Subscriber access provided by UNIV OF NEBRASKA - LINCOLN
Article
Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles Seyyedali Mirshahghassemi, and Jamie R Lead Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.5b02687 • Publication Date (Web): 10 Sep 2015 Downloaded from http://pubs.acs.org on September 14, 2015
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 26
Environmental Science & Technology
1
2
3 4 5 6 7 8 9 10 11 12 13 14
1 ACS Paragon Plus Environment
Environmental Science & Technology
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 ACS Paragon Plus Environment
Page 2 of 26
Page 3 of 26
Environmental Science & Technology
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 3 ACS Paragon Plus Environment
Environmental Science & Technology
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
4 ACS Paragon Plus Environment
Page 4 of 26
Page 5 of 26
Environmental Science & Technology
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 5 ACS Paragon Plus Environment
Environmental Science & Technology
Page 6 of 26
101 102 103 104 105 106 107 108 109 110 111 112 113
𝐾𝜆
𝐿𝑋𝑅𝐷 = 𝛽 cos 𝜃 𝜆
114 𝛽
115
𝜃 𝜃
116 117 118 119 120
4
𝑑𝑋𝑅𝐷 = 3 𝐿𝑋𝑅𝐷
6 ACS Paragon Plus Environment
Page 7 of 26
Environmental Science & Technology
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 7 ACS Paragon Plus Environment
Environmental Science & Technology
144 145 146 147 148 149 150 151
8 ACS Paragon Plus Environment
Page 8 of 26
Page 9 of 26
Environmental Science & Technology
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
9 ACS Paragon Plus Environment
Environmental Science & Technology
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 10 ACS Paragon Plus Environment
Page 10 of 26
Page 11 of 26
Environmental Science & Technology
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
11 ACS Paragon Plus Environment
Environmental Science & Technology
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 12 ACS Paragon Plus Environment
Page 12 of 26
Page 13 of 26
Environmental Science & Technology
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
.
255 256 257 258 259 260 261 262 13 ACS Paragon Plus Environment
Environmental Science & Technology
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
14 ACS Paragon Plus Environment
Page 14 of 26
Page 15 of 26
Environmental Science & Technology
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
1. National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling (U.S.). Deep Water: the Gulf Oil Disaster and the Future of Offshore Drilling. Washington, D., 2014. 2. EPA, Cruise Ship Discharge Assessment Report. Oceans and Coastal Protection Division, Office of Wetlands, Oceans, and Watersheds and Office of Water. U.S. Environmental Protection Agency. EPA 842-R-07-005 2008. 3. Yoshioka, G.; Carpenter, M., Characteristics of reported inland and coastal oil spills. US Environmental Protection Agency Report 2002. 4. Aldy, J. E., Real-Time Economic Analysis and Policy Development During the BP Deepwater Horizon Oil Spill. Vanderbilt Law Rev. 2011, 64, (6), 1795-1817. 5. Fingas, M., The Basics of Oil Spill Cleanup, Second Edition. Taylor & Francis: 2000. 6. Harvey, S.; Elashvili, I.; Valdes, J. J.; Kamely, D.; Chakrabarty, A. M., Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Nat. Biotechnol. 1990, 8, (3), 228-30. 7. The Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team, Oil Budget Calculator, Deepwater Horizon-Technical Document, http://www.noaanews.noaa.gov/stories2010/PDFs/OilBudgetCalc_Full_HQ-Print_111110.pdf. 2010. 8. http://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/10-whatare-some-environmental-impacts-dispersants.html 9. Atlas, R. M.; Hazen, T. C., Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environ. Sci. Technol. 2011, 45, (16), 6709-6715. 10. Lahann, J., Environmental nanotechnology - Nanomaterials clean up. Nature Nanotech. 2008, 3, (6), 320-321. 11. Deng, D.; Prendergast, D. P.; MacFarlane, J.; Bagatin, R.; Stellacci, F.; Gschwend, P. M., Hydrophobic Meshes for Oil Spill Recovery Devices. ACS Appl. Mater. Interfaces 2013, 5, (3), 774-781. 12. Fabrega, J.; Luoma, S. N.; Tyler, C. R.; Galloway, T. S.; Lead, J. R., Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, (2), 517-31.
15 ACS Paragon Plus Environment
Environmental Science & Technology
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
Page 16 of 26
13. Chen, X., Molecular Imaging Probes for Cancer Research. World Scientific: 2012. 14. Gong, J.-L.; Wang, B.; Zeng, G.-M.; Yang, C.-P.; Niu, C.-G.; Niu, Q.-Y.; Zhou, W.-J.; Liang, Y., Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 2009, 164, (2–3), 1517-1522. 15. Li, L.; Fan, M.; Brown, R. C.; Van Leeuwen, J.; Wang, J.; Wang, W.; Song, Y.; Zhang, P., Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review. Crit. Rev. Env. Sci. Tec. 2006, 36, (5), 405-431. 16. Sharma, Y. C.; Srivastava, V.; Singh, V. K.; Kaul, S. N.; Weng, C. H., Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 2009, 30, (6), 583-609. 17. Wu, L.; Zhang, J.; Li, B.; Wang, A., Magnetically driven super durable superhydrophobic polyester materials for oil/water separation. Polym. Chem. 2014, 5, (7), 2382-2390. 18. Calcagnile, P.; Fragouli, D.; Bayer, I. S.; Anyfantis, G. C.; Martiradonna, L.; Cozzoli, P. D.; Cingolani, R.; Athanassiou, A., Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS. Nano. 2012, 6, (6), 5413-5419. 19. Nguyen, D. D.; Tai, N.-H.; Lee, S.-B.; Kuo, W.-S., Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy. Environ. Sci. 2012, 5, (7), 7908-7912. 20. Ge, B.; Zhang, Z.; Zhu, X.; Ren, G.; Men, X.; Zhou, X., A magnetically superhydrophobic bulk material for oil removal. Colloids Surf., A 2013, 429, (0), 129-133. 21. Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R., Transformations of Nanomaterials in the Environment. Environ. Sci. Technol. 2012, 46, (13), 6893-6899. 22. Palchoudhury, S.; Lead, J. R., A Facile and Cost-Effective Method for Separation of OilWater Mixtures Using Polymer-Coated Iron Oxide Nanoparticles. Environ. Sci. Technol. 2014, 48, (24), 14558-14563. 23. Tejamaya, M.; Römer, I.; Merrifield, R. C.; Lead, J. R., Stability of Citrate, PVP, and PEG Coated Silver Nanoparticles in Ecotoxicology Media. Environ. Sci. Technol. 2012, 46, (13), 70117017. 24. Hitchman, A.; Smith, G. H.; Ju-Nam, Y.; Sterling, M.; Lead, J. R., The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 2013, 90, (2), 410-6. 25. Sun, J.; Zhou, S.; Hou, P.; Yang, Y.; Weng, J.; Li, X.; Li, M., Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A. 2007, 80, (2), 333-41. 26. Baalousha, M.; Lead, J. R., Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation. Colloids Surf., A 2013, 419, (0), 238-247. 27. Balnois, E.; Wilkinson, K. J.; Lead, J. R.; Buffle, J., Atomic Force Microscopy of Humic Substances: Effects of pH and Ionic Strength. Environ. Sci. Technol. 1999, 33, (21), 3911-3917. 28. Baalousha, M.; Lead, J. R., Rationalizing Nanomaterial Sizes Measured by Atomic Force Microscopy, Flow Field-Flow Fractionation, and Dynamic Light Scattering: Sample Preparation, Polydispersity, and Particle Structure. Environ. Sci. Technol. 2012, 46, (11), 6134-6142. 29. Baalousha, M.; Ju-Nam, Y.; Cole, P. A.; Gaiser, B.; Fernandes, T. F.; Hriljac, J. A.; Jepson, M. A.; Stone, V.; Tyler, C. R.; Lead, J. R., Characterization of cerium oxide nanoparticles-Part 1: Size measurements. Environ. Toxicol. Chem. 2012, 31, (5), 983-993. 30. Labson, V. F., Clark, R.N., Swayze, G.A., Hoefen, T.M., Kokaly, Raymond., Livo, K.E., Powers, M.H., Plumlee, G.S., and; Meeker, G. P., Estimated minimum discharge rates of the
16 ACS Paragon Plus Environment
Page 17 of 26
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
Environmental Science & Technology
Deepwater Horizon spill—Interim report to the Flow Rate Technical Group from the Mass Balance Team: U.S. Geological Survey Open-File Report 2010-1132, 4 p. 2010. 31. Tipping, E., Humic substances in soil, sediment and water: Geochemistry, isolation and characterization. Geol. J. 1986, 21, (2), 213-214. 32. U.S.EPA Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organisms. EPA-821-R-02-012, 1–266; U.S. Environmental Protection Agency Office of Water, Washington, DC, 2002. 33. Song, Y. J.; Wang, R. X.; Rong, R.; Ding, J.; Liu, J.; Li, R. S.; Liu, Z. H.; Li, H.; Wang, X. Y.; Zhang, J.; Fang, J., Synthesis of Well-Dispersed Aqueous-Phase Magnetite Nanoparticles and Their Metabolism as an MRI Contrast Agent for the Reticuloendothelial System. Eur. J. Inorg. Chem. 2011, (22), 3303-3313. 34. Smith, B. C., Infrared spectral interpretation: a systematic approach. CRC press: 1998. 35. Lee, H. Y.; Lim, N. H.; Seo, J. A.; Yuk, S. H.; Kwak, B. K.; Khang, G.; Lee, H. B.; Cho, S. H., Preparation and magnetic resonance imaging effect of polyvinylpyrrolidone-coated iron oxide nanoparticles. J. Biomed. Mater. Res. B. Appl. Biomater. 2006, 79, (1), 142-50. 36. Du, Y. K.; Yang, P.; Mou, Z. G.; Hua, N. P.; Jiang, L., Thermal decomposition behaviors of PVP coated on platinum nanoparticles. J. Appl. Polym. Sci. 2006, 99, (1), 23-26. 37. Bogatyrev, V. M.; Borisenko, N. V.; Pokrovskii, V. A., Thermal Degradation of Polyvinylpyrrolidone on the Surface of Pyrogenic Silica. Russ. J. Appl. Chem. 2001, 74, (5), 839844. 38. BP, Gulf Science Data Reference Oil Characterization Data. Website: http://gulfsciencedata.bp.com/. directory: Oil. subdirectory: Oil Characteristics – additional reference oils. filename: OilChemistry_O‐04v01‐01.zip 2014. 39. Baalousha, M., Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, (6), 20932101. 40. Diegoli, S.; Manciulea, A. L.; Begum, S.; Jones, I. P.; Lead, J. R.; Preece, J. A., Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total. Environ. 2008, 402, (1), 51-61. 41. Lau, B. L. T.; Hockaday, W. C.; Ikuma, K.; Furman, O.; Decho, A. W., A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloids Surf., A 2013, 435, (0), 22-27. 42. Schlautman, M. A.; Morgan, J. J., Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol. 1993, 27, (5), 961-969.
402 403 404 405 406 407 17 ACS Paragon Plus Environment
Environmental Science & Technology
408
409 410
18 ACS Paragon Plus Environment
Page 18 of 26
Page 19 of 26
Environmental Science & Technology
a
b
c
411 412 413 414 415
19 ACS Paragon Plus Environment
Environmental Science & Technology
416 417 418 419
20 ACS Paragon Plus Environment
Page 20 of 26
Page 21 of 26
Environmental Science & Technology
a
b
c
d
420 421 422 423
21 ACS Paragon Plus Environment
Environmental Science & Technology
424 425 426 427 428
22 ACS Paragon Plus Environment
Page 22 of 26
Page 23 of 26
Environmental Science & Technology
429 430 431 432 433
23 ACS Paragon Plus Environment
Environmental Science & Technology
434 435 436 437 438 439
24 ACS Paragon Plus Environment
Page 24 of 26
Page 25 of 26
Environmental Science & Technology
440 441 442 443 444 445
25 ACS Paragon Plus Environment
Environmental Science & Technology
446 447 448 449 450
26 ACS Paragon Plus Environment
Page 26 of 26