On the Existence of Compounds in Binary Liquid Mixtures

viscosity is due to friction between the molecules and there- fore varies as ...... Rapports entre la densitéet l'indice de refraction dans les méla...
0 downloads 0 Views 1MB Size
ON T H E EXISTENCE O F COMPOUNDS IN BINARY LIQUID MIXTURES BY J. HOWARD MATHEWS AND RAYMOND D. COOKE

In recent years much work has appeared concerning the question of the interpretation of viscosity maxima in binary mixtures as indicative of the presence of chemical combina~~ tions of the two liquids. As early as 1847 P o i ~ e u i l l enoticed that the viscosity of mixtures of ethyl alcohol and water was much greater than that calculated by the rule of mixtures. Instead of being a straight line the curve exhibited a decided maximum which occurred at a concentration corresponding to the equimolecular quantities of the alcohol and water. In 1861 Graham16 observed the same phenomenon and reported several similar cases among which were mineral and organic acids and aliphatic alcohols in water. Wijkandereg in 1878 found that acetic acid and water had a maximum viscosity at a composition corresponding to equimolecular quantities but that this maximum was shifted a t different temperatures, and as the temperature was raised the curve became more flat. In recent years Varenne and Godeffroy6’ studied the irregularities in the curve for alcohol and water and claimed to detect no less than five hydrates; and in a mixture of alcohol and acetone as many compounds of these two. In 1912 DenisonlZ4pointed out that the actual maximum in ’ a curve is not of any significance but that the point to be considered is the point which lies farthest from the straight line. A t this point the effect of mixing the liquids is the greatest. He also showed that while the points of maximum viscosity shift with the temperature, this point of greatest deviation does not. The present status of the theory that deviations in viscosity are due to the presence of a compound is as follows: In case a third substance is present in the mixture, and if this substance has a viscosity widely different from that of either of the components, the greatest deviation from the straight line will be experienced when there is a max-

560

J . Howard Mathews and Raymond D. Cooke

h u m amount of the third substance present. It will be seen that this maximum amount will be present when the total composition of the mixture is the same as that of the compound, for if an.excess of either were present it would change the equilibrium and dilute the compound leaving a smaller relative amount. There are indeed other forces which will affect the viscosity of a mixture so that the point of maximum distance from the straight line does not always represent a simple empirical formula, but in general ‘it is assumed that where there is a decided maximum in the curve a compound, either simple or complex, is present. It is the purpose of this paper to present an entirely new line of evidence which leads to the same conclusion. A recent paper by Batschinskii4 shows some interesting relationships concerning the change of velocity of pure liquids with the temperature. Without going greatly into detail in his work we may say that he gives several formulae which have been proposed from time to time to connect the viscosity of liquids with the temperature, and shows that they have not been entirely successful. Instead of using the temperature as one of the independent variables he uses the specific volume of the liquid, reasoning from the assumption that viscosity is due to friction between the molecules and therefore varies as the distance between the molecules. The equation would then stand: Const Viscosity = 7 V

where v is the specific volume. Here, however, when the viscosity is infinite, a physically realizable condition, the volume would have to be zero, which is impossible. By introducing a correction for the volume of the molecule similar to that in the gas law this objection is avoided. If instead of the specific volume we use the difference between the specific volume and a constant 00 we obtain: Viscosity ( T ) =

C

v~

Go

Existence of Compounds in Binary Liquid Mixtures

561

where c is another constant. By a simple transposition we get v =

00

+-c q

Here the specific volume is a linear function of the fluidity or I and the equation lends itself readily to graphic proof. 9

If a liquid follows this rule, plotting the fluidity against the specific volume should result in a straight line. The constant 00 is obtained graphically and is the intercept of the line with the volume axis. Physically it is the specific volume a t infinite viscosity and is equal to the average of the volumes of the solid and liquid substances at the freezing point. The constant c is the tangent of the angle made by the line and the fluidity axis and is nearly the same for all liquids, ranging from 0.000331to 0.000647. Batschinskii applied this formula to eighty-seven liquids, the data for which were obtained from the work of Thorpe and RodgeraZ7 I n all cases of non-associated liquids the equation applied. The lines obtained were perfectly straight and the values for viscosity obtained experimentally and those calculated from the equation agreed in all cases within one percent. With associated liquids, however, mainly the organic acids and aliphatic alcohols, the curves were distinctly concave toward the fluidity axis and the equation did not apply. All the pure associated liquids which have been studied give curved lines, and since this has been demonstrated for a large number of substances it may be taken as a fair criterion of association. We have conducted experiments to see if the same is true in such liquid mixtures as are generally assumed to be associated, and we find this to be the case as the following experiments show. For the purpose of this work twenty-four pairs of liquids were chosen, the viscosity isotherms for each pair of which had been worked out by the previous investigators, as indicated below. These isotherms fall into two distinct classes, first those which exhibit a decided maximum, into which class

562

J . Howard Mathews and Raymond D. Cooke

nine of the pairs fall; and those in which the intermediate values fall between those of the pure components, to which the other fifteen belong. In the former class the ratio chosen for experiment was that composition which shows the greatest deviation from the straight line, that is the proportion in which the effect of mixing has been to produce the greatest difference between the observed values and those calculated from the admixture rule. To this class belong: Acetic a~id-aniline"~ Methyl a l c ~ h o l - w a t e r ~ ~ Propyl a l c ~ h o l - w a t e r ~ ~ Water-acetic acid36 Water-~yridine~~ Acetic a ~ i d - p y r i d i n e ~ ~ Ethyl a l c ~ h o l - w a t e r ~ ~ Chl~ral-water~~ Chloral-ethyl alcohol65

56-44 percent 36-64 percent 50-50 percent 22-78 percent 33-67 percent 77-23 percent 45-55 percent 88-1 2 percent 74.3-25.7 percent

In the second class the mixtures were made uniformly 50 percent of each component and comprised the following pairs: Tolu~l-benzol~~ Carbon tetrachloride-chloroform5s Nitrobenzene-ethyl acetate58 Acetic acid -acetone45 Aniline-a~etone~~ Chloroform-benzo158 Carbon tetrachloride-benzoP4 Ni trobenzene-ben~ol~~ Acetone-ethyl alcohol36 Ethyl a c e t a t e - b e n ~ o l ~ ~ Ethyl a l c ~ h o l - b e n z o.l ~.~ P~ridine-aniline~~ Pyridine-ethyl acetate Ethyl alcohol-ethyl acetate Ethyl alcohol-methyl acetate

The shapes of the viscosity isotherms for all of these pairs, copied from the curves or plotted from the data in the literature, are shown in Figs. I and 11. Purification of liquids ; Benzol was purified by freezing a considerable amount several times, drawing off the liquid portion after each freezing.

Existence of Compounds in Binary Liquid Mixtures

563

Toluol was prepared by distillation from phosphorus pentoxide, b. p. 109.5 O at 740 mm.

Fig.

11

Methyl, ethyl, and propyl alcohols and acetone were dried for several days over anhydrous copper sulfate and distilled. Methyl alcohol, boiling point 65 '-65.5 O a t 745 mm. Ethyl alcohol, boiling point, 78 '-78.2 O at 745 mm. Propyl alcohol, boiling point, 97 O at 745 mm. Acetone, boiling point, 5 6 ' 3 6 . 5 O at 750 mm. Acetic acid was frozen several times in the same way as benzol. 1 In Figs. I and I1 the curves are not drawn to the same scale. They are reproduced here merely to show the.genera1 form of such curves.

564

J . Howard Matkews and Raymond D. Cooke

Chloroform was distilled from phosphorus pentoxide. Boiling point, 60.5 '-61 O at 730 mm.

Fig. I1

Existence of Cornpowads in Binary Liquid Mixtures 565 Pyridine was dried several days over solid KOH, digested with potassium permanganate and finally distilled from barium oxide, boiling point, 114' at 748 mm. The samples of ethyl and methyl acetates at hand were found t o contain considerable amounts of alcohol. They were shaken several times with saturated calcium chloride solution to remove the alcohol, dried over anhydrous calcium chloride and finally distilled twice from phosphorus pentoxide. Ethyl acetate, boiling point, 75 "-76 ' a t 735 mm. Methyl acetate, boiling point, 55 '-56 ' a t 740 mm: Nitrobenzene was distilled and the greater part, boiling 205.8'-206.1 ' at 740 mm., was collected. Carbon tetrachloride was dried for several days over anhydrous calcium chloride and distilled from freshly ignited calcium chloride, boiling point 76 '-77 O at 735 mm. Aniline was redistilled. Boiling point 183'-1 8 4 'at 750 mm. The water used was distilled from a large copper still and approximately the middle third of the distillate was collected for use. The mixtures were all made up by weight in small glass stoppered bottles holding about 125 cc, and were kept carefully stoppered except when samples were being taken. The measurements at zero degrees were made in a large battery jar filled with cracked ice and water and surrounded with asbestos. No change in temperature could be observed with a thermometer capable of being read to 0.01". At the higher temperatures, namely 25O, 4 0 ° , 5 5 O , and 70°, a glass thermostat was used. I t was heated by means of a Simplex electric heating coil immersed in it, the heating element being controlled by a toluene regulator and relay. It was kept thoroughly stirred at all times when measurements were being made and a t the higher temperatures the jar was surrounded with asbestos to prevent excessive radiation. Thermometers standardized by the U. S. Bureau of Standards and reading to one twentieth of a degree were used and the maximum deviation in the temperature was never greater than one-tenth of a degree.

566

J . Howard Mathews and Raymond D. Cooke

V

f

0 ’ 92398

5.49 12.78 23.87

Temp. I

25

0.93816 0.95243

40

55 70

METHYLALCOHOL-WATER 36-64 PERCENT Temp. 0

25 40

55 70

I

V

I

.0490

I .0651

1.0757

I .0882 I . 1015

I

f 27.31 63.12 9 6 . I3 131.8 I73

Existence of Compounds i n Binary Liquid Mixtures 567 PROPYLALCOHOL-WATER 50-50 PERCENT Temp. 0

-

25 40 55 70

V

I

f

.0824 I . 1040 I . 1180 I . 1326 1. I493

II

13.23 37.20 61.48 88.18 119.7

I ~

, I

I

I

1

WATER-ACETIC ACID 22-78 PERCENT

0

Temp. 25

40

55 70

I1

V

0.91848 0 ' 93967

0.95295 0.96660 0.98148

i I

1 I

I

f 19.75 42.87 63.73 85.05 1og.o

WATER-PYRIDINE 33-67 PERCENT

f 17.55 43.85 68.03 95.02 126.2

PERCENT

f 0.90618 0.92718 0,94392 0.95878

0

25 40

55

Temp. 0

25 40 55 70

7.79 20.55 33.68 48.25 65.50

ETHYLALCOHOL-WATER 45-55 PERCENT I f

i

2,

1.0539 I .0742 I .0894 I . 1028 I. 1181

I

i I

I

I

I

14.42 42.37 70.56 103.2 '45 - 0

,

568

J . Howard Mathews and Raymond D. Cooke --

Temp.

V

f

50

0.61863 0.62777

5.75 11.13

60

f 21-02

40 45

0.74367

25.95

70

0.76668

43.20 58.65

50

Fig. IrI

Existence of Compounds in Binary Liquid Mixtures 569

V

fobs.

f calc.

0

I . I222

25 40 55

1 . I545 I . 1748

124.4 179.5 216.6 249.3

124.2 177.8 211.9 247.0

Temp. ___

Temp.

I.

i

1958

40 55

, l

o 25 40 55 70

I

I

0.94528 0.97060 0.98672 1.0030 I .0213

1

11 1

1

Temp.

1 I

183.5 206.6

1.4 3.1 -2.5

84.02 122.6 153.8 179.3 202.9

84.4 123.8 I49 174.3 202.5

70

1

1

fobs.

I

00

0.0

i

0.38

1 I

j =

0.9985

I

f calc.

1.2

-4.8 -5.0 -0.4

Diff.

I

1.0681 25 40 55

I ~

V

I

118.2 156.9 181.o 206.6

ACETICACID-ACETONE c = 0.000651 I

1

--022

-0.7 -4.7 -2.3

Diff.

:;,":;

0.65660 0.66907 0.68245

1

Diff.

f calc.

v

I

1

1.1011

1.1215 1.1430 I . 1662

1

I

104.1 150.1 187.6 250.8

105.2 155.2 186.3 218.8

'

1.1

5.1 -1.3 -0.9

J . Howard Mathews and Raymond D. Cooke

570

Temp.

I

0

I I I I

25 40 55 70

Temp.

25 40 55

v . I002 , I221 . 1400

71.4 114.6 148.3 176.0

'590

205.2

l v 1

0.88626 0.91242 0.93068 0 ' 94940

fobs.

f calc.

127.2

126.7 174.5 207.8 242.3

176.2 210.5 241.8

I

V

j

fobs.

1

~

Diff.

-0.5

-1.7 -2.7 0.5

CARBONTETRACHLORIDE-BENZOL c = 0.000518 Temp.

Diff. ~~

.0722

I,

1

f calc.

fobs.

f calc.

00

= 0.8125

I

Diff. ~~~

0.86264 0.88930 0.90634 0.92370

0

'

25 40 55

97.12 144.2 181.8

96.7 148.3 181. I

NITROBENZENE-BENZOL c = 0.000620 Temp.

o

I

I

1

:1 j 55 70

Temp.

I

'

~

v

0.96267 0,98766 I . 0027

1.0175 1.0344

V

I

fobs.

76.91 "4.3 142.8 ,166.3 192.0

1

00

fcalc.

76, I 116.3 140.6 164.5 191.8

f calc.

4 4.1

-*

-0.7 =

0.9155

I

Diff.

'

-0.8

'

'

2.0

I 1

I

-2.2 '

-1,8 -0.2

Diff.

Existence of Compounds in Binary Liquid Mixtures 571

ETHYLACETATE-BENZOL c =

0.000568

1

00

= 1.0140 I

I

fobs. ____

.og84 I333 I . 1556

0

I

25 40

I.

1-

f calc.

149.3 206.6

210.0

251.2

249.6

Diff.

148.5

-1.2

-I

3.4 .6 0.0

ETHYLALCOHOIBENZOL ,1

Temp.

2

1

l

,

o 25 40

1

1.1558 1.1899 1.2117

55

~

1

1

/-

0

25

0.9930

27.7 48.8 105.0

0

25 40

5s

'

Diff.

70.3 126.4 162. o

-0.4 4.5 0.7

f calc.

Diff.

-

-

200,o

-

-

jobs.

f calc.

Diff.

122.0

170.0 194.0 219.2

122.9 164.8 191.o 218.8

v

fobs.

f calc.

I . 1600 I . 1845

104 * 3 144.0

105.9 144.6

226.0

227 .o

I

1.0446 1.0744 I .0932 1.1131

I

I

f calc.

-

I .027

2

1

Temp.

161.3

fobs.

1

55

I 1;;:;'

V

IO0

Temp.

~

= I . 130

0.0

I

1

fobs.

00

1.2356

Temp.

I9

c = 0.000608

1

1.2097 1.2367

I

i

1

1

-

0.9

' '

-5.2

-3 .o -0.4

Diff. I .6 0.6

-1

.o

I .o

J . Howard Mathews and Raymoizd D. Cooke

572

ETHYLALCOHOL-METHYL ACETATEc = 0.000614 co = 1.0660 __ _____.__ ____ _... - . ~

Temp. 0

-

~

w

~

1.1343

1

fobs.

I

fcalc.

111.2

II

111.3

25

i

1.1676

163.2

40

I

1.1912

202.1

~

55

I

1.2140

241.4.

!

~

165.2

I

i

203.8

240.9

I

Did. O.I 2 .o

1.7 70.5

The above tabulated values are shown graphically in Fig. IV. It will be seen that in all cases where the viscosity composition curve shows a maximum the fluidity volume curve is concave to the fluidity axis, and where the former is straight or nearly so the latter is also straight. One exception will be noticed, namely pyridine-aniline. Here the viscosity isotherm is nearly straight and the fluidity volume curve is decidedly curved. This may possibly be due to the fact that there is a compound formed but if so its viscosity is nearly the same as that calculated for the mixture from the mixture rule and therefore does not cause a maximum. We consider these facts to be additional evidence of the existence of compounds in certain liquid mixtures and to support the theory that viscosity maxima are indicative of the presence of compounds. The converse, that the absence of a maximum indicates the absence of a compound, is not necessarily true. We wish to express our gratitude to Miss E. McDaniel for valuable assistance in determining the viscosity isotherms for the mixtures, pyridine-ethyl acetate, ethyl alcohol-ethyl acetate, and ethyl alcohol-methyl acetate, which had not previously been worked out, and for determining the viscosities of the same mixtures a t the different temperatures given. The appended bibliography does not purport to be a complete list of the work on the subjects covered, but it includes the most important matter on viscosity of pure liquids as far as it applies to chemical and molecular constitytion, and work on the physical properties of mixtures of completely

Existence of Compounds in B i n , a ~ yLiquid Mixtures 573

574

J . Howard Mathews and Raymond D. Cooke

miscible liquids which had been published up to January 1914. LITERATURE ON VISCOSITY OF PURE LIQUIDS AND OF LIQUID MIXTURES

I,

ALL PROPERTIES

R. D. COOKE

Viscosity of pure liquids.. ......................... I t o 28 Viscosity of liquid mixtures. . . . . . . . . . . . . . . . . . . 29 t o 7 0 Surface tension of mixtures. ........... . . . . . . . 7 1 t o 81 Optical properties of mixtures.. .................... 82 t o 94 Thermal properties of mixtures . . 95 t o 108 Densities of mixtures.. ............................ rog t o I 19 Miscellaneous properties, ..................... 1 2 0 to 148 . Theory of mixtures., ....... I49 t o 169 Boiling point and vapor pressure.. . . . . . . . . . . . . . . . . . 1 7 0 to 221 BIBLIOGRAPHY OF THE W O R K ON VISCOSITY OF PURE LIQUIDS AND ALL PROPERTIES OF LIQUID MIXTURES Section I. Viscosity of Pure Liquids I . Batschinski, A. Studies t o the knowledge of the dependence of viscosity of liquids on the temperature and their chemical constitution. Bull. de la Soc. Imp. des Naturalistes de Moscou, 1902, I (Chem. Cent., 73, 11, 180). 2. Batschinski, A. Viscositatsgesetz fur Flussigkeiten. Phys. Zeit., 131 11.57 (C. A., 71 3060). 3. Batschinski, A. Die molekulare Association der Flussigkeiten. I. Zeit. phys. Chem., 82, 86, go (1913). 4. Batschinski, A. Untersuchungen uber die innere Reibung von Flussigkeiten. I. Zeit. phys. Chem., 84, 643 (1913). 5. Bingham. Viscosi(y and fluidity. Preliminary paper. Am. Chem. Jour., 40, 277 (1908) (C. A,, 2, 3020). 6. Bingham and White. Fluiditat und die Hydrattheorie. I. Die Viscositat von Wasser. Zeit. phys. Chem., 80, 670 (1912) (C.A., 7, 2334). 7. Bingham and White. Die Fluiditat und die Hydrattheorie. 11. Zeit. phys. Chem., 83, 641 (1913) (C. A., 7, 3692). 8. Brillouir, R. La viscositk des liquides en fonction de la temperature. Ann. Chim. Phys., 18, 197 (1909) (C. A., 4, 256). 9. Cohen, R. Uber den E i d u s s des Druckes auf die Viscositat von Flussigkeiten. Wied. Ann., 45, 666 (1892). IO. Dubuat. Principes d’hydraulique. (Paris, 1779). (First work on viscosity). I I , Dunstan and Thole. Sur quelque relations stoechiometriques fournies par les coefficients de viscositk. Jour. Chim. Phys., 7, 204 (1909) (C.A., 3,

2643). 12. Dunstan and Hilditch.

Relation between viscosity and other physical properties. Zeit. Elektrochemie, 18, 185 (1913); Jour. Chem. SOC., 102, 435 (1913) (C. A.8 7, 3884). 13. Findlay, A. The viscosity of liquids a t their boiling point. Chem. News, 92, 206 (1905) (Chem. Cent., 76, 11, 1767).

.

Existence of Comibounds in Binary Liquid Mixtures 575 14. Gazarian, G. T. Sur une relation ghnhrale entre les propriktb physique des corps; application a la viscositk, la capillaritk, etc. Comptes rendus, 153,1071 (1912)(C. A.,6,950). 15. Girard. Memoires de l’acadbmie des Sciences. 1816. 16. Graham. On liquid transpiration in relation to chemical composition. Phil. Trans., 151, 373 (1861). 17. Graham. Uber die Beziehungen zwischen der Transpiration tropfbarer Fliissigkeiten und der chemischen Zusammensetzung. Liebig’s Ann., 123,go (18Gz). 18. Hagenbach, E. Uber die Bestimmung der Zahigkeit einer Flussigkeit durch den Ausfluss aus Rohren. Pogg. Ann., 109,385 (1860)., 19.Hilditch and Dunstan. The correlation of viscosity with other constitutive properties. Preliminary ndte. Proc. Chem. SOC., 26, 341 (1910) (C. A.9 5 , 2767). 20. Hilditch and Dunstan. Die Beziehung zwischen Viscositat und anderen physikalischen Eigenschaften. Zeit. Elektrochemie, 17, gzg (1912) (C. A,, 6,952); 18,881 (1913)(C. A., 7, 1642). 21. Hosking, R. The viscosity of water; Phil. Mag., [6]18, 260 (1909). 22.’Hosking, R. The viscosity of water. Phil. Mag., [6]17,502 (1909). 23. Natanson, L. Uber die Gesetze der innern Reibung. Zeit. phys. Chem., 38, 690 (1901);Phil. Mag., [6]2, 342 (1901). 24. Poiseuille. Recherches exphrimentales sur le mouvement des liquides dans les tubes de tr&s petites diametres. Comptes rendus, 15, 1167(1842). 2 5 . Poiseuille. Sur le mouvement des liquides de nature diffCrente dans les tubes de tres petites diametres. Ann. Chim. Phys., [3]21, 76 (1847). 26. Thole, F. B. Viscosity and association. Jour. Chem. SOC.,97, 2596 (1910)(C. A,, 5, 1599). 27. Thorpe and Rodger. On the relations between viscosity of liquids and their chemical nature. Phil. Trans., 185A,397 (1894). 28. Traube, J. Die Eigenschaften der Stoffe als Funktionen der Atomund Molekularraume und Gedanken iiber die Systematik der Elemente. (Viscosity p. 377). Zeit. anorg. Chem., 40, 372 (1904). Section 2.

Viscosity of Liquid Mixtures.

29. Baker, F. The viscosity of ether-alcohol mixtures. Jour. Chem. SOC.,101, 1409 (1912)(C. A., 6,3042). 30. Bingham. Viscosity and fluidity. I. Liquid mixtures. Am. Chem. Jour., 35, 195 (1906) (Chem. Cent., 771, 1521). 31. Chheveau, G. The viscosity of solutions of EtOH, sulfuric acid, nitric acid in water. Comptes rendus, 155, 154 (1912)(C. A., 6, 3043). 32. Dito, J. W. Die Viscositat des Systems Hydrazin und Wasser. Wied. Ann. Beibl., 29, 129 (1905). 33. Draper, P. Viscosity of binary liquid mixtures near the critical solution temperature. Bull. Acad. Roy. Belg., 1911,621 (C. A., 6, 445). 34. Drucker and Kassel. Fluiditat von binaren Gemischen. Zeit. phys. . . Chem., 76,367 (1911)(C. A., 5, 1859). 35. Dunstan and Thole. Preliminary note on the viscosity of liquid mixtures. Proc. Chem. SOC.,19, 215 (1903).

576

J . Howard Mathews and Raymond D. Cooke 36. Dunstan, A.

E.

The viscosity of liquid mixtures.

I. Jour. Chem.

SOC., 85, 817 (1904)(Chem. Cent., 75, 11, 579). 37. Dunstan, A. E. Innere Reibung von Fliissigkeitsgemischen. Zeit. phys. Chem., 49, 590 (1904)(Chem. Cent., 75, 11, 1363). 38. Dunstan, A. E. The viscosity of liquid mixtures. 11. Jour. Chem. Soc., 87, 1 1 (1905);Zeit. phys. Chem., 51, 732 (1905). 39. Dunstan, A. E. Die innere Reibung von Fliissigkeitsgemischen. Zeit. phys. Chem., 56, 370 (1906) (Chem. Cent., 77, 11, 1231). 40. Dunstan, A. E. Viscosity of liquid mixtures. 111. Proc. Chem. Soc., 22, 89 (1906)(Chem. Cent., 77, I, 1592). 41.Dunstan and Wilson. The viscosity of liquid mixtures. Jour. Chem. SOC.,91,83 (1907)(C. A,, I, 956) (Cheni. Cent., 78, 11, 1009). 42. Dunstan, Thole and Hunt. The relation between viscosity and chemical constitution. I. Jour. Chem. SOC.,91, 1728 (1907) (C. A., 2, 359) (Chem. Cent., 78, 11, 2060). 43. Dunstan and Thole. The viscosity of aqueous pyridine solutions, Jour. Chem. Soc., 93,561 (1908)(C. A., 2, 1651). 44. Dunstan and Thole. The relation between viscosity and chemical constitution. IV. Viscosity and hydration in solution. Jour. Chem. SOC.,95, 1556 (1909) (C. A,, 49 402). 45. Faust, 0. Die innere Reibung von Fliissigkeitsgemischen, ihre Abhangigkeit von der Temperatur und die Verwandschaft zwischen der inneren Reibung von Fliissigkeiten mit ihrem Dampfdruck. Zeit. phys. Chem., 79, 97 (1912)(C. A., 6, 3043). 46. Findlay, A. The viscosity of binary mixtures at their boiling points. Zeit. phys. Chem., 69, 203 (1909)(C. A., 4, 534). 47. Fischler, J. Molekulare Leitfahigkeit und innere Reibung von Gemischen von Alkohol oder Acetone mit Benzol und Nitrobenzol. Zeit. Elektrochemie, 19, 126 (1913)(C.A., 7, 1317). 48. Getman, F. H. Viscosith de systPmes a deux composants liquides. Jour. Chim. Phys., 4, 386 (1906)(C. A., I, 814). 49. Godeffroy. Sur les hydrates d’alcool methylique e t d’acetone. Comptes rendus,, 138,ggo (1904). 50. Hertz and Rathman. Die innere Reibung von chlorinierten aliphatischen Kohlenwasserstoffen und ihren Gemischen. Zeit. Elektrochemie, 19, 589 (1913) (C. A,, 7, 3559). 51. Jones and Veazey. A possible explanation of the increase in viscosity which takes place when alcohols are mixed with water, and of the negative viscosity coefficients of certain salts when dissolved in water. Am. Chem. Jour. 37,405 (1907)(C. A.,I, 1356) (Chem. Cent., 78,11,7). 52. Kassel, R. Viscositat binarer Fliissigkeitsgemische. Book. J. Einstein and Co. 53. Kendall, J. The viscosity of binary mixtures. Medd. K. Vetenskapsakad. Nobelinst., 2, No. 2 5 , pl. (C. A., 7, 2714). 54. Kurnakow. Inner friction of binary systems. Jour. Russ. Phys. Chem. SOC.,44, 1964 (1912). 55. Kurnakow and Efremow. Innere Reibung der Systeme Chloral-

Existence of Compounds in Binary Liquid Mixtures 577 Wasser und Chloral-Alkohol. Zeit. phys. Chem., 85, 401 (1913) (C. A., 7, 2147); Jour. Russ. phys. Chem. SOC.,45, 329 (1913). 56. Kurnakow and Zemcuzny. Die innere Reibung der binaren Gemische. Charakteristik der bestimmten Verbindung. Zeit. phys. Chem., 83, 481 (1913) (C. A., 7, 1126); Jour. Russ. Phys. Chem. Soc., 44, 1964 (1912). 57. Lees, C. H. The viscosities of mixtures and of solutions. Phil. Mag., [6] I, 128 (1901). 58. Linebarger. On the viscosity of mixtures of liquids. Am. Jour. Sci., [41 2, 331 (1896). 59. Noack, K. Uber den Einfluss von Temperature und Konzentration auf die Fluiditat von Flussigkeitsgemische. Wied. Ann., 27, 289 (1886). 60. Noack, K. Uber die Fluiditat der absoluten und verdiinnten Essigsaiire. Wied. Ann., 28, 666 (1886). 61. Senter, Geo. Viscosity and association in binary mixtures of liquids. Proc. Chem. SOC.,25,292 (1909) (C. A.,4,1920). 62. Sidgwick and Wilsdon. Conductivity and viscosity of 'aqueous solutions of aniline hydrochloride at 25'. Jour. Chem. SOC.,gg, 1118 (1911) (C. A., 3530). 63. Thole, Mussel and Dunstan. Viscosity maxima and their interpretation. Jour. Chem. SOC., 103, 1108 (1913); Proc. Chem. Soc., 29, 174 (1913) ( e . A., 7, 343b). 64. Thorpe and Rodger. The viscosity of mixtures of miscible liquids. Jour. Chem. SOC.,71,360 (1897). 65. Traube, J. uber die innere Reibungsconstante und die specifische

51

Zahigkeit organischer Fliissigkeiten und ihrer waserigen Losungen. Ber. chem. Ges. Berlin, 19,871, 1673, 1679 (1886). 66. Tsakalotos, D. E. Sur la viscositC des melanges binaires des composes organique. Formation de combinaisons moleculaires a 1'Ctat liquide. Bull. SOC.chim. Paris, [4] 3, 234, 242 (1908) (C. A,, 2, 1651) (Chem. Cent., 79, I, 1384). 6 7 . Varenne and Godeffroy. Sur les hydrates d'alcool Cthylique. Comptes rendus, 137,993 (1903). 68. Veinberg, B. P. Inner friction of binary systems. Jour. Russ. phys. Chem. SOC.,45, 701 (1913) (C. A., 7, 3563). 69. Wijkander, A. Uber die Reibung der Fliissigkeiten. Lunds. Physiogr. Sallsk. Jubelskrift (1878);Wied. Ann. Beibl., 3, 8 (1879). 70. van Wyk, H. J. Untersuchungen uber das System: Uberchlorsaiire-Wasser. Zeit. anorg. Chem., 48, 44 (1905). Section 3.

The Surface Tension of Mixtures.

71. Duclaux. Sur la tension superficielle des liquides. Ann. Chim. Phys., [4I 219 378 (1870). 72. Duclaux. Sur la tension superficielle dans la serie des alcools et des acides gras. Ann. Chim. Phys., [ 5 ] 13, 76 (1878). 73. Grunmach, L. Bestirnmung der Oberflachenspannung und anderer physikalischer Konstanten von Essigsaurre-Wasser Mischungen. Drude's Ann., 28, 217 (1909).

578

J . Howard Mathews and Raymond D. Cooke

74. Grunmach, L. Experimentelle Bestimmung der Obedachenspannung von Alkohol-Wassermischungen nach der Kapillarwellen Methode. Drude’s Ann., 38, 1018(1912)(C. A., 7, 439). 75. Kremann and Philippi. Uber die Temperaturekoefficienten der molekulare Oberflachenenergie bei binaren aquimolekulareo Mischungen von Anilin und den drei isomeren Nitrophenolen. hlonatshefte, 29, 891 (1908). 76. Linebarger. On the surface tension of mixtures of sulfuric acid and water and the molecular mass of sulfuric acid. Jour. Am. Chem. SOC., 22, 5 (1900). 7 7 . Pekar: Uber die molekulare Oberflachenenergie der @sungen. Zeit. phys. Chem., 39, 446 (1902). 78. Ramsey and Aston. Molecular surface energy of mixtures of nonassociating liquids. Proc. Roy. SOC., 56, 183 (1894);Zeit. phys. Chem., 15, 89 (1894). 79. Rodenbeck. uber Capillaritatsbestimmungen von Flussigkeitsgemischen. Inaug. Diss.-Bonn; Wied. Ann. Beibl., 4, 104 (1880). 80. Sutherland, Wm. The surface tension of mixed liquids. Phil. Mag., [SI 38, 188 (1894). 81.Watmough. Bine neue Methode zur Bestimmung von Oberflachenspannung von Flussigkeiten. Zeit. phys. Chem., 39, 157 (1901).

Section 4. Optical Properties of Mixtures.

I.,. W. The refractive indices of alcohol-water mixtures. Jour. Am. Chem. Soc., 30, 353 (1908). 83. van Aubel, E. Sur la relation de Pulfrich entre la contraction du volume et le pouvoir rhfringement des melanges binaires. Comptes rendus, 150,210 (1910)(C. A., 4, 1564). 84. Buchkremer. Uber die beim Mischen von zwei Fliissigkeiten stattfindende Volumanderung und deren E i d u s s auf das Brechungsvermogen. Zeit. phys. Chem., 6, 161 (1890). 85. Doroshevskii, A. G. and Dvorzhanchik, S. V. Index of refraction of mixtures of alcohol and water. Jour. Russ. Phys. Chem. Soc.. 40,go8 (1909) (C. A., 3, 1355);Jour. Russ. Phys. Chem. Soc., 41,951 (1910)(C. A., 4, 1404). 86. Hess, V. F. Uber eine allgemeine Beziehung zwischen Volumkontraktion und den drei ublichen Formen des Refraktionsvermogens bei Flussigkeitsgemischen. Drude’s Ann., 27, 589 (1908)(C. A., 3, 1243). 87. Homfray, I. F. Molecular refractions of some liquid mixtures of constant boiling point. Chem. News, 92, 236 (1905);Jour. Chem. Soc., 87, 1430 (1905)(Chem. Cent., 76, 11, 1577). 88. Leach, A. E. The detection and determination of ethyl and methyl alcohols in mixtures by the immersion refractometer. Jour. Am. Chem. SOC., 27, 964 (190.5). 89. Mazzucchelli, A. Remarks on a recent investigation on the refractive index of binary mixtures. (See 91,92, 93, 94). Atti. Accad. Liqcei, 20, I, 752 (1910)(e. 5, 3365). go. Perkin, W.H. The refractive and magnetic rotatory powers of some benzenoid hydrocarbons. The refractive power of mixtures. An improved spectronieter scale reader. Jour. Chem. SOC.,77, 267 (1900). 82. Andrews,

-4.9

Existence of Compounds in Binary Liquid Mixtures 579 9 1 . Schwers, F. Nouvelles contributions a l'ktude des solutions. I. Rapports entre la densite e t l'indice de refraction dans les melanges binares. Bull. SOC.chim. Paris, [4] 7, 875 (1910). 92. Schwers, F. Neue Beitrage zur Kenntnis der Losungen. I. Zusammenhang zwischen Dichte und Brechung von binaren Mischungen. Zeit. phys. Chem., 75, 357 (1910). 93. Schwers, F. Same. 111. Zusammenhang zwischen Dichte und Magnetischer Drehung der Polarizationsebene von binaren Mischungen. Zeit. phys. Chem., 75, 615 (1910) (C. A,, 5 , 814). 94. Schwers, F. Same. IV. Dichte, Brechung, und magnetische Rotation von dissocierten Gemischen. Zeit. phys. Chem., 75, 621 (1910) (C. A., 5, 814).

Section 5.

Thermal Properties of Mixtures.

95. Doroshevskii, A. G. Specific heat of alcohol and of its mixtures with water. Jour. Russ. Phys. Chem. Soc., 40, 860 (1909) (C. A., 3, 1354). 96. Doroshevskii, A. G . Specific heats of mixtures of saturated alcohols and water. Jour. Russ. Phys. Chem. Soc., 41, 958 (1910) (C. A., 4, 1404). 97. Kleeman, R. D. The heat of mixture of substances and relative distribution of the molecules in the mixture. Phil. Mag., [6] 21, 535 (1911). 98. Kremann, R. Zur Kenntnis der Bildungswarme des Systems; Sulfuric acid-water. Monatshefte, 28, 91I (1907). 99. van Laar, J. J, Uber Mischungswarmen von Wasser und Alkohol. Zeit. phys. Chem., 61, 255 (1908). 100. Masing, H. Uber die Verdampfungswarme von Gemischen. Zeit. phys. Chem., 81, 223 (1912). 101. Pascal and Normand. Influence de la constitution chimique sur les proprietes thermique des melanges binaires. Bull. SOC.chim. Paris, 13, 1 5 1 (1913) (C. A.3 7, 3693). 102. Pascal and Normand. Influence de la constitution chimique sur les proprietks thermique des melanges binaires. Bull. Soc. chim. Paris, 13, 878 (1913) (C. A., 8, 286). 103. Ramsay and Young. Uber Verdampfung ufid Dissociation. VII. Studium der thermischen Eigenschaften einer Mischung von Athylalkohol und Ather. Zeit. phys. Chem., 3, 63 (1889). 104. Schulze, A. Die specifische Warme von binaren Gemischen. I. Ber. phys. Ges., 1912,189 (C. A., 6, 1705). 105. Tyrer, D. Latent heats of vaporization of mixed liquids. I. Jour. Chem. SOC.,99, 1633 (1911) (C. A., 6, 315). 106. Tyrer, D. Latent heats of vaporization of mixed liquids. 11. Jour. Chem. SOC.,101, 81 (1912) (C. A., 6, 954). 107. Tyrer, D. Latent heats of vaporization of mixed liquids. 111. Jour. Chem. SOC.,101,1104 (1912). 108. Tyrer, D. The latent heats of chloroform and benzene and of their mixtures between o o and 80'. Jour. Chem. SOC.,103, 517 (1913)

Section 6 . Densities of Mixtures 109. Biron, I$. W.

The influence of temperature on the compressioil that

580

J . Howard Mathews and Raymond D. Cooke

occurs on mixing normal liquids. Jour. Russ. Phys. Chem. SOC.,42, 167 (1910) (C. A.9 5 , 609). 1 1 0 . Biron, E. V. Theory of compression in mixtures of normal liquids, Jour. Russ. Phys. Chem. SOC.,44, 1264 (1912)(C. A., 7, 926). I I I . Doroshevskii, A'. G. Densities of alcohol solutions. I. Mixtures of methyl alcohol and water. Jour. Russ. Phys. Chem. SOC., 41, 977 (1910) (C. A., 4, 1405). 112. Inglis, H. K. The densities of liquid oxygen and liquid nitrogen and their mixtures. Jour. Chem. SOC., 89, 886 (1906). 113.Jackson, Hamilton and Young. Specific gravities and boiling points of mixtures of benzene and normal hexane. Jour. Chem. SOC.,73, ggz (1898). I 14. van Klooster, H.S. Normal and abnormal cases of specific volume of binary liquid mixtures. Jour. Am. Chem. SOC.,35, 145 (1913)(C. A.,7, 1317). 115. Linebarger, C. E. On the specific gravities of mixtures of normal liquids. Am. Chem. Jour., 18,429 (1896). 116.Merriman, R. W. The mutual solubilities of ethyl acetate and water and the densities of mixtures of ethyl acetate and ethyl alcohol. Jour Chem. S0C.p 103, I774 (1913). 117. Richardson and Allaire. The specific gravities of water solutions of formic acid. Am. Chem. Jour., 19, 149 (1897). I 18.Rudberg, F. Uber die Volumensveranderungen bei Mischungen von Alkohol und Wasser. Pogg. Ann., 18, 496 (1828). 119.Schwers, F. Neue Beitrage zur Kenntnis der Losungen. 11. Variationen der Dichte binarer Gemische mit der Temperature. Zeit. phys. Chem., 75, 36.5 (1910).

Section 7. Miscellaneous Properties of Mixtures W. Traube's molecular volume method applied to binary mixtures of organic substances. Proc. Chem. SOC.,26, 337 (1910)(C. A., 5, 2769). IZI. Barlow, P. S. Osmotic experiments on mixtures of alcohol and water. Phil. Mag., [6]IO, I (1905). 1 2 2 . Dawson, H.M. The molecular complexity of acetic acid in chloroform solution. Jour. Chem. SOC.,81,521 (1902). 123. Denison, R. B. Liquid mixtures. I. Property composition curves. and the molecular changes which take place in forming binary liquid mixtures. Trans. Faraday SOC.,8,20 (1912)(C. A., 7, 925). 124.Denison, R.B. Liquid mixtures. 11. Chemical combination in liquid binary mixtures as determined in a study of property-composition curves, Trans. Faraday SOC.,8, 35 (1912)(C. A., 7, 925). 125. Doroshevskii and Rozhdestvenskii. Electrical conductivity of mixtures of alcohol and water. Jour. Russ. Phys. Chem. SOC.,40, 887 (1904) (C. A,, 3, 1355). I 26. Drucker. Studien an wasserigen Losungen aliphatischer Sauren. Zeit. phys. Chem., 52, 641 (1905). 127. Friedlander, J. Temperature- und Konzentrations-funktionen der Eigenschaften binarer und ternarer Fliissigkeitsgemische. Zeit. phys. Chem., 38,399 (1901). 120. Atkins,

Existence of Liquid Compounds in Binary Mixtures 581 128. Graham. Wasserige Losungen von Alkoholen, Saiiren und einigen anderen Stoffen. Liebig’s Ann., 20, 90 (1861). I 29. Hartley, Thomas and Appleby. Some physico-chemical properties of mixtures of pyridine and water. Jour. Chem. Soc., 93, 538 (1908). 130. Hill, T. H. Properties of mixtures of ethyl alcohol, carbon tetrachloride and water. Jour. Chem. SOC.,IOI, 2467 (1912)(C. A.,7, 1318). 131.Hirsch, R. Storungen am kritischen Punkt von reinen Fliissigkeiten und Gemischen. Drude’s Ann., I, 655 (1900). 132.Hubbard, J. C. Physical properties of binary mixtures. Phys. Rev., jo, 740 (1910);Zeit. phys. Chem., 74, 207 (1910)(C. A.,4, 2401). 133.Knietsch. Properties of sulfuric acid-water mixtures. (Plate). Ber. chem. Ges. Berlin, 34, 4089 (1901). 134. Kuenen, J. P. Gemische von Salzsaure und Methylather. Zeit. phys. Chem., 37, 485 (1901). 135.de Leeuw, H.I,. Uber das system, Acetaldehyde-Athylalkohol. Zeit. phys. Chem., 77, 284 (1911). 136. Lehfeldt, R. A. The properties of a mixture of liquids. I. Phil. Mag., [SI 40, 397 (1895). 137. Lehfeldt, R. A. The properties of liquid mixtures. 11. Phil. Mag., [5] 46,42 (1898);Chem. News, 77, 128 (1898). 138. Pagliani and Battelli. Water with methyl ether and propyl alcohol a t two different temperatures. Atti. della R. Acad. di Torino, 20, 607 (1885). 139. Philip, J. C. Das dielektrische Verhalten fliissiger Mischungen, besonders verdiinnter Losungen. Zeit. phys. Chem., 24, 18 (1897). 140. Pound, J. R. Physical properties of mixtures of ether and sulfuric acid. Jour. Chem. Soc., 99, 698 (1900);Proc. Chem. Soc., 26, 341 (1900)(C. A., 5, 2455). 141.Scheuer, 0. Physikochemische Studien an binaren Gemischen mit einer optisch aktiven Komponente. Zeit. phys. Chem., 72, 513 (1910). 142.Schulze, A. Untersuchungen iiber die Dielektricitatskonstante und das langwellige Refraktionsvermogen binarer Gemische. Zeit. Elektrochemie, 18,77 (1912)(C. A., 6,953). 143.Silberstein, L. Untersuchungen iiber die Dielektricitatskonstanten von Mischungen und Losungen. Wied. Ann., 56, 661 (1895). 144.Steele, B. D. and Bagster, L.S. Binary mixtures of some liquified gases. Jour. Chem. SOC.,97, 2607 (1910)(C. A., 5, 1015). 145.Wallace, T. A. and Atkins, W. Properties of mixtures of allyl alcohol and water. I. Jour. Chem. Soc., 101, 1179(1912)(C. A.,6, 2705). 146.Wallace, T. A. and Atkins, W. Properties of mixtures of allyl alcohol and water and benzene. 11. Jour. Chem. Soc., 101, 1958 (1912). 147.Young, S. and Fortey, E. C. The properties of mixtures of the lower alcohols with benzene and with benzene and water. Jour. Chem. SOC.,81,717 (1902). 148. Young, S. and Fortey, E. C. The properties of mixtures of the lower alcohols with water. Jour. Chem. SOC.,81,739 (1902).

Section 8. Theory of Mixtures 149.Atkins, W.

R. G. and Wallace, T. A. The molecular condition of

582 .

J . Howard Mathews and Raymond D. Cooke

mixed liquids. I. Mixtures of the lower aliphatic alcohols with water. Jour. Chem. SOC.,103, 1461 (1913) (C. A., 7, 3694). 150. Atkins, W. R. G. and Wallace, T. A. The molecular condition of mixed liquids. Proc. Chem. SOC.,29, 194 (1913). 151. Barendrecht, H. P. Zur Alkoholhydratfrage. Zeit. phys. Chem., 234 (1896). 152. Bingham. Solubility. The miscibility of liquids. Am. Chem. Jour., 381 91 (1907). 153. Bose, E. Zur Thermodynarnik der binaren Fliissigkeitsgemische. Zeit. phys. Chem., 65, 458 (1909) (C. A., 3, 1609). 154. Dolazalek, F. Zur Theorie der binaren Gemische und konzentrierten Losungen. I. Zeit. phys. Chem., 64, 727 (1908) (C. A., j, 603). 155. Dolezalek, F. Same. 11. Zeit. phys. Chem., 71, 191 (1910) (C. A., 4, 1123). 156. Dolezalek, F. Same. 111. Zeit. phys. Chem., 83, 40 (1913) (C. A., 7, 2887). 157. Dolezalek, F. Same. IV. Zeit. phys. Chem., 83, 45 (1913) (C. A., 71 2887). 158. Doroszewshii, A. and Dworzantschyh. Bemerkung zur Frage iiber 2%

die Anwendbarkeit der Formeln von Pulfrich und Hess fur Mischungen von Athylalkohol und Wasser. Zeit. phys. Chem., 68, 43 (1909) (C. A., 4, 1403). 159. Holmes, John. Contribution to the theory of solutions. I. The nature of the molecular arrangement in aqueous mixture of the lower alcohols of the paraffin series. 11. Molecular complexity in the liquid state. 111. Theory of the intermiscibility of liquids. Jour. Chem. SOC.,89, 1774 (1906). 160. Holmes, John. Cohtributions to the theory of solutions. The intermiscibility of liquids. Jour. Chem. SOC.,Ioj, 2147 (1913). 161. Jones and Murray. The association of a liquid diminished by the presence of another associated liquid. Water acetic acid and formic acid. Am. Chem. Jour. jo, 193 (1903). 162. Kremann, R. uber die Energieanderungen binarer Systeme. I. Zur Bestandigkeit der Verbindung Phenol-Anilin in fliissigen Zustande. Monatshefte, j r , 203 (1910). 163. Kuenen, J. P. The mutual solubility of liquids. Phil. Mag., [6] 6 , 6 3 7 (1903). 164. Kuenen, J. P.

Investigations concerning the miscibility of liquids. Proc. Acad. Wetenschapen, 14, 644 (1913) (C. A., 7, 2507). 165. Patterson, T. S. uber Hrn. Dolezaleks Abhandlung, Gemische und konzentrierten Losungen. Zeit. phys. Chem., 68, 572 (1909) (C. A., 4, 979). 166. Volkmann. uber die Molekularanziehung von Fliissigkeiten aufeinander. Wied. Ann., 16, 321 (1882). 167. van der Waals, J. D. Remarks on the theory of mixtures. Archives nkerl., [2] 11, 115 (1906) (Chem. Cent., 77, I, 1592). 168. van der Waals, J. D. Theory of binary mixtures. Proc. Acad. Amsterdam, IO, 56, 123, 183 (1909). 169. van der Waals, J. D. Contributions to the theory of binary mixtures. Proc. Acad. Wetenschapen, 14, 504 (1913) ( c . A., 7, 2339).

Existence of Compounds in Binary Liquid Mixtures 583 Section 9. Boiling Point and Vapor Pressure of Mixture Uber die Ermittelung der Partialtensionen binarer Gemische aus Messung der Totaltensionen und der einen Partialtension aus Messungen der andaren. Phys. Zeit., 8, 353 (1907) (Chem. Cent., 78, 11, 119). 171. Burt, B. C. The vapor pressure of sulfuric acid solutions and the molecular condition of sulfuric acid in concentrated solutions. Jour. Chem. Sot., 85, 1339 (19041. 172. Carveth, H. R. Studies in vapor composition. I. Jour. Phys. Chem., 6, 237 (1902). 173. Carveth, H . R. Studies in vapor composition. 11. Jour. Phys. Chem., 6, 321 (1902). 174. Carveth. H. R. Studies in vapor composition. 111. Saturation by the method of bubbling. Jour. Phys. Chem., 8, 313 (1904). 175, Carveth, H. R. Studies in vapor composition. IV. Jour. Phys. Chem., IO, 445 (1906). 176. Christensen, J. C. The boiling points of mixtures of chloral and water. Jour. Phys. Chem., 4,585 (1900). I 77. Dolezalek, F. Beitrage zur Theorie der Dampfspannung homogener Gemische. Zeit. phys. Chem., 96, 321 (1898). 178. Doroshevskii. Relation of vapor pressure to specific gravity in binary liquid mixtures. Jour. Russ. Phys. Chem., SOC.43, 656 (1912) (C. A., 6, 179). 179. Doroshevskii. Partial vapor pressures of water and alcohols in aqueous-alcoholic mixtures. Jour. Russ. Phys. Chem. SOC.,43, 962 (1912) (e.A., 6, 31.5). 180. Ebersole, M. R. Minimum boiling points and vapor composition. TI. Jour. Phys. Chem., 5, 239 (1901). 181. Gay, I,. Tensions de vapeurs des melanges liquides. Demonstiation nouvelle et genkralization de la formule de Duhem-Margules. Comptes rendus, 149, 670 (1909). 182. Hacker, C. Uber die Anderung der Dampfspannung von wasserigen Schwefelsaiirelosungen mit der Temperatur. Drude’s Ann., 39, 1338 (1912) (C. A., 7, 1000). 183. Haywood, J. K . Some boiling point curves. Jour. Phys. Chem., 3, 317 (1899). 184. Holley, C. D. Liquid mixtures of minimum boiling point. Jour. Am. Chem. SOC.,24, 448 (1902) (Chem. Cent., 73, I, 1392). 185. Holley, C. D. Liquid mixtures of minimum boiling point. Jour. Am. Chem. SOC.,27, 1049 (1905). 186. Kohnstamm. Uler Dampfdrucke binarer Gemische betrachtet im Lichte der Theorie von van der Waals. Zeit. phys. Chem., 36, 41 (1901). 187. Kohnstamm. Same. Zeit. phys. Chem., 74, 527 (1910) (C. A., 5, 1015). 188. Kuenen, J. P. and Robson, W. C. The mutual solubility of liquids. Vapor pressure and critical points. Phil. Mag., 151 48, 204 (1899); Zeit. phys. Chem., 28, 342 (1899). 189. Kuenen, J. P. and Robson, W. C. Mixtures with maximum or minimum vapor pressure. Phil. Mag., [6] 4, 116 (1902) (Chem. Cent., 73, 11, 419). 170. Bose, Emil.

584

J . Howard Mathews and Raymond D. Cooke

190. van Laar, J. J. Uber Dampfspannung von binaren Gemischen. Zeit. phys. Chem., 72, 723 (1910) (C. A., 4, 2062). 191. van Laar, J. J. Zur Theorie der Dampfspannung von binaren Gemischen. Zeit. phys. Chem., 83, 599 (1913). 192. Lattey, R. T. The vapor pressure of triethylamine, of 2,4,6-trimethyl pyridine and of their mixtures with water. Jour. Chem. Soc., 91,1959 (1907). 193. Lewis, G. N. An elementary proof of the relation between vapor pressures and composition of a binary mixture. Jour. Am. Chem. SOC., 28, 569 (1906) (Chem. Cent., 77, I, 1864). 194. Linebarger. On the vapor tensions of mixtures of volatile liquids. Jour. Am. Chem. SOC.,17,615, 690 (1895) 195. Makovetskii, A. E. Relation between the composition of the vapor and the solution of binary mixtures having maxima or minima of vapor tension. Jour. Russ. Phys. Chem. SOC.,40, 1715 (1909) (C. A,, 3, 1711). 196. Marshall, A. The vapor pressure of binary mixtures. I. The possible types of vapor pressure curves. Jour. Chem. SOC.,89, 1350 (1906); Chem. News, 93, 288 (1906) (Chem. Cent., 77, 11, 292). 197. Marshall, A. The vapor pressure of binary mixtures. 11. Glyceryl trinitrate and acetone. Proc. Chem. SOC.,29, 157 (1913). 198. Merriman, R. W. The vapor pressures of the lower alcohols and their azeotropic mixtures with water. I. Ethyl alcohol. Jour. Chem. Soc., 103, 628 (1913); Proc. Chem. SOC.,29, 68 (1913). rgg. Noyes and Warfel. The boiling point curve for mixtures of ethyl alcohol and water. Jour. Am. Chem. SOC.,23, 463 (1901). zoo. Ostwald, W. Betrachtungen iiber die Dampfdrucke gegenseitig loslich Flussigkeiten. Wied. Ann., 63, 336 (1897). 201. Pettit, J. H. Minimum boiling points and vapor composition. Jour. Phys. Chem., 3, 349 (1899). 202. Rosanoff, M. A. Uber den Partialdruck binarer Gemische. Zeit. phys. Chem., 68, 641 (1909); Jour. Am. Chem. SOC.,31,953 (1909) (C. A., 4, 7). 203. Rosanoff, M. A. The vapor pressure of liquid mixtures and fractional distillation. Jour. Frank. Inst., 172,527 (1912) (C. A., 6, 822). , 204. van Rossem. Das System; Chloral-Wasser. Zeit. phys. Chem., 62, 680 (1908). 205, Ryland. A contribution to the study of liquid mixtures of constant boiling point. Am. Chem. Jour., 22, 385 (1899) (Chem. Cent., 71, I, 9 ) . 206. Schreinemakers, F. A. H. Dampfdrucke binaer und t e r n a e r Gemische. Zeit. phys. Chem., 35, 459 (1900). 207. Storey, W. E. Partialdrucke von flussigen Gemiscben. Zeit. phys. Chem., 71,129 (1910); Phil. Mag., [6] 20, 97 (1910) (C.A., 4, 983). 208. Taylor, A. E. Vapor pressure relations in mixtures of two liquids. I. Jour. Phys. Chem., 4,290 (1900). 209. Taylor, A. E. Same. Part 11. Jour. Phys. Chem., 4, 355 (1900). 2 1 0 . Taylor, A. E. Same. Part 111. Jour. Phys. Chem., 4, 675 (1900). 2 1 1 . Thayer, E. F. Boiling point curve for benzene and alcohol. Jour. Phys. Chem., 2, 382 (1898).

Existence of Compounds in Binary Liquid Mixtures 212.

585

Thayer, E. F. Boiling point curves. Jour. Phys. Chem., 3, 36

(1898). 213. Tsakalotos, D.

E. Darf man aus negativen Dampfdruckkurven von Flussigkeitsgemischen auf die Existenz von Molekularverbindungen schliessen. Zeit. phys. Chem., 71,667 (1910) (C. A., 4, 1402). 214.Wrewskii, M. C. The composition and vapor pressure of solutions. The change in composition of “constant boiling” mixtures. Jour. Russ. Phys. Chem. Soc., 42, 1349 (1910) (C. A., 5, 2016). 215. Wrewskii, M. C. Uber Zusamensetzung und Spannung des Dampfes binarer Flussigkeitsgemische. Zeit. phys. Chem., 81, I (1912) (C. A., 7, 996). 216. Wrewskii, M. C. Same. Zeit. phys. Chem., 83, 5 5 1 (19x3) (C. A., 7, 3060). 217, Young, S. The vapor pressure and boiling points of mixed liquids. I. Jour. Chem. Soc., 81, 768 (1902) (Chem. Cent., 73, I, 1314). 218. Young, S. and Fortey, E. C. Same. Part 11. Jour. Chem. SOC., 83, 45 (1903) (Chem. Cent., 74, I, 69). 219. Young, S. Same. Part 111. Jour. Chem. Soc., 83, 68 (1903) (Chem. Cent., 74, I, 69). 220. von Zawidzki, J. Uber die Dampfdrucke binarer Flussigkeitsgemische. Zeit. phys. Chem., 35, 129 goo). 221. von Zawidzki, J. Uber die Mannigfaltigkeit der Gestalten der Partialand Totaldampfdruckskurven binarer Flussigkeitsgemischc. Zeit. phys. Chem., 69, 630 (1909) (C. A. 41 702). Laboratory of Physical Chemistry University of Wisconsin Madison, Wisconsin April, I914