation of chemical shifts of aromatic protons (260), and graphic presentation of 13C chemical shifts (261, 262) have been reported. The absolute temperature dependence of chemical shifts of lock solvents (2631, verification of internal reference standards for high resolution NMR spectroscopy (264), aqueous tetrahydroxyphosphonium perchlorate as a narrow-line 31P NMR reference (265), internal tetramethylammonium ion standard (2661, differential solvent shifts (268), chemical shifts and referencing in tritium NMR spectroscopy (269), and the analysis of NMR spectra of associated diastereoisomers (267) have been discussed. Theory of NMR spectra of symmetrical spin systems with I = 1h (270) and arbitrary I (271) has been presented. Xh,]2 (271u), AA'BB' (272, 287, 289), Analyses of [A A2a+lBzb+c etc. (274), AB2X and ABzMX (2751, AA'BB'CX (278), ASXX'X"X'''A~' (276), ABX (277, AMX (279), AA'A''A"'X,X,' (282), AA'X (2831, AX (284), AAX (2841, AA'XX'Z (285), AB:! (288),and AnAn'XX' (290) systems, many applied to specific compounds, have been reported as have calculations for the NMR spectra of a finite chain containing two types of I = l/Z nuclei (273), and discussions of the uniqueness of NMR spectral analysis for a general system of nuclei with I = 1h (27Ib), measurement of unresolved couplings in first-order NMR spectra (280)and determination of relative signs of spin-spin coupling constants (286). Permutational isomerism and NMR spectra (291), CNDOM calculations and the 13C NMR spectra of acetylenes and cumulenes (292), selective population transfer and signs of C-X coupling constants (293), 13C-13C coupling constants of 1-cyanobicyclobutane (294), l3C--l5N coupling constants as a conformational probe (2951, 13C and 13C-15N coupling constant of formamide in aqueous solutions (296), i3C-H coupling constants and hybridization of cyclopropyl ethers (2971, correlations involving 13C chemical shifts of monosubstituted derivatives of fluorobenzene (298), additivity effects of substituents on 13C chemical shifts of substituted benzenes (299), and relative signs of spin-spin coupling constants involving 13C from off-resonance proton decoupling (300, 301 ) have been discussed. Experimental and theoretical studies of vicinal 13C-13C coupling constants (302), Hadamard transformed 13C NMR spectra and pattern recognition (3031, NMR determination of electronegativity values for hydrazyl groups ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
247R
(304), NMR of I = % nuclei (305) and statistical analysis of magnetic anisotropy and electric field effects on proton chemical shifts (306) have been reported. Sign changes in the 15N-31P directly bonded coupling constant (307), the proton chemical shift tensor in calcium hydroxide (308), the lH-170 spin-spin coupling constant in liquid water (309), the linear relation between the PMR chemical shift of the OH proton and the enthalpy of dilution in the alcohol-apolar solvent system (310), hydrogen bonding and geminal coupling (311), chemical shift of water protons in aqueous tetrabutylammonium butyrate solutions (312) and correlation between hydrogen bond shift and enthalpy changes (313)have been described. Reports concerning the stereochemical dependence and substituent effects on the lJ(PP) coupling in cyclopentaphosphines (314), angular dependence of three-bonded 3C- 3C coupling constants (315), geometrical dependence of experimental and theoretical nuclear spin-spin coupling constants in the amine-15N fragment (316), dependence of 3IP chemical shifts on 0-P-0 bond angles in phosphate esters (317), geometrical dependence of 13C-15N coupling constants in oximes (318), applicability of the Karplus equation to 31PCC-13C coupling constants (319), effect of complex formation and solvent on 2J(P-CH) and 3J(POCH) coupling constants (320), correlation between J(13CH) in aromatic methyl compounds and group or orbital electronegativities (321), magnetic anisotropies and electric field effects for OH, "2, C1, and Br groups (322), INDOR of cross-ring couplings in heptahelicene (324), long range I3C-lH coupling in cyanopyridines (323), long range spin-spin coupling in norbornane-2,3-diones (325), dihydrofuran and dihydrothiophene (326), cyclohexanes (328) and fluorobenzamides (330), chemical shifts due to long range dispersion interactions (327) and the negative sign of through space lH-19F couplings (329) have appeared. l5N--I5N coupling in hydrazines and nitrosoamines (331), polar and rr-electron substituent effects by 19FNMR (332), effects of oxygen lone pairs on IJ(13CH) values in 1,3-dioxanes (333), sign determination of C-H and H-H coupling constants in thiete-1,l-dioxide (334), *J(Se-H) and 3J(SeH ) coupling constants in selenophenes (335), diamagnetic anisotropy of [2.2]metacyclophane (336), deuterium substitution on screening effects (337), effects of substituents on geminal H-F coupling constants (338), substituent shift constants for aromatic protons of benzene derivatives in DMSO solution (339), interpretation of C-H coupling constants for directly bonded nuclei in hydrocarbons (340), 13C chemical shifts and 13CH coupling constants in bicyclic and tricyclic hydrocarbons (341), effect of solute concentration on the chemical shift of aromatic compounds (342), 19F,I3C, and proton chemical shifts and coupling constants for 3-chloro-4-bromo-3,4,4-trifluoro-l-butene (343) and relative magnitudes of substituent effects on proton chemical shifts in olefinic and aromatic systems (344, 345) have been reported. A variety of theoretical approaches to the calculation of NMR chemical shifts and coupling constants have been developed. Calculations have been reported for: proton chemical shifts in hydrogen halides (346), the NMR coupling constant in HD (347, 356), magnetic shielding in H2 (348), lone-pair interactions in through-space F-F nuclear spin coupling (349), paramagnetic contributions to magnetic shielding in octahedral and tetrahedral molecules (3501, atomic and ionic quadrupolar polarizabilities (351), screening and coupling constants for various bonds (352,353,368, 369, 375, 376, 379, 383), coupling constants in cyclohexane and substituted cyclohexanes (354), 13C-H coupling constants (355), localized orbital analysis of NMR coupling constants (357), 13C chemical shielding anisotropy in organic compounds (358), proton and 19FNMR spectra of aromatic carbonyl fluorides (359), rotational barriers (360), proton and 19F chemical shifts (361, 366), N and 0 chemical shifts (362, 365, 377, 380), 3- and 4-bond H-H coupling in compounds modeling peptide structure (363, 3781, proton spin coupling constants in cycloalkenes (364), 13C chemical shifts (367, 370, 371, 373, 374, 381, 385, 387), I J , 2J, and 3Jspin-spin interaction constants and their dependence on the orientation of lone pairs on N and 0 atoms (372), coupling constants in thiophenes (382), the relation between chemical shifts and charge densities (384), 31P 248R
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
chemical shifts in phosphonium ions (388), tin-119 chemical shifts (388), and 29Sichemical shifts (389).
COMPUTER APPLICATIONS Structural interpretation of first-order NMR spectra by computer (390), a new algorithm for calculation of NMR spectra (3911, a program for retrieval and assignment of chemical environments and shifts to facilitate interpretation of 13C NMR spectra (3921, a program for analyzing NMR of polycrystals (393), a computer system for data acquisition and evaluation (394), computation of NMR powder line shapes for quadrupolar nuclei (385), FOCAL coniputer programs for NMR (396), a lineshape function for absorption mode double NMR spectra (397), a computer program for simulating many-spin NMR spectra (398), deconvolution of broad-line NMR spectra (399), electronic data processing of the parameters of impulse Fourier transform I3C NMR spectra (400), computer simulation of multipulse and Fourier transform NMR experiments (401), precision in measuring NMR spectra (402), determination of fluoroolefins from measurement of area intensity of sharp 19F NMR signals by use of a minicomputer coupled with the sawtooth sweep (403), and an automated data collection system for T1 and T2 determinations (404) have been described. Computer simulation of time-dependent processes and saturation phenomena in an AB spectrum for intramolecular chemical exchange (405) has been reported as has the use of computer line narrowing in the llB Fourier transform NMR spectra of nido-carboranes (406). Computer analysis of the temperature dependence of NMR spectra during intramolecular exchange (407) and the inter- and intra-molecular exchanges in 1,4-dimethylhexahydro-1,2,4,5-tetrazine(408) has been presented. Computer analysis of NMR spectra is extensively employed in studies of conformational changes in organic and organic compounds. It is worth noting that the fine book by Beech ( 4 0 8 ~ )contains a simulation program for AB and ABX spin systems.
INSTRUMENTATION AND TECHNIQUES Use of a quadrupole coil for NMR spin-echo diffusion studies (409), application of a SQUID magnetometer to NMR at low temperatures (410), a flow reactor for use with an unmodified high-resolution NMR spectrometer (411), an NMR marginal oscillator with a single MOSFET element (412, 436), accurate NMR thermometry below 1 K (413), a broadband spectrometer for field stabilization in the range 4-23 kG (414), measurement of the moments of NMR spectra (415), precision measurements of magnetic moments of nuclei with weak NMR signals (416), a device for sealing NMR samples under vacuum (417), the use of Co(bipy)3(C104)2 for removing oxygen from samples used in NMR studies of spin-lattice relaxation times (418), a microcell design for recording the NMR spectra of low natural abundance when sample size is limited (419), an NMR sample tube cleaning apparatus (420), a glass cell for high pressure high-resolution measurements (4211, a sealable sample holder with internal reference for NMR measurements on cellulosic materials (422), use of a high resolution NMR spectrometer for recording solid state llB spectra (423), off-resonance effects upon some phase shifted pulse sequences used for measuring spin-lattice relaxation times (424), an electronic system for a frequency swept 240-MHz NMR spectrometer working with a superconducting magnet (425), variable frequency Fourier transform/CW NMR spectroscopy on an XL-100-15 spectrometer (426, 427), effects of macroscopic spinning upon line width of NMR signals in magnetically inhomogeneous systems (428), a multiple-irradiation Fourier transform method (429), a simple pulsed field gradient circuit for high resolution NMR spectrometers (430), a fast recovery post-amplifier for pulsed NMR applications (431), pulsed spin decoupling (432), selective population inversion techniques (433,434), limits to resolution in multiphase NMR experiments (435), variable field experiments with an internal deuterium lock (437), resolution enhancement in beat-modulated free induction decays (438), correlation NMR spectroscopy and solvent line suppression (439, 440), a simple modification for any Fourier transform spectrometer for the individual observa-
Table I. NMR Studies of Molecules in Nematic Phase Liquid Crystals Molecule Remarks H and 3lP NMR PH3 in nematic soap phases Di-, tri- and trimethylammonium ions CHC13 H and 13CNMR Acetoxylbenzal-p -anisidine Acetoxvbenzal-D-aminoazobenzene Anisal-p -aminoazobenzene 31Pand 19FNMR PF3 labeled acetylene 31PNMR P4S3 D and 31P NMR PD3 15N NMR NzO p,p’-Azoxyanisole N-methoxybenzylidene Proton relaxation times P3N3F6 31P NMR P3N3Cl6 31PNMR Dimethylthallium ion Anion and cationic detergent nematic phases Ethylene oxide Methanol 15N-pyrrole Cyclobutane Chlorobenzene Deuterated molecules Spectral simplification 13C NMR of various phases MBBA p-Dioxene 100 MHz 2,5-Dihydrofuran 240 MHz Acetonitrile 15Nand NMR Propyne Acetone Small ring compounds m -Diflourobenzene Naphthalene I3C enriched 2-propene 4,4’-Dichlorobiphenyl 2,2’-Bithiophene Cyclopentadienylnit,rosylnickel and -mercury(II) 1,2,3,4-Tetrachlorobenzene r-Cyclobutadienyliron tricarbonyl 1,4-Dibromobenzene Tellurophene Ethylene sulfide Tropone Tropolone Tris(methy1ene)methaneirontricarbonyl trans - (py)(CzH4)PtClz 0-,m-, p-Dicyanobenzene 7-Cyclopentadienyltricarbonyltungstenhydride Cyclopentadiene Monofluoroacetone Acroyl fluoride Acrolein , Dimethyl compounds 4-[ (4-Ethoxybenzylidene)amino]azobenzene Methylsilane Methylgermane N - ( p-cyanobenzylidene)-p-octyloxyaniline Acetylene p-Azoxydianisole 13C NMR p-XCsH4C02CsH4Z (X, Z, = alkyl, alkoxy) An anionic lyotropic nematic mesophase tion of a lar e number of different nuclei of any magnetogyric ratio (541, 442), wideline pulsed Fourier transform NMR (444) and elimination of signals due to the most abundant isotopic species (445), diffusion and field-gradient effects in Fourier transform NMR (446),comparison of quadrature and single-phase FT-NMR (447),a method for selective enhancement, of 13C NMR signals for quaternary carbon atoms (448), 13C FT-NMR at 14.2 kG in 1 20-mm probe (449), reversed Carr-Purcell train for measurement of NMR relaxation times (450), measurement of spin-lattice relaxation times by use of repetitive sweep techniques
(451), and NMR devices (452, 453) for monitoring concentrations have been described.
LIQUID CRYSTALS The cited monograph ( 1 7 ~provides ) a recent review of work with lyotropic liquid crystals. By far the greatest number of studies have been performed on molecules in the nematic phase (6). Table I provides a partial list of the molecules which have been examined. An evaluation of the ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
249R
Table 11. Conformational and Related NMR Studies Molecule Comment Azacyclooctanes 270 MHz-H,22.6 MH2-W NMR 1,3-Diphenylallyl anion l3C NMR Dioxazines 1,2-Dichloropropane {2,2JMetacyclophanes Lactams, dibenz[b,e]azepine and dibenz[b,f]azocine series Thioamides trans -1,2-Disubstituted cyclohexenes Diene 6-aminocarbonyl compounds N-Aryl-thiocarbamates and -dithiocarbamates Trimethylene sulfites Acylphosphines pyramidal inversion barrier of P M = Ni, Pd, Pt; L = phosphine; X = Bphd-; ligand HMLs+Xexchange 4-0xo-1,3-dioxanes S-methylthianium perchlorate cis -Bicyclo[6.4.0]-10,12-dioxa-2-and -3-dodecene Primary aziridinyl alcohols P-N rotational barriers Phosphonamidous halides H and 13CNMR 3-Methyl-1-phenylpyrazoline-5-thione 2-Pyrazolines trans-syn-trans-4,5:9,lO-Biscyclohexano1,3,6,8-tetraoxecane 2-Silacyclohexanes nitrogen inversion Ethyleninimine Cope rearrangement Bullvalene 7,7-Dichloro-2,5-dioxabicyclo{4.l.O~heptane Methyl diseleno-carbamates and -carbazates Oxathiolanes 1,3,5,7,-Tetramethylcyclooctane
Mono- and bi-cyclic amides N,N-Diisopropyldithiocarbamates N,N-Dimethylacetoacetamide Aliphatic ethers Bicyclopropyl derivatives Primary amides and thioamides Phthalic amides Hexahydro-3H-oxazolo[3,4-c]pyridines N,N’-Di-tert - butylthiourea 1,3,5-Trineopentylbenzene Furfural and thiophenealdehyde Neopentyl bromide and iodide
determination of molecular structure from NMR in liquid crystal solvents (513) has been presented as have theories of paramagnetic shifts in liquid crystal solvents (5141, proton NMR with deuteron decoupling in nematic liquid crystals (515) and single passage NMR on oriented nuclei with small electric quadrupole interactions (516). Proton spin relaxation in a smectic liquid crystal (517), fast proton transfer a t a micelle surface (518), proton spin thermometry a t low fields in liquid crystals (519), double quantum transitions in deuteron NMR of lyotropic liquid crystals (521), NMR studies of smectic liquid crystals (520),D and 23Na NMR studies of lecithin mesophases (522),DNMR of deuterium-labeled lipids (523),electrolyte effects on micellar solutions of paramagnetic cobalt and copper dodecylsulfates (524), micellar catalysis of proton exchange with the hydration shell of the oxovanadium(1V) ion (525),PMR of 4-hydroxypyridine in a lyotropic mesophase (526) and NMR of acetone oriented in an inorganic mesophase (527) have also been presented. SHIFT REAGENTS The literature on NMR shift reagents has phenomenally expanded since C. C. Hinckley’s classic 1969 paper on the use of Eu(DPM)3-2 pyridine to simplify the spectrum of cholesterol. The literature has been extensively reviewed ( 1 , 79-87, 528, 529). The thesis literature (530-535) also provides a source of review material and experimental details. A number of more properly analytical applications of 250 R
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
shift reagents have appeared, e.g., applications to the analysis of mixtures (536),alkenoic esters (537),nitriles (538), hydroperoxides and alcohols (539), cis-trans composition of methyl elaidate-oleate (540) and ingredients in household detergents (541). Applications of computers in shift reagent analysis (542-545), models for shift reagent adducts (5451, multipole expansions (546, 547), the importance of nonaxial symmetry (548), and calculation of induced shifts from molecular structure (549) have been reported. The tetraphenylborate anion has been employed as a shift reagent for sulfonium compounds (550) and anilinium cations (551). Paramagnetic relaxation agents (552) and lanthanide EDTA complexes (552a),lanthanide Schiff base complexes (553), lanthanide porphyrin compounds (554) and titanium tetrachloride (555) as shift reagents have been described as has the use of rare earth ions to probe transfer RNA structure (556). The interaction of lanthanide shift reagents with dialkylnitrosamines (557), chloroprene and methyl methacrylate radical polymers (559), molecules which have two basic centers in close proximity (558) and mixtures of enantiomers (560) have been reported. A PMR and 13C NMR study of acridine, quinoline, and isoquinoline interactions with shift reagents (561) has been described as have the use of shift reagents in conformational analysis (562, 563), the use of Gd(fod)a as shift reagent (564) and the effect of shift reagents on the NMR spectrum of pyridine oriented in the nematic phase (565).
POLYMERS NMR studies of 1,4-cis-polybutadiene (566, 566a), styrene-methylmethacrylate copolymers (568), poly-Ny(3hydroxypropyl)-L-glutamine (569), poly(vinylch1oride) (568), poly-y-benzyl-L-glutamate (570), poly(methy1 acrylates) and stereoregular poly(ally1ic alcohols) (571), polypentenamers (572). ethylene-vinyl acetate copolymers (573), copolyamides (574), poly(styrene sulfone) (575), polyurethane elastomers (576), T H F polymers (577) and pure styrene n-mers (578) have been reported. The end group analysis of some polyether polyols and polyester polyols by NMR spectroscopy has been detailed (579). Many other NMR studies of polymers have also been described. Several studies of biologically significant polymers are mentioned in one of the following sections.
CONFORMATION ANALYSIS, ROTATIONAL ISOMERISM, A N D TAUTOMERISM Table I1 lists a number of molecules whose stereochemistry has been investigated by NMR techniques. A single operational parameter approach for evaluation of lifetime in an uncoupled, equally populated AB system (6231, theory of dynamic NMR spectroscopy (2, 624, 625), analysis of asymmetric chemical exchange (626), calculation of NMR spectra in systems with many-site (627)and intramolecular (628) exchange, FT-NMR of exchanging chemical systems (629), line shapes for exchanging systems a t high rf field (630), nomograms for determining exchange rates from an unequal doublet (631), relaxation under hindered internal rotation (632), effect of chemical exchange on the transverse relaxation rate of nuclei in solution containing paramagnetic ions (63:1), influence of chemical exchange on spin-lattice relaxation (634), and conformational changes related to ,aromaticity and antiaromaticity (635) have been described. NMR studies of the inversion of configuration at Se and Te in (Et2X)ZMRz (X = Se, Te; M = P d , Pt; R = C1, Br, I) compounds (636) have also been reported as has an NMR study of the electron exchange between benzoquinone and benzosemiquinone (637).
BIOCHEMICAL A N D BIOLOGICAL SYSTEMS Cancerous tissues have been the subject of several studies (638-642). The water proton spin-lattice relaxation time of tumors is longer than T I of the corresponding normal tissues (638, 639, 641, 642). Similar 39K NMR studies (640)also indicate a marked reduction of selectivity for potassium vs. sodium in cancers. Table I11 lists a number of studies of lipids, membranes, and biopolymers. PMR studies have been employed to elucidate platinum(I1) binding to purine and pyrimidine ribosides (663). Histidine and histamine complexes of copper(I1) have been characterized (664) and 13C NMR studies of copper binding to pyrimidine nucleotides and nucleosides (665) and purine nucleotides (666) have been reported. A proton relaxation study of the interaction of copper(I1) with Escherichiu coli alkaline phosphatase has been described (667). Several different types of studies of manganese(I1)-ATP interactions (668-672) have been reported, as have investigations of the interaction of manganese(I1) with purine and pyrimidine nucleosides and nucleotides (672),pyruvate carboxylase (673)and concanavalin A (674). The molecular conformation and cooperativity of hemoglobin (675),high resolution PMR of low-affinity hemoglobins (676), proton T1 of ferrimyoglobin in aqueous ionic solutions (677), restricted rotation of a heme side chain methyl group in some ferric myoglobin complexes (678), stereospecific dimerization of dicyanohemin (679), highresolution PMR of the quaternary state of hemoglobin (680),‘?C NMR of ‘ W 0 2 interaction with hemoglobin (681, 683), aminoacids, peptides, and sperm whale myoglobin (682) and carbonic anhydrase (683),I3C NMR of cytochrome c (684), PMR of ferredoxin I (685), horseradish peroxidase (686), metal por hyrin-caffeine complexes (687),metallothioneins (688), C NMR of porphyrins and metalloporphyrins 1\68!), 689a), low-spin ferric hemoproteins (690) and T I of protons in human blood (691) have been described.
B
SQUID detection of NMR in biological molecules (692) and resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum (693) have been detailed. Several studies of chlorophyll a (694-696) have been reported as have investigations of vitamin A aldehyde in aqueous ethanolic solutions (697), I70-labeled water in human erythrocytes (698),gramicidin S (699) and gramicidin A (700), calcein blue (7011, I3C NMR of folic acid (702) and rifamycin S (703), glycine in aqueous solution as a function of pH (704),proline (7051, cholinergic neural transmission agents (706),effects of solvents on penicillins (707),13C NMR of imidazole (708) and cholesterol, pyridine, and uridine (709), complexation between guanosine and chloride ion (710),warfarin and related compounds in solution (711 ), 13C-enriched phenobarbital, pentobarbital, and dilantin (712),actinomycin D (713), molecular motion of macrocylic antibiotics upon potassium ion complex formation (714), pyrimidine nucleosides and their 2-thio analogues (715), tautomerism of guanine and cytosine (716), thymidine and its derivatives (717 ) , carcinogenic 3-methylcholanthrene and related benzanthracenes (718),cinchona alkaloids (719), carbohydrates in alkaline solutions (720),partially methylated glucoses (7211, ketohexoses (722), procyanidines (723), trans-fused hexopyranoside derivatives (724), permethylated a - and p-Dgalactopyranoses (725) and tobramycin and related antibiotics (726). GENERAL ORGANIC Studies of highly substituted cyclohexanes (759), benzo[b]fluoranthrene and dibenzothiophene (760), o-hexaphenylene ( 7 6 I ) , dissociation equilibria in tropylium salts (762), long range interproton coupling in norbornenes (763), 4-substituted styrenes (764), protonation of halophenols and haloanisoles in superacids (765), benzocycloheptatrienyl anion (766), bicyclo[5.4.l]dodecapentaenyl anion (767), 1,2-hydrogen shifts in fluorobenzenium ions (768), benzocycloalkenes (769), 1,3,5-cycloheptatriene (770),cyclic alkynes, allenes, and alkenes (771), dihydroazulene (772), substituent chemical shift correlations with p-substituted benzenes (773), monosubstituted adamantanes (774), pleiadiene (775), biphenylene and analogous compounds (776), perhydroanthracenes and perhydrophenanthrenes (777),multilayered[2.2]paracyclophanes (7781, l-phenyl-1,2-butadiene and phenylallene (779),dibenzocycloheptatriene systems (780), trishomocyclopropenyl cation (781), long range C-H couplings in naphthalene and 1,7- and 2,7-diacetoxy-naphthalenes(782),tert- butylcyclohexane (783),4-alkylnitrobenzenes (784),partially deuterated n-pentanes (785),induced paramagnetic ring currents in cyclobutadienes (786), long-range C-C couplin constants in 9-labeled anthracene derivatives (787) [2.2ymetacyclophanes (788),through-bond interactions in l-azaadamantane derivatives (789), methylenecyclooctatrienyl anion (790), arylcyclobutenyl cations (791), paramagnetic ring currents in the carbanion of 5H-dibenzo[a,d]cycloheptene and the nitranion of 5H-dibenz[d,f]azepine (792),use of hexafluoroacetone and 19F NMR to characterize active hydrogen compounds (793), diphenyl sulfides and disulfides (794), o-substituted anisoles and diphenyl esters (795), 3,3’-bithienyls (796),p- fluorophenyl-p’-substituted phenyl systems (797), 4’-substituted-4-fluorobenzophenones (798),pressure dependence of chemical shifts of chloroform in aromatic solvents (799), 2-chloro-1,4-dibromo1,2,2-trifluorobutane (800), monohalo-substituted cyclohexanes (801), 1,2-bis(pentafluorophenyl)-l,l,2,2-tetramethyldisilane (802), n-alkyl bromides (803), 2,3-dibromothiophene (804), cyclohexane carbonyl fluorides (805), trihalophenols (806), fluorocyclopentenes (807), upfield shifts in antiperiplanar arrangements (8081, p- methylbenzylbromide (809), and 13C chemical shifts of chlorinated organic compounds (810) have been reported. The proton chemical shift anisotropy in carbonyl groups (811), a,a-dialkyl- and a-alkyl-o-methoxybenzyl alcohols (812), methylcyclopentanones and -cyclohexanones (823), pH dependence of I3C spin-lattice relaxation rate of the carboxyl carbon of acetic acid (814),flavone and deuterated analogues (815), carbon monoxide (816),magnetic nonequivalence of geminal groups induced across a carbonyl ANALYTICAL CHEMISTRY, VOL. 48, NO.
5, APRIL 1976
251 R
Table 111. Lipids, Membranes, and Biopolymers System a-Lactalbumin Lysozyme Lysozyme Bovine serum albumin Polypeptides Poly(L-lysine) Poly(?-benzyl L-glutamate) Polypeptides Lecithin Lecithin Lecithin Dipalmitoyllecithin vesicles Dipalmitoyllecithin vesicles Demyristoyllecithin Lipid bilayers Human platelet lipids Phospholipid membranes Bovine neuroshysin Aminoacids, peptides, and proteins Calf skin gelatin Hydrated collagen fibers Staphylococcal nuclease High density lipoproteins High density lipoproteins Lipoproteins Lipoproteins Phospholipids Phospholipids Phospholipids Phospholipids Phospholipids Phospholipids Ribonuclease Ribonuclease Yeast phenylalanine transfer RNA tRNA Na-K transport adenosinetriphosphatase E. coli alkaline phosphatase Threonine-sensitive,aspartokinase Dihydrofolate reductase Chymotrypsin Prostaglandin Fzn Oxytocin, vasotocin, vasopressin Oxytocin Membranes, dynamics, and structure Alkylammonium carboxylate micelles Membrane models Membrane models Peptides
Comment 13CNMR, human and bovine 13CNMR, human and egg white substrate reactions Effects of surfactants Helix-coil transition in nonprotonating solvent mixtures 13CNMR, helix-coil transition Helix-coil transition, polydispersity 35ClNMR, mol. wt. dependence of line widths Interaction with water Monolayers Hydration TI’Sa t 60 and 220 MHz Interaction with valinomycin 13CNMR, gel-liquid transition PMR, molecular motions Interaction with L-epinephrine Transport of Pr3+ ions Interaction with peptides and hormones TI’Sat 90 and 270 MHz 13C NMR Interaction with alkali Unfolding and refolding a t low pH Lipid-protein interactions, 13CNMR 31PNMR 13CNMR, native and recombined serum intervesicular exchange 31PNMR, sonicated vesicles D NMR, hydration D NMR, fatty acid chains in bilayer Bilayers, 13CNMR Phase transitions, PMR Unfolding, PMR 13CNMR, microenvironment of histidine-12 220- and 300-MHz PMR 300-MHz PMR 23NaNMR zo5TlNMR ~ ~ C ~ N M R PMR, Mn(I1) interactions Conformational changes, 220-MHz PMR Charge relay system 13CNMR, PMR Rev. of NMR and ESR Octylammonium chloride, potassium oleate lipophilic region, D NMR Sequencing, PMR
group as a function of the dielectric constant of the solvent (817), lithioisobutyrophenone and its complexes with lithium chloride and bromide (8181, alicyclic methyl esters (819),oligo(oxy-2,2-dimethylethylenecarbonyl) compounds (820), alkyl substituted furans (821), benzofurans (822), 2-substituted furans, thiophenes, and tellurophenes (823), methyl-substituted 1,3-oxothianes (824), 2-amino-4phenylbenzothiazoles (825), barbiturates (826), coumarin and its methyl derivatives (827), and 5-alkyl-5-(l-methylbuty1)barbituric acids (828)have been described. The NMR determination of electronic densities in quinoxalines and quinolines (829), and symmetrical naphthyridines (830), additivity effects on the H-H coupling constants of disubstituted pyridines (831), 13C-F coupling constants of fluoropyridines (832), medium effects on the 19FNMR of fluoropyridines (833),I3C NMR line intensity measurements for quinoline and other compounds (834), cis and trans isomers of 2-chloro- and 2-phenyl-5-methyl1,3,2-oxathiaphospholane(835), sodium (p-methoxypheny1)methylphosphinodithioate dihydrate (836),thio- and di252R
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
thiooxamides (837), derivatives of dithiocarbazic acids (838), quaternary ammonium salts (839), N-substituted methylamines (840),2-, 3-, and 4-substituted N-methylpyridinium salts (841),n-alkyl ammonium salts (842),simple quaternary salts of 1-methylpyrazole (843), complexes of nitrophenols with dialkylamines (844), nitrotoluidines (845), acyclic aliphatic amines (846), 5-substituted 10,lldihydrobenz[b,f]azepines (847),polytertiary amine chelated alkali metal compounds (848),acrylic amines (849),primary amines (850), pyrrole (851), pyrrole derivatives (852) and tetrapyrroles (853), 8-hydroxyquinoline (854) and its derivatives (855), protonation of L-cysteine (856), protected amino acids (857), determination of glutethimide (858), diazoalkanes (859), substituted pyrazoles (860), l,.l-oxathiane derivatives (861), l-alkyl-2(1H)-pyridinone derivatives (862),purine derivatives (863),substituted oxazoles and oxazolidinones (864),pyridazine and pyrazole containing 15N (865), N,N’-dimethylpiperazine (866), p H dependence of 13C chemical shifts of six-membered nitrogen heteroaromatics (867),pyrido- and azapyridocyanines
(868), carbolines (869), 2-vinylbenzimidazole (870), pteridines (871), meth lsydnone and related compounds (872) and imidazo[l,2-brpyrazide and pyrazolo[l,5-a]benzimidazole (873) have been discussed. A series of related organic experiments with optional structure determinations (874) have been described as have studies of the effects of magnetic field on chemical reactions (875), complexes of 1,3,5-trinitrobenzene with aromatic amines (876), and maleic anhydride and vinyl acetate (877), methods for processing data from NMR studies of molecular complexes (878), PAN and its chelates (879), pattern recognition analysis of 13C-free induction decay data (880), assignment of 13C NMR signals by selective deuterium labeling (881), pyridine N-oxides (882), 2,4,6trimethylbenzonitrile oxide (883), and complexes of 1,3,5trinitrobenzene with alkoxy ions (884). NMR investigations of organic radical species include studies o f DPPH (885),aromatic radical ions (886), cation radicals from halides of some N,N'-disubstituted 4,4'-dipyridylium derivatives (887), r-hydrogen bonding involving stable hydrocarbon K radicals (888), 1,4-bis(2,2,6,6-tetramethyl-l-oxyl-4-hydroxy-4-piperidyl)butane (889), di-tert butyliminoxy and di( 1-adamanty1)iminoxy (890), TMPO (891), and a number of other nitroxides (892,893).
GENERAL INORGANIC High resolution PMR and 19F NMR spectra of H F in aprotic solvents (894), NMR studies of tetrameric methyllithium (895), lithium Group I11 and IV metallates (896), 7Li NMR of lithium cryptates (8971, yotassium isotope NMR studies of several systems (898), Na NMR of sodium cryptates (899), relaxation of alkali metal ions in aqueous solutions (goo), 23Na NMR of sodium complexes (901), 43Ca NMR of solutions of various salts (902), 27AlNMR of aluminum chelates with hydroxycarboxylic acids (903), mixed ligand complexes (904), octahedral and tetrahedral solvates (905), bromotris(tetrahydroborato)aluminumate anion in tetrahydrofuran (906) and aluminate solutions (907), 29Si NMR of silicon-nitrogen compounds (908), methyl- and methylphenylsiloxanes (909), mixed methylhalide silanes (910), silicate solutions (911, 914, 916), silicon hydrides (912, 913, 915), ''0 NMR of oxygen-nitrogen compounds (9171, 19F (918)and lZ9XeNMR of xenon comounds (919), 67Zn NMR of aqueous solutions (920, 921), ?I3Cd NMR of cadmium solutions and complexes (922926), NMR studies of mercury complexes (927, 928) and mercurinium ions (929), z07Pb NMR studies of solutions (930, 931, 933) and or anometallic compounds (932, 934), 72Ce, 47Ti, and 49Ti, 9* N b and lZ1Sb NMR studies (935),
f
LITERATURE CITED
(1) J. R. Wasson and D. K. Johnson, Anal. Chem., 46, 314R (1974). (2) L. M. Jackman and F. A . Cotton, Ed., "Dynamic Nuclear Magnetic Resonance Spectroscopy", Academic Press, New York, 1975. (3) J. W. Akitt, "NMR and Chemistry", Chapman and Hail, London, 1973. (4) R. Hague and F. J. Biros, Ed., "Mass Spectrometry and NMR Spectroscopy in Pesticide Chemistry (Environmental Science Research Vol. 4)". Plenum, New York, 1974. (5) G. C. Levy, "Topics in Carbon-13 NMR Spectroscopy", Wiley, New York, Vol. 1, 1974. (6) J. Bulthuis, "NMR in Liquid Crystalline Solvents: Complications in Determining Molecular Geometries". Internat. Scholarly Book Services, Portland, Ore., 1974. (7) C. Richard and P. Granger, "Chemically Induced Dynamic Nuclear and Electron Polarization, CIDNP and CIDEP", Springer, New York, 1974. (8) J. T. Clerc, E. Pretsch, and S. Sternhell, "Carbon-13 Nuclear Resonance Spectroscopy", Akad. Verlag, Frankfurt, Germany, 1973. (8a) T. Axenrod and G. A. Webb, Ed., "Nuclear Magnetic Resonance Spectroscopy of Nuclei Other Than Protons", Wiiey, New York, 1974. (9) H. Friebolin, "NMR Spectroscopy", Verlag Chemie, Weinheim, Germany, 1974. (10) N. F. Chamberlain, "The Practice of NMR Spectroscopy with Spectra-Structure Correlations
71Ga NMR of aqueous gallium citrate (936), l19Sn NMR studies of organotin derivatives (937-941 943-945) and 13C NMR of organotin compounds (942), 2oh'l NMR of aqueous solutions (946), 45Sc NMR of aqueous solutions (947, 948), NMR studies of primary isotope effect on boron nuclear shielding (949), boron trihalide adducts (950), electronic effects in borazines (951), JBH and JBC in organoboron compounds (952), J B Nin various boranes (9531, interaction of borate with diols (954), nonaborane (13)carbonyl (955), borane adducts of trimethylamine (956), tetraalkylammonium tetraalkylborides (9571, 79Br NMR of aqueous solutions of KBr containing various mercury compounds (958), 13C NMR of silver olefin complexes in solution (959, 961), 107J09AgNMR of aqueous solutions of silver salts (960), 59C0 NMR studies of various complexes (962-964), j5Mn NMR of aqueous permanganate solutions (965,966) jlV NMR of vanadium carbonyl complexes (967), Is3W NMR of organometallic complexes (968) and simple compounds and salts (969), NMR investigations of macrocyclic nickel complexes (970), temperature dependence of NMR of low-spin iron(II1) porphyrin and hemin systems (97) and nickel(I1) systems (973), 14N NMR of cobalt(I1) nitrate complexes in acetone (972), rearrangement of pyrazoylborate complexes of molybdenum (974), fluoride exchange of tungsten hexafluoride (975), nickel(I1) and zinc dithiocarbazates (976), octahedral complexes of nickel with oxygen donors (977), trimethylphosphate exchange with the magnesium complex (978), hydridonickel phosphites (979), nickel(I1) phosphine complexes (980, 981), effect of covalency on the electron-nuclear dipolar relaxation in paramagnetic complexes (982), electron delocalization in paramagnetic metallocarboranes (983), spin-crossover in iron(111) tris(dithi0carbamates) by 13C NMR (984), cobalt(I1) and nickel(I1) carboxylates (985), and 1,8-naphthyridine complexes (986), amminepentakis(cyano)ferrate(2-) ion (987), stereochemical nonrigidity in seven-coordinate trihydridorhenium complexes (988), temperature dependent I3C NMR of mixed carbonyl-PF3 iron(0) complexes (989), and triiron dodecacarbonyl (990), NMR of pentakis(phosphite) complexes of cobalt(][),rhodium(I), iridium(I), nickel(II), palladium(II), and platinum(I1) (991), fluctional behavior of out-of-plane organometalloporphyrins (992), cis and trans effects on the PMR of cobaloximes (993), lg5Pt NMR -of complexes (994, 997) and organometallic species (998) and 13C NMR studies of platinum phosphine (995) and trans-phenyl complexes (996) have been reported. Spin-lattice relaxation reagents for 13C NMR studies and a caution in their use (999-1001) have been described. 13C NMR has been used to study deuterium exchange kinetics in cobalt(II1) aminocarboxylates (1002).
for Hydrogen-1", Plenum, New York, 1974. (1 1) F. A. Rushworth and D. P. Turnstall, "Nuclear Magnetic Resonance", Gordon and Breech, New York. 1973. (12) R. A. Dwek. "NMR in Biochemistry", Oxford University Press, 1973. (12a) T. L. James, "NMR in Biochemistry", Academic Press, New York, 1975. (13) W. W. Simons and M. Zanger, "The Sadtler Guide to the NMR Spectra of Polymers," Sadtler Research Laboratories, Philadelphia, Pa., 1973. (14) I. Pop and V. Niculescu, "Nuclear Magnetic Resonance in Metals", Ed. Acad. Republ. Socialiste Rom., Bucharest, 1973. (15) E. Breitmaier and W. Voelter, "Carbon-13 NMR Spectroscopy", Verlag Chemie, Weinheim, Germany, 1974. (16) R. G. Lawler, "Chemically Induced Dynamic Nuclear Polarization (Prog. NMR Spectry, Vol. 9, Pt. 3)", Pergamon, Oxford, 1973. (17) E. J. Haws, R. R. Hill, and D. J. Mowthorpe, "The Interpretation of Proton Magnetic Resonance Spectra: A Programmed Introduction", Sadtler Research Laboratories, Philadelphia, Pa., 1973. (17a) C. L. Khetrapal. A. C. Kunwar, A. S. Tracy, and P. Diehl, "Nuclear Magnetic Resonance Studies in Lyotropic Liquid Crystals", Springer-Verlag, Heidelberg, 1975. (18) H. Guenther, "NMR Spectroscopy. An Introduction", Thieme, Stuttgart, Germany, 1973.
(19) F. Kasler, "Quantitative Analysis by NMR Spectroscopy", Academic Press, New York, 1973. (20) Preston Technical Abstracts Co., P.O. Box 312, Niles, Ill. (21) R. K. Harris, Ed., "Nuclear Magnetic Resonance", Vol. 4, 1974, The Chemical Society, London. (22) D. Massignon and C. Chachaty, Bull. Inform. Sci. Tech., Commis. Energ. At. (Fr), No. 183, 5 (1973). (23) I. H. Sadler, Annu. Rept. Progr. Chem., Sect. 6, 69, 19 (1972) (Publ. 1973). (24) I. 0. Sutherland, MTP lnt. Rev. Sci.: Org. Chem. Ser. One. 1. 123 (1973). -, (25) I. H. Sadler, Annu. Rept. Progr. Chem., Sect. B. 70. 22 (1973) (26) 'D. Shaw: J. Phys. E, 7, 689 (1974). (27) D. Haneman in "Characterization of Solid Surfaces", P. F. Kand, Ed., Plenum, New York, 1974, pp 337-377. (28) A. Nishioka, Kobunshi, 23,310 (1974). (29) T. Clerc and E. Pretsch, "Nuclear Resonance Spectroscopy. Pt. 1: Proton Resonance", Akad. Verlagages.: Frankfurt, Germany, 1973. (30) S. Forsen. Kern.-Kerni, 1, 484 (1974). (31) E. Klesper and G. Sielaff, Monogr. Mod. Chem., 6, 189 (1974). (32) I. R. Lantzke in "Physical Chemistry of Organic Solvent Systems", A. K. Covington, Ed., Plenum, London, 1973, pp 483-523. (33) M. D. Sauzade and S. K. Kan, Adv. Hec~
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
253R
tron. Nectron Phys., 34, I (1973): W. Naegele, Determination Org. Struct. Phys. Methods, 4, 1
(1971). (34) T. J. Swift, Tech. Chem., 6, Pt. 2, 521 (1974). (35) N. N. Greenwood et al., "Spectroscopic Properties of Inorganic and Organometallic Compounds", The Chemical Society (London). (36) J. D. Memory and G. W. Parker, Methods Exp. Phys., 3, Pt. E, 465 (1974). (37) G. R. Bedford, Annu. Rept. NMR Spectrosc., 4, l(1971). (38) K. W. H. Stevens, in "Electrons Cryst. Solids, Lect. Int. Course", IAEA, Vienna, Austria, 1973, pp 167-181. (39) J. D. Memory, Magn. Reson. Rev., 3, 105
(1974). (40) C. H. Lochmueller and R. W. Souter, Am. Lab., 5, 25, 28, 32, 35 (1973). (41) H. Broemer. lnt. J. Magn.. 5, 15 (1973). (42) D. Ware and R. S. Codrington, Syst. Mater. Anal. (J. H. Richardson, Ed.) 2, 73 (1974). (43) M. P. Petrov, "Fiz. Magn. Dielektr". G. A. Smolenski, Ed.. Nauka, Leningrad, 1974, pp 177-283. (44) R. Ugo, "Relaz. Corso Teor.-Prat. Risonanza Magn. Nucl.", A. Frigerio, Ed.. Tamburini. Milan, Italy, 1973, pp 425-438. (45) D. G. De Kowalewski and V. J. Kowalewski, Magn. Reson. Rev., 3, 171 (1974). (46) E. J. Lindberg, J. Electron Spectrosc. Relaf. Phenom., 5, 149 (1974). (47) D. G. Gilles, Nucl. Magn. Reson., 2, 165
(1 973). (48) B. Danieli and G. Palmisano, Ref. 44, pp 149-192. (49) /bid., pp 439-513. (50) R. G. Jones, Nucl. Magn. Reson., 3, 181 (1974). (51) G. Gatti. Ref., 44, pp 45-80. (52) W. T. Raynes, Nucl. Magn. Reson., 3, 1 (1973). (53) R. Grinter, Nucl. Magn. Reson., 3, 50 (1973). (54) G. G. Gallo, Ref. 44, pp 91-147. (55)T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev., IO, 335 (1973). (56) G. N. Boiko, Yu. I. Malko, and K. N. Semenenko, Usp. Khim., 44, 3 (1975). (57) J. P. McCue, Coord. Chem. Rev., IO, 265 (1973). (58) M. Farina and C. Morandi, Tetrahedron, 30, 1819 (1974). (59) H. Beall and C. H. Bushweller, Chem. Rev., 73, 465 (1973). (60) H. Dutz and W. Poch, Fachausschussber. Dtsch. Glastech. Ges.,70, 219 (1974). (61) J. L. Marshall, D. E. Millar, S. A. Conn, R. Seiweil. and A. M. Ihrig, Acc. Chem. Res., 7, 333 (1974). (62) J. W. Akitt, Annu. Rep. NMR Spectrosc., 5A, 465 (1972). (63) M. E. A. Cudby and H. A. Willis, Annu. Rep. NMR Spectrosc.. 4, 363 (1971). (64) I. D. Robb and G. J. T. Tiddy, Nucl. Magn. Reson., 3, 279 (1974). (65) V. J. McBrierty, Polymer, 15, 503 (1974). (66) S. Janos, Cesk. Cas. Fys., 24, 612 (1974). (67) C. Brown in "Sulfur in Organic and Inorganic Chemistry", A. Senning, Ed., Dekker. New York, 3, 275 (1972). (68) U. Svanholm. in "Organic Selenium Compounds: Their Chemistry and Biology", D. L. Klayman, Ed., Wiley, New York, 1973, pp 903-932. (69) T. N. Huckerby, Annu. Rep. NMR Spectrosc., 5A, 1 (1972); K. Jones and E. F. Mooney, ibid., 4, 391 (1971). (70) R. Fields, Annu. Reo. NMR Soectrosc., SA, 99 (1 972). (70a) M. G. Barlow, Nuorocarbon Relat. Chem.. 2. 456 (1974). (71)'B: R. Appleman and B. P. Dailey. Adv.
Magn. Reson., 7, 23 1 (1 974). (72) B. R. Appleman and E. P Dailey, "Critical Evaluation of Chemical and Physical Structural Information, Proc, Conf. 1973", D. R. Lide, Ed., NAS, Washington, D.C., pp 485-504. (73) P. Diehl and W. Niederberger. Nucl. Magn. Reson, 3, 368 (1974). (74) A. Loesche, Comments Solid State Phys., 5, 119 (1973).
(75) L. W. Reeves, Cienc. Cult. (Sao Paulo), 25. 516 (1973). i76) j. Jonas, *gn. Reson. Rev., 2, 203 (1973). (77) A. Loesche, Postepy Fiz., 24, 407 (1973).
254R
(78) A. Loesche, "Magn. Resonance Relat. Phenomena, Proc. Congr. AMPERE, 17th, 1972 (Publ. 1973)", V. Hovi, Ed., North-Holland, Amsterdam, pp 101-117. (79) E. C. Mayo, Chem. SOC. Rev., 2, 49 (1973). (80) A. Yamazaki. Kagaku (Kyoto), 29, 349, 435 (1974). (81) 2. Ksandr and M. Hajek. Chem. Listy, 66, 129 (1974). (82) E. Danieli and G. Palmisano, Ref., 44, pp 231-290. (83) M. Kainosho and K. Ajisaka, Yuki &sei Kagaku Kyokai Shi, 31, 126 (1973). (84) C. C. Hinckley, in "Modern Methods of Steroid Analysis", E. Heftmann. Ed., Academic Press, New York, 1973, pp 265-279. (85) J. Reuben, Progr. NMR Spectrosc., 9, Pt.
l(1973). (86) J. A. Glasel, Progr. lnorg. Chem., 18, 383 (1973). (87) I. Ya. Slonim and A. Kh. Buiai, Usp. Khim., 42, 1976 (1973). (88) S. I. Chan, M. P. Sheetz, C. H. A. Seiter, G. W. Feigensen, M. C. Hsu, A. Lau, and A. Yau, Ann. N.Y. Acad. Sci., 222, 499 (1973). (89) H. Akutsu and Y. Kyogoku. Tampakushitsu Kakusan Koso, Bessatau, 1, 93 (1974). (90) A. F. Horwitz, "Membrane Mol. Biol.", C. F. Fox, Ed., Sinauer Assoc. Inc. Publ., Stamford, Conn., 1972, pp 164-191. (91) A. F. Horwitz and M. P. Klein. Ann. N.Y. Acad. Sci., 222, 468 (1973); Y. K. Levine, Progr. Biophys. Mol. Biol., 24, l(1972). (92) 0. Jardetzky, "Proc. Int. Conf. Stable Isotop. Chem. Biol, Med., 1st. 1973", P. D. Klein, Ed., NTIS. Springfield, Va., 1973, pp 99-102. (93) K. Wuethrich. fxperientia, 30, 577 (1974). (94) W. D. Phillips, In "Methods Enzymology", C. H. W. Hirs, Ed.. Academic Press, New York, Vol. 27, 1973, pp 825-836. (95) J. C. Metcalfe. N. J. M. Birdsall, and A. G. Lee, "Companion Biochem.", A. T. Bull. Ed., Longman Group Ltd., London, 1974, pp 139-162. (96) I. C. P. Smith, R. Deslauriers, H. Saito, R. Waiter, C. Garrigou-Lagrange, H. McGregor, and D. Sarantakis. Ann. N.Y. Acad. Sci., 222, 597
(1 973). (97) V. F. Bystrov, S. L. Portnova, et a/., Pure Appl. Chem., 36, 19 (1973). (98) E. M. Bradbury, P. D. Cary. C. Crane-Robinson, and P. G. Hartman, Pure Appl. Chem., 36, 53 (1973). (98a) J. P. Meraldi, H. Moeschler, R. Schwyzer, A. Tun-Kyi, and K. Wuethrich, J. Phys. (Paris) Colloq., 41 (1973). (99) K. Nagayama. Seibutsu Butsuri, 14, 66
(1974). (100) K. Masatune, Tampakushitsu Kagusan Koso, Bessatsu, 238 (1974). (101) T. Wilczok and B. Lubas, Stud. Biophys., 38, 85 (1973). (102) L. E. Townsend, "Syn. Proced. Nuclei Acid Chem.", W. W. Zorbach, Ed., Wiley, New York, Vol. 2, 1973, pp. 267-398. (103) L. S. Kan and P. 0. P. Ts'o, Bot. Bull. Acad. Sinica, 14, 180 (1973). (104) R. G. Shulman, D. R. Kearns, B. R. Reid, and Y. P. Wong, "Dyn. Aspects Conform. Changes Biol. Macromol., Proc. Ann. Meet. SOC. Chim. Phys. 23rd, 1972", C. Sadron, Ed.. Reidel, Dordrecht, Netherlands, 1973, pp 165-169. (105) W. McFarlane, Annu. Rep. NMR Spectrosc., 5A, 353 (1972). (106) T. Kikuchi, Farumashia, 9, 389 (1973). (107) K. Moebius, Ber. Bunsenges. Phys. Chem., 78, 1118 (1974). (108) H. Ernst, Wiss. Z. Karl-Marx-Univ.. Leipzig, Math.-Naturwiss. Reihe, 23, 449 (1974). (109) D. Shaw, Nuci. Magn. Reson., 2, 269
(1973). (1 10) W. McFarlane, Determ. Org. Strucf. Phys. Methods, 4, 139 (1971). (111) M. Imanari, Kagaku No Ryoiki, 27, 287 (1973). (1 12) D. Ziessow and B. Bluemich, Ber. Bunsenges. Phys. Chem., 78, 1168 (1974). (113) R. R. Ernst, "Pulsed Nucl. Magn. Res. Spin Dyn. Solids, Proc. Spec. Colloq. Ampere 1st 1973", J. W. Hennel, Ed., Inst. Nucl. Phys., Krakow, Poland, 1973, pp 40-52. (114) D. Shaw, Nucl. Magn. Reson., 3, 249 (1 974). (115) Y. Utsumi, "New Methods Environ. Chem. Toxicol., Collect. Pap. Res. Conf. New Methodol. Ecol. Chem. 1973", F. Coulston, Ed.,
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1 9 7 6
int. Acad. Print Co., Ltd., Tokyo, Japan, 1973, pp
51-55. (116) R. R. Ernst, W. P. Aue, E. Bartholdi, A. Hoehener, and S. Schaeublin. Pure Appl. Chem., 37, 47 (1974). (117) R. Radeglia, Z. Chem., 14, 82 (1974). (1 18) J. A. Glasel, Fed. Proc., Fed. Amer. SOC. Exp. Biol., 33, 1973 (1974). (119) E. D. Becker, Ann. N.Y. Acad. Sci., 222, 724 (1973). (120) D. G. Gilles, Annu. Rep. NMR Spectrosc., 5A, 557 (1972). (121) I. P. Biryukov, A. F. Babkin, and A. Ya. Deich, Latv. PSR Zinat. Akad. Vestis, Fiz, Teh. Zinaf. Ser., 78 (1973). (122) N. Boden. Determination Org. Struct. Phys. Methods, 4, 51 (1971). (123) A. G. Marshal and M. B. Comisarow, Anal. Chem., 47, 491A, 494A, 496A, 498A. SOOA, 502A, 504A (1975). (124) lnf. Bull.-IUPAC, Append. Provis. Nomencl., Symb., Units, Stand., 38 (1974). (125) G. M. Ayling, Appl. Spectrosc. Rev., 6, 147 (1974). (128) S. Siggia and J. G. Hannain, "Chemistry of the Hydroxyl Group", S. Patai, Ed., Wiley. New York, 197 1, Pt. 1, pp 295-325. (127) H. M. El-Fatatry, Egypt. Pharm. J., 56, 45 (1974). (128) B. Unterhalt, Deut. Apoth-Ztg., 114, 1017(1974). (129) G. Heinisch, Oesterr. Apoth. Ztg., 28, 275, 295, 361 (1974). (130) 0. Okuda and T. Imura, Koryo, 104, 35 (1973). (131) 0. Kinoshita, Toso to Toryo, 235, 31 (1 974). (132) S. P. Hiremath, P. Shivayogi, and R. S. Hosmane. Adv. Heterocycl. Chem., 15, 277 (1973). (133) S. Ogawa, Seibutsu Butsuri, 14, 183 (1974). (134) C. C. McDonald and W. D. Phillips, Ann. N. Y. Acad. Sci., 222, 789 (1973). (135) W. S. Caughey, C. H. Barlow, D. H. O'Keefe, and M. C. O'Toole. Ann. N.Y. Acad. Sci.,
206, 296 (1973). (136) T. D. Inch, Annu. Rep. NMR Spectrosc., 5A, 305 (1972). (137) B. Coxon. Adv. Carbohyd. Chem., 27, 7 (1972). (138) L. D. Hall, Adv. Carbohyd. Chem. Biochem., 29, 11 (1974). (139) R. Hague and D. R. Buhler, Annu. Rep. NMR Spectrosc., 4, 237 (1971). (140) H. A. Resing in "Mass Spectrom. NMR Spectrosc. Pesticide Chem., Proc. Symp. 1973". R. Hague, Ed., Plenum, New York, 1974, pp 273-277. (141) P. J. Quilley and G. A. Webb, Coord. Chem. Rev., 12, 407 (1974). (142) Y. Kyogoku, Han'guk Saenghwahakhoe Chi, 6, 51 (1973). (143) S. Damjanoviah and A. Daroczy, Fiz. Sz. 24, 176 (1974). (144) B. Casn, Ref. 44, pp 291-332. (145) J. S. Cohen, "Exp. Methods in Biophysical Chemistry", C. Micolan. Ed., Wiley, New York, 1973, pp 521-588. (146) B. D. Sykes and W. E. Hull, Ann. N.Y. Acad. Sci., 226, 60 (1973). (147) D. E. Case, Xenobiotica, 3, 451 (1973). (148) G. Mavel, Annu. Rep. NMR Spectrosc., 5 8 (1973). (149) J. C. Tebby, Organophosphorus Chem., 5, 247 (1973). (150) J. R. Van Wazer, Determination Org. Struct. Phys. Methods, 4, 323 (1971). (151) W. Derbyshire, Nucl. Magn. Reson.. 2,
323 (1973). (152) T. Tsuda, Nippon Butsuri Gakkaishi, 27, 394 (1972). (153) R. Orbach, M. Peter, and D. Shaltiel, Arch. Sci., 27, 141 (1974). (154) T. Fujito, Nippon Butsuri Gakkaishi, 29, 935 (1974). (155) W. E. E. Stone, Silic. lnd., 39, 255 (1974). (156) H. A. Hertz, "Mol. Motions Liq.. Proc. Ann. Met. SOC.Chim. Phys., 24th 1972", J. Lascombe., Ed., Reidel, Dordrecht, Netherlands,
1974, pp 337-357. (157) H. Yasuoka, Nippon Butsuri Gakkaishi, 29, 696 (1974). (158) P. H. Kasai. "Solid State Chem. Phys.", P. F. Weiler, Ed., Dekker, N.Y., 1973, Vol. 1, pp
357-4 10. (159) C. J. Ford and G. A. Styles, "Prop. Liquid Metals, Proc. Int. Conf. 2nd 1972", S. Takeuchi, Ed., Taylor and Francis, London, 1973 pp 189196. (160) E. R. Andrew, "Pulsed NMR Spin Dyn. Solids, Prod. Spec. Colloq. Ampere, 1st 1973", J. W. Hennel, Ed., Inst. Nucl. Phys., Krakow, Poland, 1973, pp 3-15. (161) W. W. Warren, Jr., "Charge Transfer/ Electron. Structure Alloys, Twin Symp. 1973". L. H. Bennett and R. H. Willens. Ed., AIME, New York, 1974 pp 223-270. (162) W. Derbyshire. Nuci. Magn. Reson.. 3, 311 (1974). (163) J. L. Bjorkstam, Adv. Magn. Reson., I,1 (1974). (164) A. Wada, Ed.. "NMR No Seitai Kobunshi Eno Oyo", Kyoritsu Shuppansha. Tokyo, Japan, 1973. (165) A. A. Bothner-By, Ref. 72, pp 331-351. (166) K. M. L'vov and A. G. Sukhourudrenko, Biofizika, 19, 576 (1974). (167) W. D. Ollis, J. F. Stoddart, and I. 0. Sutherland, Tetrahedron, 30, 1903 (1974). (168) F. A. Cotton and B. A. Frenz, Tetrahedron, 30, 1587 (1974). (169) N. M. Sergeev, Usp. Khim., 42, 769 (1973). (170) K. Pihlaja, Kern.-Kemi, 1, 492 (1974). (171) F. A. L. Anet, Determination Org. Struct. Phys. Methods. 3, 343 (1971). (172) M. J. T. Robinson, Tetrahedron, 30, 1971 (1974). (173) E. L. Eliel. Chem.-Ztg., 97, 582 (1973). (174) F. G. Riddell. Aliphatic, Alicyclic, Saturated Heterocyci. Chem., 1, (Pt. 3), 69 (1973). (175) D. M. Grant, Pure Appi. Chem., 37, 61 (1974). (176) S. Mager, Rev. Chim. (Bucharest), 24, 861 (1974). (177) I. 0. Sutherland, Annu. Rep. NMR Spectrosc.. 4, 71 (1971). (178) H. Guenther, Chem. Unserer Zeit., 8, 45, RA - 11974) \ - - . I .
(179) E. Wenkert, J. S. Bindra. C.-J. Chan, D. W. Cochran, and F. M. Scheil, Acc. Chem. Res., 7. 46 119741. ' (180) B. Casn, Ref. 44, pp 3-15. (181a) I. C. P. Smith, H. J. Jennings, and R. Deslauriers, Acc. Chem. Res., 8, 306 (1975). (181b) A. G. Mclnnes and J. L. C. Wright, Acc. Chem. Res., 8, 313 (1975). (182) D. Shaw, Ref. 44, pp 193-205. (183) W. Bremser, Chem.-Ztg., 97, 246 119731. (184) D. Deininger and D. Michel. Wiss. 2. Karl-Marx-Univ., Leipzig, Math.-Naturiwiss. Reihe, 22. 551 (1973). (185) 'L. J. Todd, J. Organometai. Chem., 77, 1 (1974). (186) J. R. Llinas, E. J. Vincent, and G. Peiffer, Bull. SOC.Chim. Fr., 3209 (1973). (187) M. Tsuda, Garumashia, 9, 756 (1973). (188) P. S. Pregosin and E. W. Randall, Determination Org. Struct. Phys. Methods, 4, 263 (1971). (189) U. Sequin and A. I. Scott, Science, 186, 101 (1974). (190) W. Bremser, Chem.-Ztg., 97, 259 (1973). (191) B. E. Mann. Adv. Organometal. Chem., 12, 135 (1974). (192) A. Maercker, Chem.-Ztg., 97, 361 (1973). (193) L. A. Gedorov, Usp Khim.. 42, 1481 (1973). (194) V. S. Petrosyan and 0. A. Reutov. J. Organometai. Chem., 76, 123 (1974). (195) N. M. Sergeyev, Progr. NMR Spectrosc., 9, (R. 2) (1973). (196) V. S. Petrosyan and 0. A. Reutov, Pure Appl. Chem.. 37, 147 (1974). (197) B. E. Mann, Spectrosc. Prop. inorg. Organometai. Compounds, 8, 1 (1973). (198) E. Breitmaier. K. H. Spohn. and S. Berger, Angew. Chem., 87, 152 (1975). (199) D. J. Tomlinson. Nuci. Magn. Reson., 3, 106 (1974). (200) G. Klose. Wiss. 2.Karl-Marx-Univ. Leipzig. Math.-Naturwiss. Reihe, 21, 752 (1972). (201) M. Bloom, Ref. 160, pp 80-90. (202) N. Boden, Nucl. Magn. Reson., 2, 112 (1973). (203) R. G. Lawler and H. R. Ward, Determination Org. Struct. Phys. Methods, 5, 99 (1973).
.-
(204) G. L. Closs, Adv. Magn. Reson., 7, 157 (1974); P. G. Frith and K. A. McLauchlan, Nuci. Magn. Reson.. 3, 378 (1974). (205) H. R . Ward, R. G. Lawier, and S. M. Rosenfeld, Ann. N. Y. Acad. Sci., 222, 740 (1973). (206) M. A. Lardon. "Organic Selenium Compounds: Their Chemistry and Biology", D. L. Klayman, Ed., Wiley, New York, 1973, pp 933-939. (207) P. J. Smith and L. Smith, inorg. Chim. Acta Rev., 7, 11 (1973). (208) P. R. Wells, Determination Org. Struct. Phys. Methods, 4, 233 (1971). (209) M. Witanowski, Ed., "Nitrogen NMR", Plenum, London, 1973. (210) M. Witanowski and G. A. Webb, Annu. Rep. NMR Spectrosc., 5A, 395 (1972). (211) M. Witanowski, Pure Appl. Chem., 37, 225 (1974). (212) R. L. Lichter, Determination Org. Struct. Phys. Methods, 4, 195 (1971). (213) 8. R. Kowalski, Comput. Chem. Biochem. Res., 2, 1 (1974). (214) C. W. Haigh. Annu. Rep. NMR Spectrosc., 4, 311 (1971). (215) L. Newman, Comput. Chem. instrum., 3, 3 (1973). (216) T. Clerc and F. Erni, Fortschr. Chem. Forsch., 39, 91 (1973). (217) J. Homer, Appi. Spectrosc. Rev., 9, 1 (1975). (218) M. I. Goreman, Nucl. Magn. Reson., 2, 355 (1973). (219) B. Danieli and G. Paimisano, Ref. 44, pp 61-89 - . (220) H. J. V. Tyrrell, "Essays on Structural Chemistry", A. J. Downs, Ed., Plenum, New York, 1971, pp 296-326. (221) M. Lipsztaju. Wiad. Chem., 28, 399 (1974). (222) V. I. Chizhik, Mol. Fiz. Biofiz. W o d . Sist., 1, 108 (1973). (223) M. D. Joesten and L. J. Schaad, "Hydrogen Bonding", Dekker, New York. 1974. (224) R. D. Green, "Hydrogen Bonding by C-H Groups", Halsted Press, New York, 1974. (225) E. F. L. Ho, Anal. Chem., 46, 496 (1974). (226) S. Hashimoto, H. Tokuwaka, and T. Nagai, Nippon Kagaku Kaishi, 2384 (1973). (227) K. Mashimo and T. Wainai. Bunseki Kagaku, 23, 750 (1974). (226) S. Y. Kulkarni and U. S. Pansare. J. Appi. Chem. Biotechnol., 23, 479 (1973). (229) J. W. Turczau and T. Medwick, J. Pharm. Sci., 63, 425 (1974). (230) K. Mashimo and T. Wainai, Bunseki Kagaku, 21, 1079 (1972): K. Mashimo and T. Wainai, Anal. Chem., 45, 2424 (1973). (231) H. Cerfoutain. A. Toeberg-Telder, C. Kruk. and C. Ris, Anal. Chem., 46, 272 (1974). (232) I. P. Nazarova, A. I. Glushenkova, A. L. Markman, V. P. Tatarskii, and 0. Ya. Vadzhipov, Khim. Prir. Svedin, I O , 246 (1974). (233) K. Sohde, T. Ogawa, and S. Matsushita, Yukagaku, 23,228 (1974). (234) R. E. Rondeau and B. L. Fox, U S . Patent 3,756,779 (197.3); Chem. Abstr., 79, 114631t (1973). (235) N. S. Nikitina. A. D. Mysak, T.N. Veretenova, V. P. Tikhouov, and E. V. Lebedev. Neftepererab, Neftekhim. (Kiev), 88 (1973). (236) S. Yasuda and H. Kakiyama, Bunseki Kagaku, 23, 615 (1974). (237) C. R. Narayanau and A. K. Kulkarni, Curr. Sci., 42, 367 (1973). (238) P. H. Von Dreeie and I. A. Stanhouse, J. Am. Chem. SOC.,96,7546 (1974). (239) H. Inoue, Kayaku To Kogyo (Osada), 47, 196 (1973). (240) G. Fuchs and S. Sundell, J. Agric. Food Chem., 23, 120 (1975). (241) S. Ochias, Y. Hirota, Y. Kudo, and S. Sasaki, Bunseki Kagaku, 22, 399 (1973). (242) D. B. Walters, Anal. Chim. Acta, 66, 134 (1973). (243) K. Yamanaka, Yukaguku, 22, 533 (1973). (244) M. H. Bowen, F. K. O'Neill. and M. A. Pringuer, Proc. SOC.Anal. Chem., 11, 294 (1974). (245) D. M. Marmino, J. Assoc. Off. Anal. Chem., 57, 495 (1974). (246) F. P. Miknis, A. W. Decora, and G. L. Cook, U.S. Bur. Mines, Rep. invest., Rl-7984 (1974). (247) A. J. I. Ward, A. Morris, and M. A. Heaiy. J. Magn. Reson., 16, 357 (1974). (248) D. F. Evans, J. Chem. Soc., Dalton
Trans., 2567 (1973). (249) D. A. House and J. W. Blunt, inorg. Nucl. Chem. Lett., 11, 219 (1975). (250) W. L. Wilson, H. W. Avdovich, and D. W. Hughes, J. Assoc. Off. Anal. Chem., 57, 1300 (1974). (251) A. Kobayashi, Yukagaku, 22, 591 (1973). (252) F. F. L. Ho and R . R. Kohler, Anal. Chem., 46, 1302 (1974). (253) T. F. Child and D. W. Jones, Cell. Chern. Technoi., 7, 525 (1973). (254) J. R. Manambelona, Dosim. Agr., ind., Bioi., Med., Proc. Symp. 1972, 28. 293 (1973). (255) A. F. Cockerill. R. C. Harden, G. L. 0. Davies, and D. M. Rackham, Org. Magn. Reson., 6, 452 (1974). (256) E. 8. Sheinin, W. R. Bensen, and M. M. Smith, Jr., J. Assoc. Off. Anal. Chem., 56, 124 (1973). (257) J. Evans and J. R. Norton, lnorg. Chem., 13, 3402 (1974). (258) M. Zanger and W. W. Simons, Anal. Chem., 46, 2042 (1974). (259) D. W. Beistel, H. E. Chen. and P. J. Fryatt, J. Am. Chem. SOC., 95,5455 (1973). (260) J. Beeby, S. Sternhell, T. Hoffman-Ostenhof. E. Pretach, and W. Simon, Anal. Chem., 45, 1571 (1973). (261) S.Tanaka, S.Toda. et al., BunsekiKagaku, 21, 1011 (1972). (262) S. Tanaka, S.Toda, et al.. Bunseki Kagaku, 21, 1004 (1972). (263) A. K. Jameson and C. J. Jameson, J. Am. Chem. SOC.,95,6559 (1973). (264) K. Jackowski and 2. Kocki, Chem. Anal. (Warsaw), 18, 35 (1973). (265) T. Glonek and J. R. Van Wazer, J. Magn. Reson., 13, 390 (1974). (266) J. W. Akitt. J. Chem. SOC.,Dalton Trans., 1446 (1973). (267) M. I. Kabachnik, E. I. Fedin, et al., Doki. Akad. Nauk SSSR, 215, 1400 (1974). (268) B. P. Hatton, C. C. Howard, and R. A. W. Johnstone, J. Chem. SOC., Chem. Commun., 744 (1973). (269) J. M. A. AI-Rawi, J. P. Bloxsidge, C. O'Brien, et al., J. Chem. SOC., Perkin Trans. 2, 1635 (1974). (270) H. Kleindienst, Z. Naturforsch. A, 28, 911 (1973). (271) H. Kleindienst, Z. Naturforsch. A, 28, 915 (1973). (271a) G. Haegele, Ber. Bunsenges. Phys. Chem., 78, 43 (1974). (271b) J. Moravek and V. Spirko, Collect. Czech. Chem. Commun., 38, 1273 (1973). (272) B. A. Englin, T. A. Onischenko. et al., izv. Akad. Nauk. SSR, Ser. Khim., 982 (1973). (273) Y. Ayant, E. Belovizky. et al.. J. Chem. Phys., 59, 4735 (1973). (274) S. S. Kolesnikov and V. S. Tumanov, Vestn. Mosk. Univ., Fiz., Astron., 14, 571 (1973). (275) T. W. Dingle and K. R. Dixon, Inorg. Chem., 13, 846 (1974). (276) F. A. M. Ayanbadejo, Spectrochim. Acta, PartA, 30, 271 (1974). (277) N. Cyr, G. S. Ritchie, T. M. Spotswood, and A. S. Perlin, Can. J. Spectrosc., 19, 190 (1974). (278) S. Sorensen and H. J. Jakobsen, Acta Chem. Scand., Ser. A, 28, 249 (1974). (279) L. G. Werbeiow and A. G. Marshall, Chem. Phys. Lett., 22, 568 (1973). (280) D. J. Sardella. J. Magn. Reson., I O , 188 (1973). (281) W. C. Lin, J. Chem. Phys., 58, 4971 (1973). (282) D. W. Aksnes, Acta Chem. Scand., Ser. A, 28, 375 (1974). (283) H. Fritz and H. Sauter. J. Magn. Reson., 15, 177 (1974). (264) D. G. Hughes, M. R. Smith, and D. A. M. Switzer, J. Chem. Phys., 60, 4890 (1974). (285) E. Lustig, E. A. Hansen, and D. N. Lincoln, J. Magn. Reson., 15, l(1974). (286) V. S. Tumanov, Zh. Strukt. Khim., 15, 561 (1974). (287) S. A. Khan, Ph.D. Thesis, Northwestern Univ., 1974, Univ. Microfilms Order No. 74-28, 661. (288) S. Fujiwara. Y. Umeyawa, Y. Arata, and H. Furuyama, Chem. Lett., 555 (1974). (289) C. C. J. Culvenor and N. S. Ham, Aust. J. Chem., 27, 2191 (1974). (290) W. McFarlane and D. S. Rycroft, J.
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1 9 7 6
255R
Chem. Soc.,Faraday Trans.. 70, 377 (1974). (291) D. J. Klein and A. H. Cowley, J. Am. Chem. SOC.,97, 1633 (1975). (292) J. R. C. M. Van Dongen, M. J. A. DeBie, and R. Steur, Tetrahedron Lett., 1371 (1973). (293) S. Soerensen, R. S. Hansen, and H. J. Jakobsen, J. Magn. Reson., 14, 243 (1974). (294) M. Pomerantz and D. F. Hillenbrand, J. Am. Cbem. Soc.. 95,5809 (1973). (295) S. Berger and J. D. Roberts, J. Am. Chem. SOC.,96, 6757 (1974). (296) J. F. Hinton, K. H. Ladner. and W. E. Stewart, J. Magn. Reson., 12, 90 (1973). (297) P. Gaiy. M. Sarrazin, and E. J. Vincent, C. R. Hebd. Seances. Acad. Sci., Ser. D, 276, 791 (1973). (298) J. M. Briggs and E. W. Randall, J. Chem. SOC.,Perkin Trans. 2, 1789 (1973). (299) M. Yamazaki, T. Usami, and T. Takeuchi. Nippon Kagaku Kaishi, 2135 (1973). (300) S. Sorensen, R. S. Hansen. and H. K. Jakobsen, J. Am. Chem. SOC.,95, 5089 (1973). (301) S. Sorensen, M. Hansen, and H. J. Jakobsen, J. Magn. Reson., 12, 340 (1973). (302) D.Doddrell, L. Burfitt, J. 8. Grutzner, and M. Barfield, J. Am. Chem. SOC.,96, 1241 (1974). (303) T. R. Brunner, R. C. Williams, C. L. Wilkins, and P. J. McCombie, Anal. Chem., 46, 1798 (1974). (304) F. E. Condon, Org. Magn. Reson., 6, 517 (1974). (305) R. 8. Creel, E. Von Meerwali, C. F. Griffin, and R. G. Barnes, J. Chem. Phys., 58, 4930 (1973). (306) K. J. Toyne, Tetrahedron, 29, 3889 (1973). (307) J. R. Schweiger, A. H. Cowley, E. A. Cohen, P. A. Kroon, and S. L. Manatt, J. Am. Chem. SOC.,96, 7122 (1974). (308) L. 6. Schreiber and R. W. Vaughan, Chem. Phys. Lett., 28, 586 (1974). (309) L. J. Burnett and A. H. Zeitmann, J. Chem. Phys., 60, 4636 (1974). (310) R. Radeglia, 2.Chem., 14, 495 (1974). (311) K. F. Wong and S. Ng, J. Magn. Reson., 13, 239 (1974). (312) S. Lindenbaum and A. S. Levine, J. Soiution Chem., 3, 261 (1974). (313) K. F. Wong, T. S. Pang, and S. Ng, J. Chem. SOC., Chem. Commun., 55 (1974). (314) J. P. Albrand and J. B. Robert, J. Chem. SOC.,Chem. Commun., 644 (1974). (315) J. L. Marshall and D. E. Miller, J. Am. Chem. SOC.,95, 8305 (1973). (316) R. E. Waszlishen and T. Schaefer. Can. J. Chem., 51, 3087 (1973). (317) D. G. Gorenstein, J. Am. Chem. SOC., 97, 898 (1975). (318) R. L. Lichter, D. E. Dorman, and R. Waylisher, J. Am. Chem. SOC.,96, 930 (1974). (319) R. 6. Wetzel and G. L. Kenyon, J. Chem. SOC.,Chem. Commun., 287 (1973). (320) L. I. Vinogradov, Yu. Yu. Samitov, et al., Zh. Obshch. Khim., 44, 37 (1974). (321) S. Masuda and N. Inamoto, Chem. Lett., 655 (1973). (322) A. K. Davis, D. W. Mathieson, P. D.Nicklin. J. R. Bell, and K. J. Toyne, Tetrahedron Lett., 413 (1973). (323) Y. Takeuchi and N. Dennis, J. Am. Chem. SOC.,96, 3657 (1974). (324) N. Defay, Org. Magn. Reson., 6, 221 (1974). (325) G F. Hambly, J. Leitch, P. Yates, and S. C. Nyburg. Can. J. Chem., 51, 4076 (1973). (326) R. Lozac'h and 8. Braiilon, J. Magn. Reson.. 12, 244 (1973). (327) V. P. Senthilnathan and S. Singh. Chem. Phys. Lett.. 21, 147 (1973). (328) J. D. Remijnse, B. G. M. Vandeginste, and B. M. Wepster, Recl. Trav. Chim., 92, 804 (1973). (329) T. Schaefer and J. 6. Rowbotham, Chem. Phys. Lett., 29, 633 (1974). (330) H. Fritz and T. Winkler, Helv. Chim. Acta, 57, 836 (1974). (331) S. Bulusu, J. R. Autera. and T. Axenrod, J. Chem. SOC.,Chem. Commun., 602 (1973). (332) W. Adcock, M. J. S. Dewar, and B. D. Gupta. J. Am. Chem. SOC.,95, 7353 (1973). (333) K. Bock and L. Wiebe. Acta Chem. Scand., 27, 2676 (1973). (334) G. Fronza, A. Gamba, R. Mondelli, and G. Pagani, J. Magn. Reson., 12, 231 (1973). (335) M. P. Simonin, M. J. Pouet, and C. Paulmier, Tetrahedron Lett., 4487 (1973).
256R
(336) C. Giotsmann, E. Langer, and H. Lehner. Monatsh. Chem., 105, 354 (1974). (337) Yu. I. Nenov, D. M. Kaminker, and Kh. Mukhamadiev, Teor. Eksp. Khim., 10, 215 (1974). (338) M. H. Pendleburg, L. Phillips, and V. Wray, J. Chem. SOC.,Perkin Trans. 2,787 (1974). (339) J. L. Gove, J. Org. Chem., 38, 3517 (1973). (340) V. M. S. Gil and C. F. G. C. Carlos, J. Magn. Reson., 11, 268 (1973). (341) T. Pehk, M. M. Alla, and E. Lipprnaa, Org. Magn. Reson., 5, 351 (1973). (342) D. R. Ewing, Org. Magn. Reson., 5, 321 (1973). (343) J. F. Hinton and L. W. Jaques, J. Magn. Reson., 15, 564 (1974). (344) J. Beeby. L. Drake, et al.. Org. Magn. Reson., 5, 163 (1973). (345) F. Coletta. A. Gambaro. and L. Pasimeni, Gazz. Chim. /tal., 103, 265 (1973). (346) I. Morishima, K. Endo, and T. Yonezawa, J. Chem. Phys., 59, 3356 (1973). (347) W. Saenger and J. Voitlaender. 2.Naturforsch. A, 28, 1866 (1973). (348) R. V. Reid, Jr., Phys. Rev., Sect. A, 11, 403 (1975). (349) R. B. Maliory, J. Am. Chem. SOC., 95, 7747 (1973). (350) S. Mohanty, J. Chem. Phys., 59, 4415 (1973). (351) R. Kirsch and E. Weislinger. C. R. Hebd. Seances Acad. Sci., Ser. B., 279, 483 (1974). (352) R. M. Arninova, Dokl. Akad. Nauk SSSR, 219, 625 (1974). (353) R. M. Aminova, I. Ts. Lyast, and 2. M. Usmanova. Dokl. Akad. Nauk SSSR, 210, 623 (1973). (354) G. Pouzard. M. Rajzmann. H. Bodot. and L. Pujoi, Org. Magn. Reson., 5, 209 (1973). (355) G. Peinel and K. Klowpper. Acta Phys. Acad. Sci. Hung., 37, 31 (1974). (356) J. Kowalewaki, B. Roos, P. Siegbahn, and R. Vestin, Chem. Phys., 3, 70 (1974). (357) Y. Ellinger, B. Levy, Ph. Millie, and R. Subra, in "Localization and Delocalization in Quantum Chemistry', 0. Chalvet, R. Daudei, S. Diner, and J. P. Malrieu, Ed., D. Reidel Publishing Co., Boston, 1975, Vol. I, pp 383-326. (358) I. Ando, A. Nishioka, and M. Kondo, Chem. Phys. Lett., 25, 212 (1974). (359) H. Bildsoe and K. Schaumberg, J. Magn. Reson., 14, 223 (1974). (360) F. Crasmier, J. Chim. Phys. Physiochim. Biol., 70, 1731 (1973). (361) H. Stahl-Leriviere, Org. Magn. Reson., 6, 170 (1974). (362) W. B. Moniz and C. F. Poranski, Jr., J. Magn. Reson., 11, 62 (1973). (363) N. S. Ostlund and M. J. Pruniski, J. Magn. Reson., 15, 549 (1974). (364) V. N. Solkan and N. M. Sergeev. Org. Magn. Reson., 6, 200 (1974). (365) V. Gaiasso. Org. Magn. Reson., 6, 5 (1974). (366) K. A. K. Ebraheem and G. A. Webb, J. Mol. Strucf., 25, 387 (1975). (367) W. Schroer, Berg. Bunsenges. Phys. Chem.. 79, 36 (1975). (368) R. K. Safiuiiin, Yu. Yu. Samitov, and R. M. Aminova, Teor. Eksp. Khim., 10, 828 (1974). (369) M. Dixon, T. A. Claxton, and R. E. Overiil, J. Magn. Reson., 12, 193 (1973). (370) H. Fukui. Bull. Chem. SOC. Jpn, 47, 751 (1974). (371) J. M. Schulman and M. D. Marshall, J. Am. Chem. SOC.,96,6295 (1974). (372) R. M. Aminova and Yu. Yu. Samitov, Zh. Strukt. Khim., 15, 607 (1974). (373) V. N. Solkan. N. M. Sergeev. V. Yu. Klimenko, and Yu. A. Ustynyuk. Teor. Eksp. Khim., 9, 258 (1973). (374) V. N. Solkan, V. Yu. Klimenka, and Yu. A. Ustynyuk, Teor. Eksp. Khim., 9, 254 (1973). (375) R. Ditchfieid, Chem. Phys., 2, 400 (1973). (376) R. Ditchfield, Mol. Phys., 27, 789 (1974). (377) J. Sadlej and A. J. Sadlej, J. Magn. Reson., 14, 97 (1974). (378) R. Tewari, R. K. Nanda. and G. Govii, Biopolymers, 13, 2015 (1974). (379) M. Maestro, R. Moccia, and M. Zandomeneghi, Chem. Phys. Lett., 28,373 (1974). (380) W. M. Litchman, J. Magn. Reson., 12, 182 (1973). (381) G. M. Zhidomirov and I. A. Brtonin, Chem. Phys. Lett., 21, 409 (1973).
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5 , APRIL 1976
(382) V. Galasso, Chem. Phys. Len., 21, 54 (1973). (383) P. Ros, "Selected Topics in Molecular Physics, Proc. int. 1970". E. Clementi, Ed., Verlag Chemie. Weinheim, Germany, 1972, pp 143-151. (384) H. Sterk and H. Holzer. Org. Magn. Reson., 6, 133 (1974). (385) D. E. Axeison, I. M. Walker, A. J. Oliver. and C. E. Hoiloway, Spectrosc. Lett., 6, 475 (1973). (386) R. Radeglia and G. Englehardt, 2.Chem., 14, 319 (1974). (387) D. E. Axeison, S. A. Kandil, and C. E. Hoiloway, Can. J. Chem., 52, 2968 (1974). (388) R. Radeglia and H. Teichmann, 2. Chem., 14, 249 (1974). (389) R. Radegiia and G. Engelhardt, J. Organometal. Chem., 67, C45 (1974). (390) G. Beech, R. T. Jones, .and K. Miller, Anal. Chem., 46, 714(1974). (391) V. N. Kuznetsov, V. V. Isakov, and A. K. Dzizenko, Zh. Prikl. Spektrosk., 21, 933 (1974). (392) B. A. Jezl, PhD. Thesis, University of Delaware, 1974, Univ. Microfilms No. 74-26, 132. (393) V. A. Gubanov, R. N. Pletnev, V. N. Lisson, and A. K. Chirkov, Zh. Strukt. Khim., 15, 331 (1974). (394) D. Scheutzow. Chromatographia, 7, 438 (1974). (395) D. F. S. Natusch, H. J. Percival, and F. H. Jackson, N. Z. Dep. Sci. lnd. Res., Chem. Div. Rep. No. C.D. 2157 (1972). (396) D. G. McGavin and L. D. Sibley, N. 2. Dep. Sci. lnd. Res., Chem. Div. Rep., No. 2140 (1972). (397) S. Szymanski and A. Gryff-Keller, J. Magn. Reson., 16, 182 (1974). (398) R. C. Ferguson, J. Magn. Reson., 12, 296 (1973). (399) G. A. Pearson and R. I. Walter, J. Magn. Reson., 16, 348 (1974). (400) W. Voelter, G. Haas, and E. Breitmaier, Chem. Ztg., 97, 507 (1973). (401) P. Meakin and J. P. Jesson. J. Magn. Reson., 10, 290 (1973); 11, 182, (1973); 13, 354 (1974). (402) D. W. Posener, J. Magn. Reson., 14, 121 (1974). (403) K. Okuhara. Kogaku Kogyo, 24, 1618 (1973). (404) J. T. Gerig, G. B. Matson, and A. D. Stock, J. Magn. Reson., 12, 48 (1973). (405) P. Herrmann, K. Arnold, and G. Close, 2. Phys. Chem. (Leipzig), 253, 257 (1973). (406) J. W. Akin and C. G. Savory, J. Magn. Reson., 17, 122 (1975). (407) S. I. Al'ber, G. V. Lagodzinskaya, G. 6. Manelia. and E. B. Fei'dman, Teor. Eksp. Khim., 10, 223 (1974). (408) S. i. Al'ber, G. V. Lagodzinskaya, G. 6. Manelis, and E. B. Fei'dman, lzv. Akad. Nauk. SSSR, Ser. Khim., 17 19 ( 1974). (408a) G. Beech, "Fortran IV in Chemistry", Wiley, New York, 1975. (409) G. Odberg and L. Odberg. J. Magn. Reson., 16, 342 (1974). (410) D. J. Meredith, G. R. Pickett, and 0. G. Symko, J. Low Temp. Phys., 13, 607 (1973). (411) R. G. Lawler and M. Halfon, Rev. Sci. lnstrum., 45, 84 (1974). (412) H. Yagi, M. inoue, T. Naito, and T. Tatsukawa, Fukui Daigaku Kogakubu Kenkyu Hokoku, 22, 245 (1974). (413) D.Bioyet, A. Ghozlan, P. Piejus, and E. J. A. Varoquaux, "Low Temp. Phys.-LT13, Proc. int. Conf. Low Temp. Phys, 13th, 1972", Plenum, New York, 1974. (414) R. M. Hawk, R. R. Sharp, and J. W. Tolan, Rev. Sci. lnstrum., 45, 96 (1974). (415) D.G. Hughes, J. Magn. Reson., 11, 83 (1973). (416) W. Sahm and A. Schwenk, Z. Naturforsch. A, 29, 1763 (1974). (417) P. McArdle, J. Chem. Educ., 51, 124 (1974). (418) J. Homer, A. R. Dudley, and W. R. McWhinnie. J. Chem. SOC.,Chem. Commun., 893 (1973). (419) J. D. Cargioli and E. A. Williams. Rev. Sci. Instrum., 45, 1263 (1974). (420) M. J. Van Der Linde, Lab. Pract., 23, 558 (421) H. Yamada, Rev. Sci. Instrum., 45, 640 (1974). (422) A. J. Nanassy, Rev. Sci. lnstrum., 44, 1633 (1973).
(423) K. B. Dillon, Specbvchirn. Acta, Pert A, SO, 1873 (1974). (424) D. E. Demco, V. Simplaceanu, and I. Uran, Rev. Roum. Phys., 10, 613 (1974). (425) S. Kan, P. Gonord. J. Salset, and C. Vibet, Rev. Sci. Instrum., 44, 1725 (1973). (426)C. S. Peters, R. Codrington, H. C. Walsh, and P. D. Ellis, J. Magn. Reson., 11, 431 (1973). (427)R. K. Gupta, J. Magn. Reson., 16, 185 (1974). (428)D. Doskocilova. D. T. Dang. and B. Schneider, Czech. J. Phys., Sect. 8, 25, 202 (1975). (429)P. Gonord, C. Duret, and S. K. Kan, C. R. Hebd. Seances Acad. Sci., Ser. 8, 278, 123 (1974). (430)B. W. Bangarter, J. Magn. Reson., 13, 87 (1974). (431)B. Ramadan, T. C. Ng, and E. Tward, Rev. Sci. instrum., 45, 1174 (1974). (432)A. Pines and J. D. Ellett, Jr., J. Am. Chem. SOC.,05,4437 (1973). (433)K. G. R. Pachler and P. L. Wessels, J. Magn. Reson., 12, 337 (1973). (434)A. N. Garroway. P. Mansfield, and D. C. Stalker, Phys. Rev. 8, 11, 121 (1975). (435)P. Mansfield and U. Haeberlen, Z.Naturforsch. A, 28, 1081 (1973). (436)H. Yagi, M. Inoue, N. Naito, and T. Tatsukawa, Jpn J. Appl. Phys., 12, 1794 (1973). (437)P. D. Ellis, H. C. Walsh. and C. S.Peters, J. Magn. Reson., 11, 426 (1973). (438)W. B. Moniz, C. F. Poranski. and S. A. Sojka, J. Magn. Reson., 13, 110 (1974). (439)Y. Arata and H. Ozawa, Chem. Lett., 1257 (1974). (440)J. Dadok, J. Magn. Reson., 13, 243 (1974). (441)A. G. Marshall, I_.D. Hall, M. Hatton, and J. Sallos, J. Magn. Reson., 13, 392 (1974). (442)D. D. Traficante. J. A. Simms, and M. Mulcay, J. Magn. Reson., 15, 464 (1974). (443)K. G. R. Pachler and P. L. Wessels, J. Chem. SOC.,Chem. Commun., 1038 (1974). (444)G. F. Hatch, J. W. Neely, and R. W. Kreiiick, J. Magn. Reson., 16, 408 (1974). (445)D. Canet, J. P. Marchai. and J. P. Sarteaux. C. R. Hebd. Seances Acad. Sci., Ser 8, 279,71 (1974). (446)R. Kaiser, E. Barthold, and R. R. Ernst, J. Chem. Phys., 60,2966 (1974). (447)E. 0. Stejskal and J. Schaefer. J. Magn. Reson., 14, 160 (1974). (448)I. H. Sadler, J. Chem. SOC., Chem. Commun., 809 (1973). (449)A. Allerhand, R. F. Childers, and E. Olafield, J. Magn. Reson., 11, 272 (1973). (450)L. C. Headiey, W. E. Wallace, Jr., and P. Waldstein. J. Appi. Phys.. 44, 5624 (1973). (451)F. Heatley, J. Chem. Soc., faraday Trans. 2,69, 831 (1973). (452)J. H. Simpson, Jr., I J S . Patent 3,858,11 (1974). (453)M. Holik. Czech. Patent 151,155(1973). (454)N. Zumbalyadis and B. P. Dailey, Mol. Phys., 27, 633 (1974). (455)L. W. Reeves and A. S. Tracey, J. Am. Chem. SOC.,96, 7 176 (1974). (456)R. K. Bhattacharyya and B. R. Dailey, J. Magn. Reson., 12,36 (1973). (457)M. N. Avadhaniu and C. R. K. Murty, Mol. Cryst. Liquidcryst., 20, 221 (1973). (458)N. Zumbaiyadis and B. P. Dailey, Mol. Phys., 26, 777 (1973). (459)P. Diehl, S. Sykora, W. Niederberger, and E. E. Burnell, J. Magn. Reson., 14, 260 (1974). (460)N. Zumbulyadis and B. P. Dailey, J. Chem. Phys., 60, 4223 (1974). (461)N. Zumbulyadis and B. P. Dailey. Chem. Phys. Lett., 20, 273 (1974). (462)P. K. Dhattacharyya and 8. P. Dailey, J. Chem. Phys., 59, 5620 (1973). (463)R. T. Thompson, D. W. Kydon and M . M . Pinter, J. Chem. Phys.. 61, 4646 (1974). (464)R. Y. Dong, M. Wiszniewaka, E. Tomchuk, and E. Bock, Mol. Cryst. Liq. Cryst., 27, 259 (1974). (465)N. Zumbalyadis and B. P. Dailey, J. Magn. Reson., 13, 189 (1974). (466)Y. Lee and L. W. Reeves, Can. J. Chem., 53, 161 (1975). (467)J. Degelaen, E. Arte, and J. M. Dereppe, J. Chem. Phys., 61,5295 (1974). (468)S. B. Marks, R. Potashnik, and S. D. Goren, J. Magn. Reson., 17, '132 (1975).
(469)J. M. Brlggs, E. J. Rahkamaa, J. Magn. Reson., 17, 55 (1975). (470)K. C. Cole and D. F. R. Gilson, J. Chem. Phys., 60,1191 (1974). (471)D. Canet, E. Haloui, and H. Nery, J. Magn. Reson., 10, 121 (1973). (472)R. C. Hewitt, S.Meiboom, and L. C. Snyder, J. Chem. Phys., 58, 5089 (1973). (473)A. Pines and J. J. Chang, Phys. Rev. A, 10, 946 (1974). (475)J. Courtieu and Y. Gounelle. Mol. Phys., 28, 161 (1974). (476)J. D. Kennedy and W. McFarlane, Mol. Phys., 29, 593 (1975). (477)E. Haloni and D. Canet, Org. Magn. Reson., 6,537 (1974). (478) Yu. H. Ignat'ev, B. V. Semakov, and P. M. Borodin, Teor. Eksp. Khim., 11, 103 (1975). (479) K. C. Cole, Ph.D. thesis, McGill University, Montreal, eanada, 1974. (460)G. J. Den Otter, J. Gerritsen, and C. Maclean, J. Mol. Struct., 16, 379 (1973). (481)J. M. Dereppe, J. Degelaen, and M. Van Meerssche. J. Mol. Struct., 17, 225 (1973). (462)L. F. Williams and A. A. Bothner-By, J. Magn. Reson., 11, 314 (1975). (483)W. Niederberger, P. Diehl, and L. Lunazzi, Mol. Phys., 26, 571 (1973). (484) C. L. Khetrapal and A. C. Kunwar, Mol. Phys., 28, 441 (1974). (485)I. R. Beattie, J. W. Emsley. and R. M. Sabine, J. chem. SOC.,Faraday Trans. 2, 70, 1356
(515) L. C. Snyder and S. Melboom, J. Chem. Phys., 58, 5096 (1973). (516)P. R. Callaghan, P. D. Johnston, and N. J. Stone, J. Phys. C, 7, 3161 (1974). (517)R. Y. Dong, M. Wiszniewaka, E. Tomchuk, and E. Bock, Chem. Phys. Len., 25, 299
(1974). (466)S.D. Goren, S. B. Marks, and R . Potashnik, Chem. Phys. Lett., 28, 400 (1974). (467)D. Bailey, A. D. Buckingham, and A. J. Rest, Mol. Phys., 26, 233 (1973). (468)E. E. Burnell and M. A. J. Sweeney, Can. J. Chem., 52, 5365 (1974). (489) A. D'Annibale, L. Lunazzi, F. Fringnelli, and A. Taticchi, Mol. Phys., 27, 257 (1974). (490)M. Schwartz, P. E. Fagerness, C. H. Wang, and D. M. Grant, J. Chem. Phys., 60, 5066 (1974). (491)E. Haloni and D. Canet, J. Mol. Struct., 24, 85 (1975). (492) K. C. Cole and D. F. R. Gilson, Can. J. Chem., 52, 281 (1974). (493)J. W. Emsley and J. C. Lindon, Mol. Phys., 25, 641 (1973). (494)J. W. Emsley. J. C. Lindon, and D. S. Stephenson, Mol. Phys., 27, 641 (1974). (495)A. D. Buckingham, A. J. Rest, and J. P. Yesinowski, Mol. Phys., 25, 1457 (1973). (496)D. R. McMillin and R. S. Drago, lnorg. Chem., 13, 546 (1974). (497)W. DeKieviet and C. A. DeLange. Chem. Phys. Lett., 22, 378 (1973). (498)D. Bailey, A. D. Buckingham, M. C. Mcl-
1833 (1974). (530)J. R. Mooney, Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio, 1973. (531)R. Lenkinski. Ph.D. thesis, University of Houston, Houston, Texas, 1973. (532)H. Beierbeck, Ph.D. thesis, Carleton University, Ottawa, Ontario, Canada, 1973. (533)D. M. Yourtee, Ph.D. thesis, University of Missouri, Kansas City, Mo., 1974. (534)J. P. Spes Ill, Ph.D. thesis, The Pennsylvania State University, University Park, Pa.. 1973. (535)i. M. Armitage, Ph.D. thesis, University of British Columbia, Vancouver, B.C., Canada, 1973. (536)R. Radegiia. Z.Chem., 14, 72 (1974). (537)D. J. Frost and I. Sies, Chem. Phys. Lipids, 13, 173 (1974). (538)J. A. Young, J. G. Grasselli, and W. M . Ritchey, Anal. Chem., 45, 1410 (1973). (539)N. lkeda and K. Fukuzumi, J. Am. Oil Chem. Soc.. 51, 340 (1974). (540)D. B. Walters and R. J. Horvat, Anal. Chim. Acta, 65, 198 (1973). (541)R. Nagai, S. Hashimoto, and K. Tanaka, Yukagaku, 23, 43 (1974). (542)A. J. Rafalski, J. Barciszewski, and M. Karonski, J. Mol. Struct., 19, 223 (1973). (543)G. Montaudo, S.Caccamese, V. Librando, and P. Maravigna, Tetrahedron, 29, 3915 (1973). (544)J. J. Cawley and D. V. Petrocine, Org. Magn. Reson., 6,544 (1974). (545)W. Dew. Horrocks, Jr., J. Am. Chem. SOC.,96, 3022 (1974). (546)P. J. Stiles and R. M. Wing, J. Magn. Reson., 15, 510 (1974). (547)P. J. Stiles, Mol. Phys., 27, 501 (1974). (548)R. H. Newman, Tetrahedron, 30, 969 (1974). (549)R. E. Cramer, R. Dubois, and K. Seff. J. Am. Chem. SOC.,96,4125(1974). (550)G. P. Schiemanz and H. P. Hansen, Angew. Chem., 85,404(1973). (551)G. P. Schiemenz, Org. Magn. Reson., 5, 257 (1973). (552)G. C. Levy and R. A. Komoroski, J. Am. Chem. SOC.,96, 678 (1974). (552a)C. M. Dobson, R. J. P. Williams, and A. V. Xavier, J. Chem. SOC., Dalton Trans., 1762 (1974). (553)A. V. Duskhin, V. F. Zolin, L. G. Korene-
vor. and A. J. Rest, J. Organometal. Chem., 61,
311 (1973). (499)C. A. Veracini, M. Guidi. M. Longeri, and A. M. Serra, Chem. Phys. Lett., 24, 99 (1974). (500)P. Bucci, M. Longeri, C. A. Veracini, and L. Cunazzi, J. Am. Chem. Soc., 06, 1305 (1974). (501)G. J. Den Otter, W. Heijser, and C. Maclean, J. Magn. Reson.. 13, l l (1974). (502)J. Courtieu and Y. Gounelle, Org. Magn. Reson., 6, 1 1 (1974). (503)J. Courtieu, Y. Gounelle, P. Gonord and S. K. Kan, Org. Magn. Reson., 6,151 (1974). (504)J. G. Koch, Ph.D. thesis, Cornell University, Ithaca, N.Y., 1972. (505)M. N. Avadhanlu. J. S. M . Sarma. and C. R. K. Martz, Ber. Bunsenges. Phys. Chem., 77,
275 (1973). (506)P. F. Swinton, J. Mol. Struct., 22, 221 (1974) ' (507)R Ader and A. Loewenstein. J. Am. Chem. SOC.,96, 5336 (1974). (508)C. C. Huang, R. S. Pindak, and J. R. Ho, J. Phys. (Paris) Lett., 35, 185 (1974). (509)S.Mohanty, Mol. Phys., 25, 1173 (1973). (510)A. Pines and J. J. Chana. J. Am. Chem. SOC., 96, 5590 (1974). (511)A. Loesche, Ann. Phys. (Leipzig), 31, 182 f1974). (5i2)R', C. Long, J. Magn. Reson.. 12, 216 (1973). (513)L. C. Snyder and S. Meiboom, "Critical Evaluation Chem. Phys. Struct. Inf., Proc. Conf. 1973". D. R. Lide, Ed., NAS, Washington, D.C.,
1974. (514)G. Giacometti, P. L. Nordio, G. Rigatti, and U. Segre, J. Chem. SOC., faraday Trans. 2, 69, 1815 (1973).
(1974). (518)F. M. Menger and J. L. Lynn, J. Am. Chem. Soc., 97, 948 (1975). (519)R . G. C. McElroy. R. T. Thompson, and M . M. Pintar, Phys. Rev. A, 10, 403 (1974). (520)2 . Luz and S. Meiboom, J. Chem. Phys., 59, 275 (1973). (521)H. Wennerstrom, N. 0. Persson, and B. Lindman, J. Magn. Reson., 13, 346 (1974). (522) N. 0. Persson, G. Lindblom, and B. Lindman, Chem. Phys. Lipids, 12, 261 (1974). (523)J. Seelig and W. Niederberger, J. Am. Chem. SOC.,96, 2069 (1974). (524)E. E. Zaev. L. V. Spirikhin, and Yu. G. Grechishnikov, Kolloidn. Zh., 36, 1166 (1974). (525)E. E. Zaev, L. M. Khalilov, and L. V. Spirikhin, Kinet. Katal., 15, 1086 (1974). (526)C. L. Khetrapai, A. C. Kunwar, and A. V. Patankar, Org. Magn. Reson., 6, 556 (1974). (527)V. A. Shcherbakov, L. L. Shcherbakova. and B. V. Semakov, Zh. Strukt. Khim., 15, 925 (1974). (528)S. P. Sinha, J. Mol. Struct., 19, 387 (1973). (529)J. D. Roberts, G. E. Hawkes, J. Husar, A. W. Roberts, and D. W. Roberts, Tetrahedron, 30,
va, Yu. N. Molin, A. A. Obynochnyi, and R. Z. Sagdeev, Zh. Strukt. Khim., 15, 410 (1974). (554)C.-P. Wong, R. F. Venteichev. and W. Dew. Horrocks, J. Am. Chem. SOC., 06, 7149
(1974). (555)A. K. Bose, P. R. Srinivasan, and G. Trainor, J. Am. Chem. Soc., 96, 3670 (1974). (556)C. R. Jones and D. R. Kearns, J. Am. Chem. SOC.,96, 3651 (1974). (557)R. A. Perry and Y L. Chow, Can. J. Chem., 52, 315 (1974). (558)N. Platzer, C. Lang, J. J. Basselier, and P. Demerseman, Bull. SOC.Chim. fr., 227 (1975). (559)T. Okada, M. Izuhara, and T. Hashimoto,
ANALYTiCAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
257R
Polym. J., 7, 1 (1975). (560) H. L. Goering, J. N. Eikenberry, G. S. Koermer, and C. J. Lattimer, J. Am. Chem. Soc., 96, 1493 (1974). (561)M. Hirayama and Y. Hanyu, Bull. Chem. Soc. Jpn, 46, 2687 (1973). (562)K. L. Servis, D. J. Bowler, and C. Ishii, J. Am. Chem. Soc., 97, 73 (1975). (563)K. L. Servis and D. J. Bowler. J. Am. Chem. Soc., 97, 80 (1975). (564)K. Ajisaka and M. Kainosho, J. Am. Chem. Soc., 97, 330 (1975). (565) I. M. Armitage, E. E. Burnell. M. 8. Dunn, L. D. Hall, and R. B. Malcolm, J. Magn. Reson., 13, 167 (1974). (566) R. Lenk, Chem. Phys. Lett., 28, 398
(1974). (566a) K. E. Elgert, G. Quack, and B. Stuetze., Makromol. Chem., 176, 759 (1975). (567)V. A. Zhorin, A. A. Zharov, Yu. V. Kissin, and N. S. Emkolopyan. Dokl. Akad. Nauk SSSR, 219, 647 (1974). (568) i. Ando, A. Nishioka. and T. Asakura, Makromol. Chem., 176, 41 1 (1975). (569)R. DiBlasi and A. S. Verdini, Biopolymers, 13, 765 (1974). (570)E. Brosio, M. Delfini, A. DePaolis, M. Paci. and F. Conti. Biopolymers, 13, 745 (1974). (571)H. Girard and P. Ponjol, C. R. Hebd. Seances Acad. Sci., Ser. C, 279, 553 (1974). (572)H. Y. Chen, J. Polym. Sci., Polym. Lett. Ed., 12, 85 (1974). (573)F. Keller, E. Kowasch. and J. Sobotka, 2. Phys. Chem. (Leipzig), 255, 1166 (1974). (574)H. R. Kricheldorf. E. Leppert, and G. Schilling, Makromol. Chem., 176, 81 (1975). (575)M. lino, K. Katagiri, and M. Matsuda, Macromolecules, 7, 439 (1974). (576)Y. Chokki, Nippon Kagaku Kaishl, 1
(1975). (577)K. Matyjaszewski and S. Penczek, J. Polym. Sci., Polym. Chem. Ed., 12, 1905 (1974). (578)S. Fujishige and N. Ohguri. Makromol. Chem., 176, 233 (1975). (579)Y. Chokki. M. Nakabayashi, K. Kodama. and M. Sumi. Nippon Kagaku Kaishi, 1662 (1974). (580) J. B. Lambert and S. A. Khan, J. Org. Chem., 40, 369 (1975). (581)R. J. Bushby and G. J. Ferber, Tetrahedron Left., 3701 (1974). (582)R. A. Y. Jones, A. R. Katritzky. A. R. Martin, and S. Saba, J. Chem. Soc.. Perkin Trans. 2, 1561 (1974). (563)A. B. Dempster. J. Mol. Struct., 23, 193
(1974). (584)H. Lehner, Monatsh. Chem.. 105, 895 (1974). (585) C. Glotzmann. E. Langer, and H. Lehner. Monatsh. Chem., 105, 907 (1975). (586) A. Lindquist and J. Sandstrom, Chem. Scr., 5, 52 (1974). (587)R. F. Hobson. L. W. Reeves, and K. N. Shaw. J. Phys. Chem., 77, 1228 (1973). (568) N. M. Viktorova, S. P. Kuyazev, N. S. Zefirov, Yu. D. Gavrilov, G. M. Nikolaev, and V. F. Bystrov, Org. Magn. Reson., 6, 236 (1974). (589)E. P. Prokof'ev. Zh. A. Krasnaya. and V. F. Kucharov, Org. Magn. Reson., 6, 240 (1974). (590)A. Liden and J. Sandstrom, Acta Chem. Scand., 27, 2567 (1973). (591)G. W. Buchanan, J. B. Stothers. and G. Wood, Can. J. Chem., 51, 3746 (1973). (592)R. G. Kostyanovskii, A. A. Fomichev, L. M. Zagurshaya. and K. S. Zakarov, lzv. Akad. Nauk SSSR, Ser. Khim., 1915 (1973). (593)P. Meakin, R. A. Schunn, and J. P. Jesson, J. Am. Chem. Soc.. 96, 277 (1974). (594)P. Ayras. Adv. Mol. Relax. Processes, 5,
219 (1973). (595)E. E. Eliel. R. L. Willer, A. T. McPhail. and K. D. Onan', J. Am. Chem. Soc., 96, 3021 (1974). (596)M. Anteunis and M. Coryu, Bull. SOC. Chim. Belg., 83, 133 (1974). (597)P. Baret, H. Handel, and J. L. Pierre, Org. Magn. Reson., 6, 35 (1974). (598)S.DiStefano, H. Goldwhite, and E. Mazzola, Org. Magn. Reson., 6, 1 (1974). (599)J. J. Bergman and B. M. Lynch, J. Heterocycl. Chem., 11, 135 (1974). (600) J. Elguero and A. Fruchier, An. Quim., 70, 141 (1974). (601)T. B. Grindley and W. A. Szarek, Can. J. Chem., 52, 2566 (1974). (602)P. Aibriktsen and S. Heggebund, Acta Chem. Scand.. E, 28, 573 (1974).
258R
(603)H. Nakanishi and 0. Yamamoto, Tetrahedron, 30, 21 15 (1974). (604)J. F. M. Oth, K. Muellen, J. M. Gilles, and G. Schroeder, Helv. Chim. Acta, 57, 1415 (1974). (605) J. H. Schanble and N. R. Lazear, Org. Magn. Reson., 6, 303 (1974). (606)B. M. Dah1 and P. H. Nielsen. Acta Chem. Scand., 6,28, 501 (1974). (607)R. J. Omelette, J. Am. Chem. Soc., 96, 2421 (1974). (608) G. E. Wilson, Jr.. J. Am. Chem. Soc., 96,
2425 (1974). (609)D. R. Ferro. F. Heatley, and A. Zambelli. Macromolecules, 7, 480 (1974). (610)R. L. Lichter, C. G. Fehder, P. H. Patton, J. Combes, and D. E. Dorman, J. Chem. Soc., Chem. Commun., 114 (1974). (611) T. Tanaka and N. Watanabe, Org. Magn. Reson., 6,165 (1974). (612)R. F. Hobson, L. W. Reeves, and R. C. Shaddick, Org. Magn. Reson., 6,129 (1974). (613)J. Dale and D. G. T. Greig. Acta Chem. Scand., B28, 697 (1974). (614)A. DeMeijere, W. Leuttke, and F. Heinrich, Justus Leibigs' Ann. Chem., 306 (1974). (615)E. Schaumann, Angew. Chem., lnt. Ed. Engl., 13, 350 (1974). (616)S. L. Spassov, V. S. Dimitrov. and I. Kantschovska, Org. Magn. Reson., 6,20 (1974). (617)Y. Takeuchi. P. Chivers, and T. A. Crabb, J. Chem. SOC., Chem. Commun.. 210 (1974). (618)C. D. Freeman and D. L. Hooper. J. Phys. Chem., 78, 961 (1974). (619)B. Nilsson, Mol. Phys., 27, 625 (1974). (620)H. Guenther and J. Ulmen. Tetrahedron, 30, 3781 (1974). (621)J. Fernandez Bertrand and M. Rodriguez, Org. Magn. Reson., 6,525 (1974). (622)C. H. Bushwellar, S. Hoogasian, W. G. Anderson, and L. J. Letendre, J. Chem. Soc., Chem. Commun., 152 (1975). (623)V. S.Dimitrov, Org. Magn. Reson., 6, 16
(1974). (624)J. Sandstroem, Endeavour, 33, 1 1 1 (1974). (625)A. Gryff-Keller and S. Szymanski, Rocz. Chem., 47, 1889 (1973). (626)J. Heidberg and H. Scheve, Fresenius' 2. Phys. Chem., 92, 295 (1974). (627)C. S.Johnson, Jr., and C. G. Moreiand, J. Chem. Educ., 50,477 (1973). (628)E. B. Fel'dman, Teor. Eksp. Khim., IO, 787 (1974). (629)R. K. Gupta, T. P. Pitner, and R. Wasyiishen, J. Magn. Reson., 13, 383 (1974). (630)J. Kaplan, P. P. Yang. and G. Fraenkel, J. Chem. Phys., 60,4840 (1974). (631)S. i. Al'ber, G. V. Lagodzinskaya, G. B. Manelis, and E. E. Fel'dman. lzv. Akad. Nauk SSSR, Ser. Khim., 1632 (1974). (632)H. Versmold. J. Chern. Phys., 58, 5649 (1973). (633)J. Granot and D. Fiat, J. Magn. Reson., 15, 540 (1974). (634)H. Strehlow and J. Frahm, Ber. Bunsenges. Phys. Chem., 79, 57 (1975). (635)A. P. Downing, W. D. Ollis, M. Nogardi, and I. 0. Sutheriand, Jerusalem Symp. Quantum Chem. Biochern., 3, 296 (1971). (636)R. J. Cross, T. H. Green, and R. Keat, J. Chern. Soc., Chem. Commun., 207 (1974). (637)I. E. Afanas'ev et al., React. Kinet. Cafal. Lett., 1, 333 (1974). (638)R. Damadian, K. Zaner. D. Hor, and T. Dimiaio, Physiol. Chem. Phys., 5, 381 (1973). (639)R. G. Parrish, R. J. Kurland, W. W. Janese. and L. Bakay, Science, 183, 438 (1974). (640)R. Damadian and F. W. Cope, Physiol. Chern. Phys., 6,309 (1974). (641)N. lijima. S. Saitoo, et al., Physiol. Chern. Phys., 5, 431 (1973). (642)R. Damadian, K. Zaner, D. Hors, T. DiMaio, L. Minkoff, and M. Goldsmith, Ann. N.Y. Acad. Sci., 222, 1048 (1973). (643)G. Van Binst, M. Biesemans, and A. 0. Barel, Bull. Soc. Chirn. Belg., 84, l(1975). (644)J. Oakes, Eur. J. Biochem., 36, 553
(1973). (645)J. Oakes and M. C. Cafe, Eur. J. Biochem., 36, 559 (1973). (646)E. M. Bradbury. C. Crane-Robinson, L. Paoiillo. and P. Temussi, Polymer, 14, 303 (1973). (647)I. C. P. Smith and H. Saito, Arch. Biochern. Biophys., 158, 154 (1973). (648)J. E. Milstien and J. A. Ferretti, Biopolymers, 12, 2335 (1973).
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
(649)D. E. Carlstrom, W. G. Miller, and R. G. Bryant, J. Phys. Chem., 77, 2759 (1973). (650)Y-H. Shaw, L. S. Kan, and N. C. Li. J. Magn. Reson., 12, 209 (1973). (651)A. C. McLaughlin, F. Podo, and J. K. Blaise, Biochem. Blophys. Acta, 330, 109 (1973). (652)M-C. Hsu and S. I. Chan, Biochemistry, 12, 3672 (1973). (653) J. Urbina and J. S. Waugh, Ann N.Y. Acad Sci., 222, 733 (1973). (654)C. H. A. Seiter and S. I. Chan, J. Am. Chem. Soc., 95, 7541 (1973). (655) J. C. Metcalfe, N. J. M. Birdsall, and A. G. Lee, Ann. N.Y. Acad. Sci., 222, 460 (1973). (656) A. J. Marcus and S. E. Lasker, Haemostasis, 2, 92 (1973). (657)M. S. Fernandez, H. Celis. and M. Montal, Biochem. Biophys. Acta, 323, 600 (1973). (658)P. Balaram, A. A. Bothner-By, and E. Breslow, Biochemistry, 12, 4695 (1973). (659)H. E. Coates, K. A. McLaughlan, I. D. Campbell, and C. E. McColl, Biochem. Biophys. Acta, 310, l(1973). (660) J. C. W. Chien and W. B. Wise, Biochemistry, 12, 3418 (1973). (661)B. M. Fung and S. C. Wei, Biopolymers, 12, 1053 (1973). (662)Y. Arata, R. Khalifah and 0. Jardetzky, Ann. N.Y. Acad. Sci., 222, 230 (1973). (663)P-C. Kong and T. Theophanides, lnorg. Chem., 13, 1981 (1974). (664)W. R. Walker, Y-H. L. Shaw. and N. C. Li, J. Coord. Chem., 3, 77 (1973). (665)G. Kotowycz, Can. J. Chem., 52, 924 (1974). (666) G. Kotowycz and 0. Suzuki, Biochemistry. 12, 5325 (1973). (667)R. S. Zukin and D. P. Hollis, J. Biol. Chem.. 249, 656 (1974). (668)V. Wee, I. Feldman, P. Rose, and S. Gross, J. Am. Chem. Soc., 96, 103 (1974). (669)H. J. Grande, R. L. Houghton, and C. Veeger, Eur. J. Biochem., 37, 563 (1973). (670)Y-F. Lam, G. P. P. Kuntz, and G. Kotowycz. J. Am. Chem. Soc., 96, 1834 (1974). (671)F. F. Brown, I. D. Campbell, R. Henson, C. W. J. Hirst. and R. E. Richards, Eur. J. Biochem.. 38, 54 (1973). (672)G. Kotowycz and 0. Suzuki, Biochemlstry, 12, 3434 (1973). (673)G. H. Reed and M. C. Scrutton, J. Biol. Chem., 249,6156 (1974). (674)J. J. Villafranca and R. E. Viola, Arch. Biochem. Biophys., 165, 51 (1974). (675)M. A. Raftery and W. H. Huestis. Ann. N. Y. Acad. Sci., 222, 40 (1973). (676)R. G. Shulman, S. Ogawa, A. Mayer and C. L. Castillo, Ann. N.Y. Acad. Sci., 222, 9
(1973). (677)G. Pifat and S. Maricic, Biophys. Chem., 1, 112(1973). (678)I. Morishima and T. lizuka, J. Am. Chem. Soc., 96, 7365 (1974). (679)G. N. LaMar and D. B. Viscio, J. Am. Chem. Soc., 96, 7354 (1974). (680) A. Mayer, S. Ogawa, R. G. Shulman, and K. Gersonde. J. Mol. Biol., 81, 187 (1973). (681)P. J. Vergamini. N. A. Matwiyoff, R. C. Wohi, and T. Bradley, Biochem. Biophys. Res. Commun., 55, 453 (1973). (682)J. S.Morrow, P. Keim, and F. R. N. Gurd, J. Biol. Chem., 249, 7484 (1974). (683)F. R. N. Gurd, J. S. Morrow, P. Keim, R. B. Visscher, and R. Marshall, Adv. Exp. Med. Biol., 48, 109 (1974). (684)E. Oldfieid and A. Allerhand, Proc. Nat. Acad. Sci. U.S.A., 70, 3531 (1973). (684a) C. C. McDonald and W. D. Phillips, Biochemistry, 12, 3170 (1973). (684b) E. Stellwagen and R. G. Shuiman. J. Mol. Biol., 80, 559 (1973). (684c) A. Lanir and I. Aviram, Arch. Biochem. Biophys., 166, 439 (1975). (685)W. D. Phillips, C. C. McDonald, N. A. Stombaugh, and W. H. OrmeJohnson, Proc. Nat. Acad. Sci. U.S.A., 71, 140 (1974). (686) J. S. Leigh, M. M. Maltempo. P. I. Ohlsson, and K. G. Paul, FEES Lett.. 51, 304 (1975). (687)C. D. Barry, H. A. 0. Hill, P. Sadler, and R. J. P. Williams. Proc. Roy. SOC.London, Ser. A, 334, 493 (1973). (688) H. Rupp, W. Voelter, and U. Weser, FEES Lett., 40, 176 (1974). (689)R. J. Abraham, G. E. Hawkes, and K. M. Smith, J. Chem. SOC., Perkin Trans. 2, 627
(1974).
(689a) D. N. Lincoln and V. Wray, Org. Magn. Reson.. 6, 542 (1974). (690) K. Wuethrich and R. Baumann, Ann. N.Y. Acad. Sci., 222, 709 (1973). (691) R. A. Brooks, J. H. Battocletti, A. Sances, et a/., E€€ Trans. Biomed. Eng., BME-22, 12 (1975). (692) E. P. Day, Low Temp. Phys.-LT 73, Plenum, N.Y.. 1974, pp 550-554. (693) I. S. Campbell, C. M. Dobson, R. J. P. Williams, and A. V. Xavier, J. Magn. Reson., 11, 172 (1973). (694) R. A. Goodman, E. Oldfield. and A. Allerhand, J. Am. Chem. SOC.,95, 7553 (1973). (695) J. J. Katz and T. R. Janson, Ann. N.Y. Acad. Sci.. 206, 579 (1973). (696) S. G. Boxer, G. i. Closs, and J. J. Katz, J, Am. Chem. SOC.,96, 7058 (1974). (697) T. Anmo. M. Washitake. Y. Takashima, M. Furuyu, and K. Koike, Vitamins, 47, 341 (1973). (698) M. Shporer and M. M. Civan. Biochem. Biophys. Acta, 385, 81 (1975). (699) A. Allerhand and R. A. Komoroski. J. Am. Chem. SOC.,95,8228 (1973). (700) E. T. Fossel, W. R. Veatch. Yu. A. Ovchinnikov, and E. R. Rlout, Biochemistry, 13, 5264 (1974). (701) G. M. Huitink. D. P. Poe, and H. Diehl, Talanta, 21, 1221 (1974). (702) J. A. Lyon, P. D. Ellis, and R. E. Dunlap, Biochemistry, 12, 2425 (1973). (703) E. Martinelli, R. J. White, G. G. Gallo, and P. J. Beynon, Tetrahedron Lett., 1367 (1974). (704) A. Tzalmona and E. Loewenthal, J. Chem. Phys., 61, 2637 (1974). (705) M. Ellenberger and L. Pogliani, Biochem. Biophys. Res. Commun., 56, 613 (1974). (706) L. Simeral and G. E. Maciel, Org. Magn. Reson., 6, 226 (1974). (707) J. M. Padfield and I. W. Kellaway, J. Pharm. Sci., 63, 143 (1974). (708) M. C. Thorpe and W. C. Coburn, J. Magn. Reson., 12, 225 (1973). (709) H. H. Mantsch and I. C. P. Smith, Can. J. Chem., 51, 1384 (1973). (710) C-H. Chang and L. G. Marzilli, J. Am. Chem. SOC.,96, 3656 (1974). (711) D. D. Giannini, K. K. Chan, and J. D. Roberts, Proc. Nat. Acad. Sci. U.S.A., 71, 4221 (1974). (712) R. C. Long and J. H. Goldstein, J. Magn. Reson., 16, 228 (1974). (713) U. Hollstein, E. Breitmaier, and G. Jung, J. Am. Chem. SOC.,96,8036 (1974). (714) M. C. Fedarko, J. Magn. Reson., 12, 30 (1973). (715) G. Cleve. G. A. Hoyer, G. Schulz, and H. Vorbrueggen. Chem. Ber., 106, 3062 (1973). (716) Y. P. Wong, J. Am. Chem. SOC., 95, 3511 (1973). (717) D. J. Wood, F. E. Hruska, and K. K. Ogilvie, Can. J. Chem., 52, 3353 (1974). (718) R. S. Ozubko, G. W. Buchanan, and I. C. P. Smith, Can. J. Chem., 52, 2493 (1974). (719) C. G. Moreland, A. Philip, and F. I. Carroll, J. Org. Chem., 39, 2413 (11974). (720) T. I. Khomenko, 0. ‘ J , Krylov, V. P. Lezina. et al., Kinet. Katal., 14, 1595 (1973). (721) J. Haverkamp, .J. P. C. M. Van Dongen, and J. F. G. Vliegenthart. Tetrahedron, 29, 3431 (1974). (722) A. S. Perlin, P. H. Du Penhoat, and H. S. Isbell. Adv. Chem. Ser., ‘117, 39-50 (1973). (723) G. Schilling, K . Weinges, 0. Mueller, and W. Mayer, Justus Liebigs Ann. Chem.. 1471 (1973). (724) E. Conway, D. R. Guthrie, S. D. Gero, G. Lukacs, and A. M. Sepulchre, J. Chem. SOC.,Perkin Trans. 2, 542 (1974). (725) J. Haverkamp, ,J. P. C. M. Van Dongen, and J. F. G. Vliegenthart, Carbohyd. Res., 33, 319 ( 1974). (726) K . F. Koch, J. A. Rhoades, E. W. Hagaman, and E. Wenkert. J. Am. Chem. SOC., 96, 3300 (1974). (727) S. L. Patt. D. Dolphin, and B. D. Sykes, Ann. N.Y. Acad. Sci., 222, 211 (1973). (728) W. Stoffel, 0. Zierenberg, E. Tunggal. and E. Schreiber, Proc. Nal. Acad. Sci. U.S.A., 71, 3696 (1974). (729) G. Assmann, R. J. Highet, E. A. Sokoloski, and H. B. Brewer, Proc. Nat. Acad. Sci. U.S.A..71. 3701 11974). (730) T.’ Glonek, T. 0. Henderson, A. W. Kruski, and A. M. Scanu, Biochem. Biophys. Acta,
346, 155 (1974). (731) E. G. Finer, R. Henry, R. E. Leslie, and R. N. Robertson, Biochem. SOC. Trans., 2, 1056 (1974). (732) L. I. Barsukov, Yu. E. Shapiro, et al., Blochem. Biophys. Res. Commun., 60, 196 (1974). (733) J. A. Berden, P. R. Cullis, D. I. Hoult, A. C. McLaughiin. G. K. Radda, and R. E. Richards, FfBS Lett., 46, 55 (1974). (734) E. G. Finer and A. Darke, Chem. Phys. Lipids, 12, l(1974). (735) A. Seelig and J. Seelig, Biochemistry, 13, 4839 (1974). (736) G. W. Stockton, C. F. Polnaszek, L. C. Leitch, A. P. Tulioch, and I. C. P. Smith, Biochem. Biophys. Res. Commun., 60, 844 (1974). (737) E. Sears, W. C. Hutton and T. E. Thompson, Biochem. Biophys. Res. Commun., 60, 1141 (1974). (738) F. Frischieder and J. Frenzel, Stud. Biophys., 43, 217 (1974). (739) G. W. Feigenson and S. I. Chan, J. Am. Chem. SOC.,96, 1312 (1974). (740) G. Lindblom, N. 0. Persson, E. Lindman, and G. Arvidson, Ber. Bunsenges. Phys. Chem., 78, 955 (1974). (741) G. C. K. Roberts and F. W. Benz, Ann. N.Y. Acad. Sci., 222, 130 (1973). (742) I. M. Chaiken, J. S. Cohen, and E. A. Sololoski. J. Am. Chem. SOC.,96, 4703 (1974). (743) D. R. Lightfoot, K. L. Wong, D. R. Kearns, E. R. Reid, and R. G. Shulman, J. Mol. Biol., 78, 71 (1973). (744) R. G. Shulman, C. W. Hilbers, D. R. Kearns, E. R. Reid, and Y. P. Wong, J. Mol. Biol., 78, 57 (1973). (745) F. Ostroy, T. L. James, J. H. Noggle, A. Sarrif, and L. E. Hokin, Arch. Biochem. Biophys., 162, 421 (1974). (746) C. M. Grisham, R. K. Gupta, R. E. Barnett, and A. S. Mildvan, J. Bioi. Chem., 249, 6738 (1974). (747) J. E. Norne, H. Csopak, and 8. Lindman, Arch. Biochem. Biophys., 162, 552 (1974). (748) R. S. Ehrlich and M. Takahashi, Biochemistry, 12, 4309 (1973). (749) E. J. Pastore, R. L. Kisliuk, L. T. Plante, J. M. Wright, and N. 0. Kaplan. Proc. Nat. Acad. Sci. U.S.A.,71, 3849 (1974). (750) G. Robillard and R. G. Shulman, Ann. N. Y. Acad. Sci., 222, 220 (1973). (751) W. W. Conover and J. Fried, Proc. Nat. Acad. Sci. U.S.A.,71, 2157 (1974). (752) R. Walter, K. U. M. Prasad, R. Deslauriers, and I. C. P. Smith, Proc. Nat. Acad. Sci. U S A . , 70, 2086 (1973). (753) A. F. Bradbury, A. S. V. Burgen, J. Feeney, G. C. K. Roberts, and D. G. Smyth, FEBSLett., 42, 179 (1974). (754) J. Seelig, Pathol. Microbiol., 41, 151 (19741. ’ (755) 0. A. El Seoud, E. J. Fendler, and J. H. Fendler, J. Chem. SOC., Faraday Trans. 1, 70, 450 (1974). (756) C. Dijkema. and H. J. C. Berendsen, J. Magn. Reson., 14, 251 (1974). (757) F. Fujiwara, L. W. Reeves, A. S. Tracey, and L. A. Wilson, J. Am. Chem. SOC., 96, 5249 (1974). (758) J. H. Bradbury, M. W. Crompton, and E. Warren, Anal. Biochem., 62, 310 (1974). (759) B. L. Shapiro, M. D. Johnston, and C. A. Reilly, J. Magn. Reson., 12, 199 (1973). (760) D. W. Jones, R. S. Matthews. and K. D. Bartle, Spectrochim. Acta, Part A, 30, 489 (1974). (761) L. Ernst. A. Mannschreck, and K. D. Ruempler, Org. Magn. Reson., 5 , 125 (1973). (762) H. Kessler and A. Walter, Angew. Chem., 65, 82 1 (1973). (763) V. Mark, Tetrahedron Lett., 299 (1974). (764) G. K. Hamer. I. R. Peat, and W. F. Reynolds, Can. J. Chem., 51, 897 (1973). (765) G. A. Olah and Y. K. Mo, J. Org. Chem.. 38, 2212 (1973). (766) S . W. Staley and A. W. Orvedal, J. Am. Chem. SOC.,95, 338 (1973). (767) S . W. Staley and A. W. Orvedal, J. Am. Chem. SOC.,95, 3384 (1973). (768) G. A. Olah and Y. K. Mo, J. Org. Chem., 38, 3212 (1973). (769) E. L. Moteli, D. Lauer. and G. E. Maciel. J. Phys. Chem., 77, 1865 (1973). (770) R. Wehner and H. Guenther, Chem. Ber., 107, 3152 (1974). (771) G. Charrier, D. E. Dorman, and J. D. Rob-
erts, J. Org. Chem., 38, 2644 (1973). (772) W. Ried and H. J. Hermann. Justus Liebigs Ann. Chem., 201 (1974). (773) E. M. Lynch, Org. Magn. Reson., 6, 190 (1974). (774) G. E. Maciel, H. C. Dorn. R. L. Kleschick, M. R. Petersen, and G. H. Wahl. Org. Magn. Reson., 6, 178 (1974). (775) D. Wendisch, W. Hartmann, and H. G. Heine. Tetrahedron, 30, 295 (1974). (776) A. J. Jones, P. J. Garratt, and K. P. C. Volhardt, Angew. Chem., 85, 260 (1973). (777) D. K. Dalling and D. M. Grant, J. Am. Chem. SOC.,96, 1827 (1974). (778) T. Otsubo. S. Mizogami, Y . Sakata, and S. Misumi. Bull. Chem. SOC. Jpn, 46, 3831 (1973). (779) T. Okuyama, K. Izawa, and T. Fueno, Bull. Chem. SOC.Jpn, 47, 4 10 ( 1974). (780) P. Sohar, J. Kosary, and E. Kasztreiner, Acta Chim. Acad. Sci. Hung.. 84, 201 (1975). (781) S. Masamune, M. Sakai, A. V. KempJones, and T. Nakashima, Can. J. Chem., 52, 855, 858 (1974). (782) P. Granger and M. Maugras, Chem. Phys. Lett., 24, 331 (1974). (783) V. R. Haddon and L. M. Jackman, Org. Magn. Reson., 5 , 333 (1973). (784) D. W. Beistel and H. E. Chen. J. Chem. Phys., 59, 4642 (1973). (785) M. Kondo, I. Ando, R. Chujo. and A. Nishioka, Bull. Chem. SOC.Jpn, 47, 589 (1974). (786) S. Masamune, N. Nakamura, M. Suda. and H. Ona. J. Am. Chem. SOC.,95,8481 (1973). (787) J. L. Marshall, A. M. Ihrig, and D. E. Miller, J. Magn. Reson., 16, 439 (1974). (788) T. Sato, T. Takemura. and M. Kainosho, Chem. SOC.,Chem. Commun., 97 (1974). (789) A. W. J. D. Dekkers, J. W. Verhoeven, and W. N. Speckamp, Tetrahedron. 29, 1691 (1973). (790) S. W. Staley and G. M. Cramer, J. Am. Chem. SOC..95, 5051 (1973). (791) A. E. Van de Hout-Lodder, J. W. De Haan, L. J. M. Van de Ven, and H. M. Buck, Recl. Trav. Chim., 92, 1040 (1973). (792) H. W. Vos, Y. W. Baker, C. MacLean, and N. H. Velthorst. Chem. Phys. Lett., 25, 80 (1974). (793) G. R. Leader, Anal. Chem., 45, 1700 (1973). (794) G. C. Pappalardo. Spectrochim. Acta, Part A, 29, 2055 (1973). (795) G. W. Buchanan, G. Montaudo, and P. Finocchiaro. Can. J. Chem., 52, 767 (1974). (796) E. Wiklund and R. Hakansson, Chem. Scr., 3, 226 (1973). (797) S. K. Dayal. and R. W. Taft, J. Am. Chem. SOC..95, 5595 (1973). (798) J. Fukunaga and R. W. Taft, J. Am. Chem. SOC.,97, 1612 (1975). (799) H. Yamada, T. Ishihara, and T. Kinugasa, J. Am. Chem. SOC.,96, 1935 (1974). (800) J. F. Hinton and L. W. Jaques, J. Magn. Reson., 17, 95 (1975). (801) 0.A. Subbotin and N. M. Sergeev, J. Am. Chem. SOC.,97, 1080 (1975). (802) G. Haegele and V. Lueg, 2.Naturforsch. A, 30, 175 (1975). (803) Y. K. Levine, N. J. M. Birdsall, A. G. Lee, J. C. Metcalfe, P. Partington. and G. C. K. Roberts, J. Chem. Phys., 60, 2890 (1974). (804) A. A. Chaimers, K. G. R. Pachler, and P. L. Wessels, J. Magn. Reson., 15, 415 (1974). (805) E. W. Della and S. Q. A. Rizvi. Aust. J. Chem.. 27, 1059 (1974). (806) J. E. Rowbotham and T. Schaefer, Can. J. Chem., 52, 3037 (1974). (807) L. Cavalli and R. K. Harris, J. Magn. Reson., 10, 355 (1973). (808) E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, et al., J. Am. Chem. SOC.,97, 322 (1975). (809) K. Chum, J. E. Rowbotham, and T. Schaefer, Can. J. Chem., 52, 3489 (1974). (810) G. E. Hawkes, R. A. Smith, and J. D. Roberts, J. Org. Chem., 39, 1276 (1974). (811) H. Raber, G. Bruenger, and M. Mehring, Chem. Phys. Lett., 23, 400 (1973). (812) A. Yamashita, K. Hara, S. Aizawa, and M. Hirota, Bull. Chem. SOC.Jpn, 47, 2508 (1974). (813) J. B. Stothers and S. T. Tan, Can. J. Chem., 52, 308 (1974). (814) J. S. Cohen, R. E. Bradley, and T. R. Clem. J. Am. Chem. SOC.,97, 908 (1975). (815) P. Joseph-Nathan, J. Mares, M. C. Her-
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
*
259R
nandez, and J. N. Shoolery, J. Magn. Reson., 16, 447 (1974). (816)W. T. Raynes and G. Stanney, J. Magn. Reson., 14, 378 (1974). (817) E. Zajaczkowska-Terpinska and T. Bisanz, ROCZ.Chem., 49, 55 (1975). (818)L. M. Jackman and R. C. Haddon, J. Am. Chem. Soc., 95, 3687 (1973). (819)M. Gordon, S. H. Grover, and J. E. Stothers, Can. J. Chem., 51, 2092 (1973). (820)E. Ogawa, S. Kondo, and K. Tanaka, Makromol. Chem., 169, 261 (1973). (821)A. Kiewet, J. De Wit, and W. D. Weringa. Org. Chem. Reson., 6,461 (1974). (822) N. Platzer. J. J. Basselier, and P. Demerseman, Bull. SOC.Chim. Fr., 905 (1974). (823)F. Fringuelli, S. Gronowitz. A. B. Hornfeldt, i. Johnson, and A. Taticchi. Acta Chem. Scand., Ser. 6, 28, 175 (1974). (824)K. Pihlaja and P. Pasanen, Suom. Kemistil B, 46, 273 (1973). (825)K. Nagarajan and R. K. Shaw. lndian J. Chem.. 11, 879 (1973). (826)A. Fratiello, M. Mardirossian, and E. Chavez, J. Magn. Reson., 12,221 (1973). (827)J. B. Rowbotham and T. Schaefer, Can. J. Chem., 51, 953 (1973). (828)F. I. Carroll and C. G. Moreland, J. Chem. Soc., Perkin Trans. 2, 374 (1974). (829)R. Pastor, J. Musso, and A. Cambon, Bull. SOC.Chim. f r . , 3009 (1973). (830)A. C. Boinelli, R. Danieli, A. Mangini, L. Lunazzi, and G. Placucci, J. Chem. SOC., Perkin Trans. 2, 1024 (1973). (831)D. G. De Kowalewski and R. H. Confreras. J. Mol. Struct., 18, 451 (1973). (832)R. L. Lichter and R. E. Wasylishen, J. Am. Chem. Soc., 97, 1808 (1975). (833)C. S. Giam and J. L. Lyle, J. Am. Chem. SOC.,95, 3235 (1973). (834)H. J. Schneider, D. Heiske, V. Hoppen. and M. Schommer, Tetrahedron Lett., 1971
(1974). (835)M. Bjoroy, Acta Chem. Scand., 27, 3477 (1973). (836)G. Haegele, K. Diemert, and W. Kuchen, 2. Naturforsch. 6, 28, 185 (1973). (837)J. A. Lepoivre, H. 0. Desseyn, and F. C. Alderweireldt. Org. Magn. Reson., 6, 279 (1974). (838)D. Gattegno and A. M. Giuliani, Tetrahedron, 30, 701 (1974). (839)M. Tsuda, M. Tsuda, Y. Kawazoe, A. F. Casy, and M. M. A. Mahmoud, Chem. Pharm. Bull., 22, 809 (1974). (840)K. P. Shrestha, and K. L. Henold, J. Am. Chem. Soc., 95, 6699 (1973). (841)L. W. Deady and G. D. Willett, Org. Magn. Reson., 6,53 (1974). (842)G. C. Levy, R. A. Komoroski, and J. A. Halstead, J. Am. Chem. Soc., 96, 5456 (1974). (843)H. V. Aboul-Enein and R. L. Settine, J. Mol. Struct., 18, 498 (1973). (844)G. L. Ryzhova and A. M. Pogaleeva, Zh. Fiz. Khim., 47, 1100 (1973). (845)T. Yokoyama, Aust. J. Chem., 27, 915 (1974). (846)H. Eggert and C. Djerassi, J. Am. Chem. Soc., 95, 3710 (1973). (847)R. J. Abraham, L. J. Kricka, and A. Led. with, J. Chem. Soc., Perkin Trans. 2, 1648 (1974). (848)M. T. Melchior, L. P. Klemann, and A. W. Langer. Adv. Chem. Ser., 130, 113 (1974). (849)R. E. Carhart and C. Djerassi, J. Chem. Soc.. Perkin Trans. 2, 1753 (1973). (850)L. M. Kapkan and E. V. Titov. J. Mol. Struct., 19, 365 (1973). (851)J. M. Briggs. E. Rahkamaa, and E. W. Randall, J. Magn. Reson., 11, 416 (1973). (852)E. Dradi, G. Tosoiini, and V. Vecchietti, Gazz.Chim. /tal., 103, 609 (1973). (853)N. A. Matwiyoff and B. F. Burnham. Ann. N.Y. Acad. Sci., 206, 365 (1973). (854)A. Corsini, W. J. Louch, and M. Thompson, Talanta, 21, 252 (1974). (855)S. Katayama, Y. Akahori, and H. Mori, Chem. Pharm. Bull., 21, 2622 (1973). (856)D. B. Walters and D. E. Leyden, Anal. Chim. Acta, 72, 275 (1974). (857)W. Voelter, T. Fuchs, R. H. Seuffer, and K. Zech, Monatsh. Chem., 105, 1 1 10 (1974). (858)H. Y. Aboul-Enein, Anal. Chim. Acta, 73, 399 (1974). (859)J. Firi, W. Runge, and W. Hartmann, Angew. Chem., 86,274 (1974). (860)M. Witanowski, L. Stafaniak. H. Jan260R
uszewski, and J. Elguerro, Chim. Phys. Physicochim. Blol.. 70, 697 (1973). (861)W. A. Szarek. D. M. Vyas, A. M. Sepulchre, S. D. Gero, and G. Lukacs. Can. J. Chem. 52, 2041 (1974). (862)C. H. Wang, Chem. Pharm. Bull.. 21,
2760 (1973). (863)L. M. Twanmoh, H. E. Wood, and J. S. Driscoll. J. Heterocycl. Chem., 10, 187 (1973). (864)D. L. Deavenport, C. H. Harrison, and D. W. Rathburn, Org. Magn. Reson., 5, 285 (1973). (865)J. P. Jacobsen. 0. Snerling, E. J. Pedersen, J. T. Nielsen, and K. Schaumberg, J. Magn. Reson., 10, 130 (1973). (866)A. Tzslmona and A. Kaplan, J. Chem. Phys., 61, 1912 (1974). (867)E. Breitmaier and K. H. Spohn, Tetrahedron, 29, 1145 (1973). (868)I. H. Leubner, Org. Magn. Reson., 6, 253 (1974). (869)F. Balkau and M. L. Heffernan, Aust. J. Chem., 26, 1501, 1523 (1973). (870)G. N. Kumar, J. Polym. Sci., Polym. Lett. Ed., 11, 461 (1973). (871)U. Ewers, H. Guenther, and L. Jaenicke, Chem. Ber., 107, 876 (1974). (87la)G. Muelier and W. Von Philpsborn, Helv. Chim. Acta, 56,2680 (1973). (872)M. T. W. Hearn and K. T. Potts, J. Chem. SOC., Perkin Trans 2, 875 (1974). (873)J. Elguero, A. Fruchier, L. Knutsson. R. Lazaro, and J. Sandstrom, Can. J. Chem., 52, 2744 (1974). (874)B. J. Fairless, G. Ragsdale. and C. Kerby, J. Chem. Ecfuc., 51,61 (1974). (875)R . 2. Sagdeev, Y. N. Molin. K. M. Salikhov, T. V. Leshina. M. A. Kamha, and S. M. Shein, Org. Magn. Reson., 5, 603 (1973). (876)R. L. Ryzhova, L. N. Kotova, and R. Drudyev. Zh. Fiz. Khim., 47, 1577 (1973). (877)C. Caze and C. Loucheux, J. Macromol. Sci., Chem., 7, 991 (1973). (878)J. Homer and A. R. Dudley, J. Chem. Soc., Perkin Trans. 2,358 (1974). (879)D. Betteridge and D. John, Analyst (London), 96, 377 (1973). (880)T. R. Brunner, C. L. Wilkins. and P. J. McCombie, Anal. Chem., 47, 662 (1975). (881)E. Breitmaier. Chimia, 28, 120 (1974). (882)Z. DegaSzafran, M. Z. Naskret-Barciszewska, and M. Szafran. J. Chem. Soc., Perkin Trans. 2, 763 (1974). (882a)L. Stefaniak and A. Grabowska, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 22, 267 (1974). (883)M. Christl, J. P. Warren, B. L. Hawkins, and J. D. Roberts, J. Am. Chem. Soc., 95, 4392
(1973). (884)G. L. Ryzhovam, S. S. Kravtsova. and E. F. Minaev, Zh. Fiz. Khim., 48, 1628 (1974). (885) V. A. Gubanov and A. K. Chirkov, J. Mol. Struct., 19, 403 (1973). (885a) R. Verlinden, P. Grobet. and L. Van Gerven, Chem. Phys. Lett., 27, 535 (1974). (885b) T. Yoshioka, H. Ohya-Nishiguchi. and Y. Deguchi, Bull. Chem. SOC.Jpn, 47, 430 (1974). (886)J. W. De Boer, M. R. Arick. and E. De Boer, J. Chem. Phys., 59, 638 (1973). (886a) G. W. Canters and E. De Boer, Mol. Phys., 27, 665 (1974). (886b)G. W. Canters, B M. P. Hendricks. J. W. M. De Boer, and E. De Boer, Mol. Phys., 25,
1135(1973). (887)E. I. Shapiro, V. V. Minin, and Ya. K. Syrkin, Zh. Sfrukt. Khim., 14, 642 (1973). (888)I. Morishima, K. Toyoda. and K. Yoshikawa, J. Am. Chem. Soc., 95, 8627 (1973). (889)L. D. Arutyunyan and R. P. Shibaeva, Dokl. Akad. Nauk SSSR, 215,881 (1974). (890)K. U. lngold and S. Brownstein, J. Am. Chem. Soc., 97, 1817 (1975). (891)S. Saito and T. Sato, Phys. Lett. A, 44, 347 (1973). (892)A. Rassat and P. Rey. Tetrahedron, 29, 2845 (1973). (893)J. Goldman, T. E. Petersen, K. Torssell, and J. Becher, Tetrahedron, 29, 3833 (1973). (894)J. S. Martin and F. Y. Fujiwara. J. Am. Chem. Soc.. 96, 7632 (1974). (895)W. McFarlane and D. S. Rycroft, J. Organometal. Chem., 64, 303 (1974). (896)R. J. Hogan, P. A. Scherr. A. T. Weibel, and J. P. Oliver, J. Organometal. Chem., 85, 265 (1975). (897)Y. M. Cahen, J. L. Dye, and A. I. Popov. Inorg. Nucl. Chem. Lett., 10,899 (1974). (898)W. Sahm and A. Schwenk, Z. Natur-
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
f m c h . A, 29, 1754 (1974). (899)J. P. Kintzinger and J. M. Lehn, J. Am. Chem. SOC., 98, 3313 (1974). (900)H. G. Hertz, M. Holz, G. Keller, H. Versmold, and C. Yoon, Ber. Bunsenges. Phys. Chem., 78, 493 (1974). (901)J. M. Ceraso and J. L. Dye, J. Chem. Phys., 61, 1585 (1974). (902)0.Lutz, A. Schwenk. and A. Uhl, 2.Naturforsch. A, 28, 1535 (1973). (903)A. D. Toy, T. D. Smith, and J. R. Pilbrow, Aust. J. Chem., 26, 1889 (1973). (904)D. Gudlin and H. Schneider, J. Magn. Reson., 16, 382 (1974). (905)J. J. Delpuech, M. R. Khaddar, A. Peguy, and P. Rubini, J. Chem. SOC., Chem. Commun.,
154 (1974). (906)L. V. Titov, E. R. Eremin, L. N. Erofeev. and V. Ya. Rosoiovskii. lzv. Akad. Nauk SSSR, Ser. Khim., 7 (1974). (907)N. I. Eremin, Yu. A. Volokhov, and V. E. Mironov, Usp.Khim., 43, 224 (1974). (908)H. Jancke, G. Engelhardt, M. Maegi, and E. Lippmaa, 2. Chem., 13, 435 (1973). (909)G. Engelhardt, M. Maegi, and E. Lippmaa, J. Organometal. Chem., 54, 115 (1973). (910)E. V. Van den Berghe and G. P. Van der Keien, J. Organometal. Chem., 59, 175 (1973). (911)H. C. Marsmann, 2. Naturforsch. A, 29,
495 (1974). (912)R. Loewer. M. Vongehr, and H. C. Marsmann. Chem.-Ztg., 99, 33 (1975). (913)H. Buerger. R. Eujen, and H. C. Marsmann, Z. Naturforsch. 5,29, 149 (1974). (914)R. 0.Gouid. B. M. Lowe. and N. A. MacGilp, J. Chem. SOC., Chem. Commun., 720 (1974). (915)C. R. Ernst, L. Spiaiter. G. R. Buell, and D. L. Wilhite, J. Am. Chem. Soc., 96, 5375 (1974). (916)H. Jancke, G. Engelhardt, M. Maegi, and E. Lippmaa, Z.Chem., 13, 392 (1973). (917)L. 0.Andersson and J. Mason, J. Chem. SOC., Dalton Trans., 202 (1974). (918)R. J. Giliespie, A. Netzer, and G. J. Schrobilgen, lnorg. Chem., 13, 1455 (1974). (919)K. Seppelt and H. H. Rupp, 2. Anorg. Allg. Chem., 409, 331,338 (1974). (920)B. E. Epperlein, H. Krueger, 0. Lutz, and A. Schwenk, 2. Naturforsch. A, 29, 1553 (1974). (921)B. W. Epperlein, H. Krueger, 0.Lutz, and A. Schwenk. 2. Naturforsch. A, 29, 660 (1974). (922)R. J. Kostelnik and A. A. Bothner-By, J. Magn. Reson., 14, 141 (1974). (923)A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, J. Am. Chem. SOC., 97, 1672 (1975). (924)G. E. Maciel and M. Borzo, J. Chem. SOC.,Chem. Commun., 394 (1973). (925)H. Krueger, 0.Lutz, A. Schwenk. and G. Stricker. 2. Phys., 266, 233 (1974). (926)V. V. Zhukov, I. D. Weisman. and L. H. Bennett, J. Res. Nat. Bur. Stand., Sect. A, 77, 713 (1973). (927)L. F. Sytsma and R. J. Kline, J. Organometal. Chem., 54, 15 (1973). (928)T. ibusuki and Y. Saito, Org. Magn. Reson., 6, 436 (1974). (929)G. A. Olah and P. R. Clifford, J. Am. Chem. SOC.,95, 6067 (1973). (930)R. M. Hawk, Ph.D. thesis, University of Michigan, Ann Arbor, Mich., 1973. (931)R. M. Hawk and R. R. Sharp, J. Magn. Reson., I O , 385 (1973). (932)J. D. Kennedy and W. McFarlane. J. Organometal. Chem., 80, C47 (1974). (933)R. M. Hawk and R. R. Sharp, J. Chem. Phys., 60, 1522 (1974). (934)M. J. Cooper, A. K. Hoiliday, P. H. Makin. R. J. Puddephatt, and P. J. Smith, J. Organometal. Chem., 65, 377 (1974). (935)H. G. Spinney, P h D thesis, University of Western Ontario, London, Ontario, Canada, 1973. (936)J. D. Glickson, T. P. Pitner. J. Webb, and R. A. Gams, J. Am. Chem. Soc.. 97, 1679 (1975). (937)T. N. Mitchell, J. Organometal. Chem., 70, C 1 (1974). (938)E. V. Van den Berghe and G. P. Van der Kelen. J. Organometal. Chem., 72, 65 (1974). (939)M. Barnard. P. J. Smith, and R. F. M. White, J. Organometal. Chem., 77, 189 (1974). (940)V. N. Totocheshnikov, A. Tupciauskas, and Yu. A. Ustynyuk, J. Organometal. Chem., 81,
351 (1974). (941)C. W. Alien, A. E. Burroughs, and R. G.
Anstey, lnorg. Nucl. Chem. Lett., 9, 1211 (1973). (942)H. G. Kuivila, J. L. Considine, R. J. Mynott, and R. H. Sarma, J. Organometal. Chem.,
55,C11 (1973). (943)C. D. Schaeffer and J. J. Zuckerman, J. Organometal. Chem., 55, 97 (1973). (944)E. V. Van den Berghe and G. P. Van der Kelen, J. Organometal. Chem., 61, 197 (1973). (945)H. J. Kroth. H. Schumann. H. G. Kuivila, C. D. Schaeffer, and J. J. Zuckerman, J. Am. Chem. SOC.,97, 1754 (1975). (946)B. W. Bangerter and R. N. Schwartz, J. Chem. Phys., 60, 333 (1974). (947)G. A. Melson. D. J. Oismanski, and E. T. Roach, J. Chem. Soc., Chem. Commun., 229 (1974). (948)Yu. A. Busiaev, S. P. Petrosyants, V. P. Tarasov, and U. I. Chagin, Zh. Neorg. Khim., 19,
1790 (1974). (949)W. McFarlane. J. Magn. Reson., 10, 98 (1973). (950)J. S. Hartman and J. M. Miller, lnorg. Chem., 13, 1467 (1974). (951)J. J. Adcock and J. J. Lagowski, J. Organometal. Chem., 72, 323 (1974). (952)V. V. Negrebetskii. V. S. Bogdanov, et al., Zh. Obshch. Khim., 44, 18882 (1974). (953)H. Noeth and B. Wrackmeyer, Chem. Ber., 106, 1145 (1973). (954)W. G. Henderson, M. J. How, G. R. Kennedy. and E. F. Mooney, Carbohyd. Res., 28, 1 (1973). (955)R. Schaeffer and E. Walter, Inorg. Chem., 12, 2209 (1973). (956)R. A. Geanangel, Inorg. Chem., 14, 696 (1975). (957)W. T. Ford and D. J. Hart, J. Am. Chem. Soc., 96, 3261 (1974). (958)M. W. Garnett and T. K. Halstead. J. Chem. SOC., Faraday Trans. 2, 70, 1920 (1974). (959)D. Michei. W. Meiler. and E. Angele, 2. Phys. Chem. (Leipzig), 255, 389 (1974). (960)C. W. Burges, R. Koschmieder, W. Sahm. and A. Schwenk,
Z. Naturforsch. A. 28,
1753 (1973). (961)J. P. C. M. Van Dongen and C. D. M. Beverwijk, J. Organometal. Chem., 51, C36 (1973). (962)J. Wilinski and R. J. Kurland, lnorg. Chem.. 12, 2202 (1973). (963) H. Yoneda, U. Sakaguchi, and Y. Nakashima, Bull. Chem. SOC.Jpn, 48, 209 (1975). (964)R. A. La Rossa and 1.L. Brown, J. Am. Chem. Soc., 96, 2072 (1974). (965) 0.Lutz and W. Steinkilberg. Z. Naturforsch. A, 29, 1467 (1974). (966)D. Gudlin and H. Schneider, J. Magn. Reson., 17, 268 (1975). (967)D. Rehder and J. Schmidt, J. lnorg. Nucl. Chem., 36, 333 (1974). (968)F. H. Koehler, H. J. Kalder, and E. 0. Fischer, J. Organometal. Chem., 85, C19 (1975). (969)J. Banck and A. Schwenk, 2. Phys. E, 20, 75 (1975). (970)T. Ito and D. H. Busch, lnorg. Chem., 13, 1770 (1974). (971)W. Dew. Horrocks and E. S. Greenberg, Mol. Phys., 27, 993 (1974). (972)V. V. Matveev, Yu. G. Gladkii, G. I. Skubnevskaya, and Yu. N. Molin, Zh. Strukt. Khim., 15,
931 (1974). (973)J. E. Jentoft and W. L. Reynolds, lnorg. Chim. Acta, 7, 187 (1973). (974)F. A. Cotton and A. G. Stanislowski. J. Am. Chem. SOC.,96,5074(1974). (975)A. Steigel and S. Brownstein, J. Am. Chem. Soc., 96, 6227 (1974). (976)D. Gattegno and A. M. Giuliani, J. horg. Nucl. Chem.. 36, 1553 (1974). (977)R. F. Evilia and C. N. Reilley, J. Coord. Chem., 3, 7, 17 (1973). (978)J. Crea. S. F. Lincoln, and R. J. West, Aust. J. Chem., 26, 1227 (1973). (979) G. K. McEwen, C. J. Rix. M. F. Traynor, and J. G. Verkade, lnorg. Chem., 13, 2800 (1974). (980)S. 0.Grim and L. C. Satek, 2. Naturforsch. E, 28, 683 (1973). (981)M. Dartiguenave, Y. Dartiguenave, and
M. Zinoune. J. lnorg. Nucl. Chem., 38, 2253 (1974). (982)D. Waysbort and G. Navon. J. Chem. Phys., 82, 1021 (1975). (983)R. J. Wiersema and M. F. Hawthrone. J. Am. Chem. Soc., 96,761 (1974). (984) A. K. Gregson and D. M. Doddrell, Chem. Phys. Lett., 31, 125 (1975). (985)K. G. Orrell, Inorg. Chim. Acta, 12, 255 (1975). (986)I. Bertini and D. Gatteschi, Inorg. Chem., 12, 2740 (1973). (987)C. Ezzeh and B. R. MCGaNey, J. Magn. Reson., 15, 183 (1974). (988)A. P. Ginsberg and M. E. Tully, J. Am. Chem. Soc., 95, 4749 (1973). (989) H. Mahnke, R. J. Clarke, R. Rosanske. and R. K. Sheline, J. Chem. Phys., 60, 2997 (1974). (990) F. A. Cotton and D. L. Hunter, lnorg. Chim. Acta, 11, L9 (1974). (991)J. P. Jesson and P. Meakin, J. Am. Chem. SOC., 96, 5760 (1972)and references therein.
(992)M. Tsutsui and C. P. Hrung, J. Am. Chem. Soc., 96, 2638 (1974). (993)W. C. Trogler. R. C. Stewart, L. A. Epps, and L. G. Marzilli, Inorg. Chem., 13, 1564 (1974). (994)W. McFarlane, J. Chem. SOC., Dalton Trans., 324 (1974). (995)P. S.Pregosin and R. Kunz, Helv. Chim. Acta, 58, 423 (1975). (996)H. C. Clark and J. E. H. Ward, J. Am. Chem. Soc., 96, 1741 (1974). (997) S. M. Cohen and T. H. Brown, J. Chem. Phys., 61, 2985 (1974). (998)P. W. Hall, R. J. Puddephatt, and C. F. H. Tipper, J. Organometal. Chem., 71, 145 (1974). (999)G. C. Levy and J. D. Cargioli. J. Magn. Reson., 10, 231 (1973). (1000)D. M. Doddrell and A. K. Gregson, Chem. Phys. Lett.. 29, 512 (1974). (1001)F. A. Cotton, D. L. Hunter, and A. J. White, lnorg. Chem., 14, 703 (1975).
Raman Spectroscopy William E. L. Grossman Department of Chemistry, Hunter College of C.U.N.Y., New York, N. Y. 1002 1
This Review wili cover portions of the literature appearing between late I973 and late 1975. Activity in the field has, if anything, increased since the last review of this area ( I ) , and this fact, coupled with financial pressures on publication, means that much worthwhile and important work cannot be referenced directly. As in the last review, secondary sources giving more detailed coverage of various areas will be cited where possible, while the main emphasis here will be on the areas of most interest to readers of this journal: chemical applications in general, and analysis and instrumentation in particular. The field is generally well covered by periodic reviews in many areas. The Chemical Society Specialist Periodical Report on Molecular Spectroscopy, volume 2, has chapters on theories of resonance Raman scattering, Raman intensities, and studies of molecular motion ( 2 ) ,and the first volume of a new series, “Advances in Infrared and Raman Spectroscopy” ( 3 ) ,has chapters summarizing recent work in instrumentation, as well as biochemical and inorganic applications. Other reviews of a general nature have appeared ( 4 , 5 ) , and the proceedings of the third international Rannan conference have been published (6). The poten-
tial of Raman spectroscopy as a technique for the analysis of trace atmospheric contaminants has been discussed (7). New books ( 8 , 9 ) and new volumes in the Advances series (10) are still appearing, although at a somewhat lower rate than in the period covered by the last review. In contrast to the situation then, all the books referenced deal with both infrared and Raman spectroscopy. In addition, a book ( 1 1 ) and two sets of tables (12, 13) have been published, whose purpose is to apply Raman spectroscopy to organic chemical analysis in the same way that infrared spectroscopy has been applied for years. This implies a usefully large body of spectral data, and a level of instrumental sophistication, which marks an important watershed in the use of Raman spectroscopy as an analytical technique. Critical compilations of spectral data are necessary for efficient analyses, and have continued to be expanded ( 1 4 ) . Also important is the expansion of the method into areas of growing interest. The Raman spectroscopy of minerals has been reviewed ( 1 5 ) , and factor group analyses for most common minerals ( 1 6 ) as well as site symmetry tables of more general crystallographic use ( I 7) have recently been published. Other areas of special interest which have been ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
261R