On the Organizing Role of Water Molecules in the Assembly of Boronic

Jan 16, 2009 - organizing role in the formation and stabilization of supramo- lecular aggregates, a viewpoint that has not received enough attention y...
3 downloads 0 Views 767KB Size
On the Organizing Role of Water Molecules in the Assembly of Boronic Acids and 4,4′-Bipyridine: 1D, 2D and 3D Hydrogen-Bonded Architectures Containing Cyclophane-Type Motifs

CRYSTAL GROWTH & DESIGN 2009 VOL. 9, NO. 3 1575–1583

Patricia Rodrı´guez-Cuamatzi,† Rolando Luna-Garcı´a,‡ Aaron Torres-Huerta,‡ Margarita I. Bernal-Uruchurtu,‡ Victor Barba,‡ and Herbert Ho¨pfl*,‡ UniVersidad Polite´cnica de Tlaxcala, Carretera Federal Tlaxcala-Puebla Km 9.5 Tepeyanco, Tlaxcala, México, and Centro de InVestigaciones Quı´micas, UniVersidad Auto´noma del Estado de Morelos, AV. UniVersidad 1001, C.P. 62209 CuernaVaca, México ReceiVed October 31, 2008; ReVised Manuscript ReceiVed December 3, 2008

ABSTRACT: 4,4′-Bipyridine has been combined with boric acid and four different boronic acids (1,3- and 1,4-benzenediboronic acid, 3-aminophenylboronic acid, 4-acetylphenylboronic acid) to give 1:1 (with boric acid) and 1:2 adducts (with arylboronic acids), which have been characterized by X-ray diffraction analysis. The supramolecular solid-state structures are composed of hydrogenbonded networks with (B)O-H · · · N, (B)O-H · · · O, C-H · · · O, C-H · · · N, C-H · · · π, π · · · π and C-H · · · B interactions. The comparative analysis of the boric/boronic acid-4,4′-bipyridine adducts has revealed that water molecules play an important role as spacer molecules in RB(OH)2 · · · py synthons, since their incorporation in the hydrogen-bonding patterns allows optimization of π-π interactions. The structural relationship between the dihydroxyboryl and the carboxyl group has been analyzed, showing that the former can form at least three different hydrogen-bonding patterns with pyridines. This can be attributed to the presence of two acidic hydrogen atoms instead of one (B(OH)2 T C(O)OH). The three motifs have been examined also by ab initio calculations, confirming that for the three cases the (B)O-H · · · N interaction energies are similar.

1. Introduction Boronic acids and their derivatives have a wide range of applications, e.g. in organic synthesis as agents for stereodirected synthesis and Suzuki cross-coupling reactions,1 in medicine as antibiotics, enzyme inhibitors and for the treatment of tumors,1,2 in analytical chemistry as saccharide sensors,3 affinity ligands for chromatography4 and agents for anion recognition,5 and in materials science as luminescent and nonlinear optical chromophores.6 Boric and boronic acids contain a Lewis acidic boron atom and hydroxyl groups; in the presence of a Lewis base they are therefore capable of forming either a hydrogen-bonding interaction or a coordinative bond. While boronic acid anhydrides and esters are susceptible to the formation of Lewis acid-base adducts,7 the free acids generally prefer hydrogen-bonding interactions, in which the boron atom maintains its trigonal planar coordination environment.8 The hydrogen-bonding motif (A)7 formed by boronic acids is similar to those formed by carboxylic acids or carboxamides (D and E).9,10 Recent theoretical calculations11,12 and X-ray crystallographic studies have shown that the interaction energies of homo- and heterodimeric motifs containing boronic and carboxylic acids (A and B) are comparable to those of the corresponding carboxylic acid dimers D.11b Moreover, the ab initio calculated interaction energy in the unique heterodimeric motif RB(OH)2 · · · -OOCR (C) was found to be more than twice the value determined for the carboxylic acid homodimer (≈-42 T ≈-19 kcal/mol).11b This and the fact that a large variety of boronic acids are now available on the market make these boron compounds attractive reagents not only for the assembly of * Corresponding author. Fax: (+52) 77-73-29-79-97. E-mail: hhopfl@ ciq.uaem.mx. † Universidad Polite´cnica de Tlaxcala. Fax: (+52) 246-4-66-71-27. E-mail: [email protected]. ‡ Universidad Auto´noma del Estado de Morelos.

covalent macrocycles,13 polymers,14 cages15 and porous covalent organic frameworks (COFs)16 but also for molecular tectonics and crystal engineering through hydrogen-bonding interactions.17-20

Carboxylic acids form characteristic and well-known heterodimeric units with pyridine (py) derivatives (F).21 One might expect that boronic acids behave in a similar way (G), however, there is a larger variety of hydrogen-bonding motifs because of the presence of an additional hydrogen atom in the dihydroxyboryl group, e.g. motifs H, I′ and I.18 The occurrence of various

10.1021/cg8012238 CCC: $40.75  2009 American Chemical Society Published on Web 01/16/2009

1576 Crystal Growth & Design, Vol. 9, No. 3, 2009

patterns might be indicative of similar strength for the hydrogenbonding interactions in motifs G-I. To examine this phenomenon with more detail, we decided to systematically analyze the H-bonded supramolecular structures formed between 4,4′bipyridine (bpy), one of the most common bifunctional reagents used in crystal engineering, and boric acid as well as four different boronic acid derivatives (1,3-benzenediboronic acid ) 1,3-bdba, 1,4-benzenediboronic acid ) 1,4-bdba, 4-acetylphenylboronic acid ) 4-apba and 3-aminophenylboronic acid ) 3-apba). Besides novel structural features in the hydrogenbonding geometries formed between dihydroxyboryl groups and pyridines, our results show that water molecules play a unique organizing role in the formation and stabilization of supramolecular aggregates, a viewpoint that has not received enough attention yet.22 Additonally, ab initio calculations have been carried out aimed to evaluate the stability of the following adducts: (i) RB(OH)2 · · · py (1:1 and 1:2, motifs G and H) and (ii) [MeB(OH)2]2 · · · py (motif I′).

2. Experimental Section Boric acid, 3-aminophenylboronic acid monohydrate, 4-acetylphenylboronic acid and 4,4′-bipyridine were commercially available and have been used without further treatment. 1,3- and 1,4-benzenediboronic acid were synthesized according to known procedures.23 Preparation of [(1,4-bdba)(bpy)2] (1). 4,4′-Bipyridine (0.093 g, 0.60 mmol) was added to a hot solution of 1,4-benzenediboronic acid (0.100 g, 0.60 mmol) in benzene (25 mL). After three days colorless crystals had formed, which were suitable for X-ray crystallography. IR (KBr): ν˜ ) 3408 (br, s), 3290 (br, s), 3026 (m), 1944 (w), 1591 (s), 1517 (m), 1404 (s), 1517 (s), 1260 (w), 1219 (w), 1168 (m), 1125 (s), 1034 (m), 1006 (m), 808 (s), 649 (m), 609 (m), 571 (w), 496 (w) cm-1. Preparation of [(3-apba)(bpy)2] (2). 4,4′-Bipyridine (0.100 g, 0.641 mmol) was added to a solution of 3-aminophenylboronic acid monohydrate (0.100 g, 0.645 mmol) in ethanol (5 mL). After one hour of reflux the solution was filtered and allowed to cool down to room temperature. After two days colorless crystals had formed, which were suitable for X-ray crystallography. IR (KBr): ν˜ ) 3428 (br, s), 2935 (w), 2931 (w), 1598 (s), 1487 (m), 1461 (w), 1373 (w), 1301 (w), 1273 (m), 1163 (w), 1121 (w), 534 (m) cm-1. Preparation of [(1,3-bdba)(bpy)2(H2O)2] (3). 1,3-Benzenediboronic acid (0.060 g, 0.36 mmol) was dissolved in hot water (3 mL), and a solution of 4,4′-bipyridine (0.112 g, 0.72 mmol) in a mixture of CCl4/ acetone (2 mL/2 mL) was added. After one day colorless crystals had formed, which were suitable for X-ray crystallography. IR (KBr): ν˜ ) 3521 (w), 3347 (br, w), 3182 (br, w), 2372 (w), 1713 (s), 1597 (m), 1536 (w), 1410 (m), 1370 (s), 1222 (m), 1140 (w), 1038

Rodrı´guez-Cuamatzi et al. (w), 999 (w), 805 (m), 723 (w), 642 (w), 619 (w), 573 (w), 532 (w), 471 (w) cm-1. Preparation of [(ba)(bpy)(H2O)] (4). Boric acid (0.042 g, 0.640 mmol) was dissolved in hot ethanol (5 mL), and a solution of 4,4′bipyridine (0.100 g, 0.640 mmol) in the same solvent was added. After one hour of reflux the solution was filtered, whereupon water and hexane were added to give a solution of the stoichiometry 5:1:25 (EtOH/ H2O/hexane). After one day colorless crystals had formed, which were suitable for X-ray crystallography. IR (KBr): ν˜ ) 3519 (s), 3470 (s), 3145 (s), 1596 (s), 1536 (w), 1480 (w), 1432 (s), 1407 (s), 1369 (s), 1161 (m), 1061 (w), 998 (w), 804 (s), 731 (w), 675 (w), 618 (s), 521 (m), 482 (m) cm-1. Preparation of [(4-acba)(bpy)2(H2O)2] (5). 4-Acetylphenylboronic acid (0.250 g, 1.52 mmol) was dissolved in hot ethanol (5 mL), and a solution of 4,4′-bipyridine (0.474 g, 3.04 mmol) in the same solvent (5 mL) was added. After one hour of reflux the solution was filtered, whereupon water and hexane were added to give a solution of the stoichiometry 5:1:25 (EtOH/H2O/hexane). After one day colorless crystals had formed, which were suitable for X-ray crystallography. IR (KBr): ν˜ ) 3439 (s), 2925 (w), 2853 (w), 2674 (w), 2671 (w), 2340 (w), 1678 (m), 1590 (m), 1478 (w), 1374 (w), 1290 (w), 1215 (w), 997 (w), 882 (w), 804 (w), 686 (w), 618 (w), 585 (w), 476 (w) cm-1. X-ray Crystallography. X-ray diffraction studies were performed on a Bruker-APEX diffractometer with a CCD area detector (λΜοΚR ) 0.71073 Å, monochromator: graphite). Frames were collected at T ) 100 K (compounds 1-3) and T ) 293 K (compounds 4 and 5) via ω/φ-rotation at 10 s per frame (SMART).24a The measured intensities were reduced to F2 and corrected for absorption with SADABS (SAINT-NT).24b Corrections were made for Lorentz and polarization effects. Structure solution, refinement and data output were carried out with the SHELXTL-NT program package.24c,d Non-hydrogen atoms were refined anisotropically. C-H hydrogen atoms were placed in geometrically calculated positions using a riding model. O-H and N-H hydrogen atoms have been localized by difference Fourier maps and refined fixing the bond lengths to 0.84 and 0.86 Å, respectively; the isotropic temperature factors have been fixed to a value 1.5 times that of the corresponding oxygen/nitrogen atoms. Figures were created with SHELXTL-NT and MERCURY.25 Hydrogen-bonding interactions in the crystal lattice were calculated with the WINGX program package.26 Crystallographic data for compounds 1-5 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications No. CCDC-269717-269718 and 699080-699082. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44)1223-336-033; e-mail, [email protected]; www, http://www.ccdc.cam.ac.uk). Theoretical Calculations. All ab initio studies and geometry optimizations were performed in the gas phase at the MP2 level of theory using the Gaussian 98 suite of programs.27,28 Due to the size of the calculations we used a 6-31G(d,p) basis set that provides results in good agreement with those coming from larger basis sets and experimental results.11,12,29 Binding energies for dimers were calculated using the supermolecule approach, i.e. the difference between the hydrogen-bonded adduct and the energies from the constituent monomers, and were corrected for the BSSE error using the counterpoise correction that has proven to be necessary for a proper description of non-additivities when using a limited basis set.30 For the hydrogenbonded dimers F and G calculations have been performed using an aliphatic (R ) Me) and an aromatic (R ) Ph) substituent on the dihydroxyboryl and carboxyl moiety, respectively. For the sake of comparison only the most relevant geometric parameters predicted from the calculations have been included in Table 4.

3. Results and Discussion 3.1. Structural Characterization of the Primary HydrogenBonding Interactions in Compounds 1-5. In all cases crystals suitable for X-ray diffraction analysis could be grown (see Experimental Section), showing that the boric acid-bpy adduct 4 cocrystallized in a 1:1 stoichiometry, while the boronic acid derivatives 1, 2, 3 and 5 gave 1:2 adducts. The most relevant crystallographic data are summarized in Table 1.

H-Bonded Architectures with Cyclophane-Type Motifs

Crystal Growth & Design, Vol. 9, No. 3, 2009 1577

Table 1. Crystallographic data for compounds 1-5

a

crystal dataa

1

2

3

4

5

formula MW (g mol-1) space group temp (K) a (Å) b (Å) c (Å) R (deg) β (deg) γ (deg) V (Å3) Z µ (mm-1) Fcalcd (g cm-3) Rb,c Rwd,e

C26H24B2N4O4 478.11 P21/c 100(2) 14.891(2) 9.3766(14) 17.420(3) 90 107.811(3) 90 2315.7(6) 4 0.093 1.371 0.079 0.162

C26H24BN5O2 449.31 Cc 100(2) 16.7778(15) 9.0622(8) 15.8376(15) 90 114.391(1) 90 2193.1(3) 4 0.088 1.361 0.040 0.106

C26H28B2N4O6 514.15 C2/c 100(2) 18.820(3) 6.8276(11) 20.112(3) 90 99.171(3) 90 2551.4(7) 4 0.095 1.339 0.073 0.148

C10H13BN2O4 236.03 P1j 293(2) 8.2462(13) 9.0624(14) 9.0847(14) 112.779(2) 102.260(13) 94.819(3) 601.18(16) 2 0.099 1.304 0.065 0.153

C28H29BN4O5 512.36 Cc 293(2) 24.159(4) 7.6487(10) 18.434(3) 90 130.427(5) 90 2593.0(7) 4 0.091 1.312 0.062 0.109

λMoKR ) 0.71073 Å. b I > 2σ(I). c R ) ∑(Fo2 - Fc2)/∑Fo2. d All data. e Rw ) [∑w(Fo2 - Fc2)2/∑w(Fo2)2]1/2. Table 2. Geometrical parameters for the primary hydrogen-bonding interactions in the crystal structures of compounds 1-5

compound

H-bond

D-H [Å]

H · · · A [Å]

D · · · A [Å]

∠DHA [deg]

symmetry code

1

O1-H · · · N3 O2-H · · · N1 O3-H · · · N4 O4-H · · · N2 O1-H · · · N1 O2-H · · · N3 N5-H · · · N2 N5-H · · · O2 C4-H · · · N4 O1-H · · · N2 Ow-H · · · N1 O2-H · · · Ow O5-H · · · O1 C2-H · · · Ow O3-H · · · N2 Ow-H · · · N1 O1-H · · · O1 O1-H · · · Ow O2-H · · · O2 O2-H · · · Ow Ow-H · · · O2 Ow-H · · · O1 O1-H · · · N2 Ow1-H · · · N4 Ow2-H · · · N3 O2-H · · · Ow1 Ow2-H · · · O3 Ow1-H · · · Ow2

0.84 0.84 0.84 0.84 0.84 0.84 0.86 0.86 0.93 0.84 0.84 0.84 0.84 0.93 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

1.90 1.95 1.96 1.94 1.93 1.97 2.25 2.34 2.69 1.85 2.03 1.95 2.12 2.75 1.95 1.96 1.85 1.88 1.92 2.04 1.89 1.93 2.05 2.06 1.99 1.85 2.03 1.99

2.738(4) 2.777(4) 2.788(4) 2.772(4) 2.766(3) 2.795(3) 3.074(3) 3.158(5) 3.419(5) 2.679(3) 2.863(3) 2.762(2) 2.960(3) 3.662(3) 2.783(3) 2.794(3) 2.676(3) 2.719(3) 2.724(3) 2.676(3) 2.676(3) 2.719(3) 2.837(9) 2.873(7) 2.825(8) 2.651(7) 2.858(6) 2.821(4)

172 168 171 174 175 168 161 159 136 167 171 163 175 169 173 176 169 173 160 132 155 156 155 163 174 159 167 171

+x, +y, +z +x, +y, +z +x - 1, -y + 1/2 + 1, +z + 1/2 +x - 1, -y + 1/2 + 1, +z + 1/2 +x - 1/2, -y + 1/2, +z - 1/2 +x - 1/2, +y - 1/2, +z - 1 +x + 1/2, -y + 1/2, +z + 1/2 +x, -y, +z + 1/2 +x + 1/2, +y - 1/2, +z +x, +y, +z + 1 +x, +y, +z -x + 1/2, +y + 1/2, -z + 1/2 + 1 -x + 1/2, +y + 1/2, -z + 1/2 + 1 -x + 1/2, +y - 1/2, -z + 1/2 + 1 +x, +y + 1, +z +x, +y - 1, +z - 1 -x + 1, -y + 1, -z + 1 +x, +y, +z -x, -y + 1, -z + 1 -x, -y + 1, -z + 1 -x, -y + 1, -z + 1 +x, +y, +z +x, +y, +z +x - 1/2, +y + 1/2, +z +x, +y + 1, +z +x, -y + 2, +z + 1/2 +x, +y + 1, +z +x, +y, +z

2

3

4

5

In the supramolecular structures of [(1,4-bdba)(bpy)2] (1) and [(3-apba)(bpy)2] (2), the boronic acid and 4,4′-bipyridine molecules interact with each other through a hydrogen-bonding motif that is different from that observed for [(mpba)2(bpy)], where mbpa ) 4-methoxyphenylboronic acid (Chart 1a), but similar to that found for the 1:2 adduct between phenylboronic acid and bpy ([(pba)(bpy)2] in Chart 1b).18b Structurally somewhat related motifs have been observed also in metalorganic frameworks31 and organic cocrystals containing bpy.32 As it can be seen from Figure 1 and Table 2, in the recognition patterns found for compounds 1 and 2 each dihydroxyboryl group is connected to two bpy molecules through O-H · · · N hydrogen bonds (H · · · N, 1.90-1.97 Å; O · · · N, 2.738(4)-2.795(3) Å, 168-175°). The interaction parameters agree well with the values found for other aggregates formed between boronic acids and pyridines.18 Besides the RB(OH)2 · · · py motif H, in compound 2 there is a second, structurally related motif, in which the aminophenyl fragment of the boronic acid combines with two pyridyl groups though N-H · · · N (H · · · N, 2.25 Å; N · · · N, 3.074(3) Å, 161°) and C-H · · · N (H · · · N, 2.69 Å; C · · · N, 3.419(5) Å, 136°) interactions.

Albeit the boronic acids in compounds 1 and 2 have different composition and spatial distribution of the hydrogen-bonding forming functions, related 1D hydrogen-bonded chains are formed, which contain a very particular cyclophane-type motif (Chart 1b). Unlike in most of the known crystal structures of boronic acids,8 the hydroxyl groups attached to the boron atoms have syn configuration. In the hydrogen-bonded macrocycles, the pyridine rings of opposite bpy molecules have slightly displaced parallel-sandwich geometries33 and are almost coplanar to each other, having perpendicular distances varying from 3.28 to 3.50 Å, centroid-centroid distances from 3.49 to 3.76 Å, N · · · N distances from 3.32 to 3.41 Å and interplanar angles between 3.1 and 9.5°. Within each bpy molecule, the pyridine rings are twisted about the central C-C bonds by angles ranging from 28.6 to 37.5°. Interestingly, in compound 1 the bpy ligands are slightly curved as it occurs in smaller cyclophanes: the lines connecting the nitrogen and carbon atoms in para-position intersect at angles of 170.9 and 174.5°, respectively. Due to these deviations from planarity the 1D chains adopt a crinkled conformation, while those of compound 2 are linear (Figures S1 and S2 in the Supporting Information). In compound 2 these

1578 Crystal Growth & Design, Vol. 9, No. 3, 2009

Rodrı´guez-Cuamatzi et al.

Chart 1. Different Types of Hydrogen-Bonding Motifs Found So Far Experimentally for Adducts Formed between 4,4′-Bipyridine and Boric/Boronic Acids (Including This Work)

1D chains are linked into three dimensions through additional N-H · · · O interactions formed between the second N-H hydrogen and neighboring B-OH groups (Figure S3 in the Supporting Information).

For compounds 3-5 three different types of water-extended hydrogen-bonding patterns can be identified (Chart 1c-e, Figure 2), of which the first has been found already in the crystal structure of [(pba)(bpe)] with bpe ) trans-1,2-bis(4-pyridyl)ethene.18b In all three cases at least one of the dihydroxyboryl groups has syn configuration, but with the difference that now

Figure 1. Hydrogen-bonding motifs found in the crystal structures of (a) [(1,4-bdba)(bpy)2] (1) and (b) [(3-apba)(bpy)2] (2). Table 3. C-H · · · B Interactions Found in Reported Crystal Structures Refcode CSD36 C-H [Å] H · · · B [Å] C · · · B [Å] ∠CHB [deg] ref AFOLUC DOBKUA PHBORA QADKIQ QIXTIA QIXVAU01 ZAPDAV ZILBEB

0.96 0.91 0.95 0.96 0.96 0.98 0.98 0.98 1.00 1.00 0.99 1.05

2.83 2.74 3.02 2.94 2.98 3.02 3.05 3.08 2.93 3.07 2.96 2.93

3.52 3.52 3.84 3.61 3.86 3.95 3.75 3.57 3.61 3.75 3.85 3.78

129 146 145 127 153 160 129 112 126 126 149 139

8l 8k 8a 8q 8m 8m 8f 8g

Figure 2. Hydrogen-bonding motifs found in the crystal structures of (a) [(1,3-bdba)(bpy)2(H2O)2] (3), (b) [(ba)(bpy)(H2O)] (4) and (c) [(4apba)(bpy)2(H2O)2] (5).

H-Bonded Architectures with Cyclophane-Type Motifs

Figure 3. The presence of water molecules in the hydrogen-bonding patterns of (a) [(1,3-bdba)(bpy)2(H2O)2] (3), (b) [(ba)(bpy)(H2O)] (4) and (c) [(4-apba)(bpy)2(H2O)2] (5) allows for the formation of 2D (3 and 4) and 3D (5) architectures.

only one B-OH group interacts directly with a bpy molecule through an O-H · · · N interaction (H · · · N, 1.85-2.05 Å; O · · · N, 2.679(3)-2.837(9) Å, 155-173°), while the second B-OH group participates in an extended hydrogen-bonding motif, in which a water molecule is inserted ((B)O-H · · · Ow, 1.85-2.04 Å, 2.651(7)-2.762(2) Å, 132-163°; O-H · · · N, 1.96-2.03 Å, 2.794(3)-2.873(7) Å, 163-176°). Albeit the hydrogen-bonding patterns in compounds 3 and 4 consist of six identical types of H-bonds, in compound 3 only a total of three B-OH hydroxyl groups are participating in the pattern (one dihydroxyboryl group with two hydroxyl groups and the second one with only one), while in compound 4 all four B-OH groups are involved (Figures 2a and 2b). The motif in compound 5 is related to that of compound 4 (Figure 2c), with the difference that in this case one of the dihydroxyboryl groups has been substituted by an acetyl function (CdO · · · H-Ow, 2.03 Å, 2.858(6) Å, 167°; C-H · · · N, 2.69 Å, 3.371(10) Å, 128°; Ow-H · · · N, 1.99 Å, 2.825(8) Å, 174°). The cyclophane-type rings described in Figure 2 are elongated in comparison to those of compound 1 and connected to each other through further hydrogen-bonding interactions (Table S1 in the Supporting Information), giving overall 2D (compounds 3 and 4) and 3D hydrogen-bonded architectures (compound 5). As can be seen from Figure 3, apparently, the water molecules perform the role of molecular connectors or space fillers to align the bpy molecules in a parallel-displaced geometry, which in accordance with theoretical considerations,33 allows for an optimum π · · · π interaction between the heteroaromatic ring planes. In other words, the presence of water in these structures provides the H-bonding system with conformational flexibility, thus allowing for an accomodation with ideal intermolecular

Crystal Growth & Design, Vol. 9, No. 3, 2009 1579

π · · · π interactions. In contrast to compounds 1 and 2, in compounds 3-5 the bpy molecules are stacked throughout the whole crystal lattice (Figure 3). Within this arrangement, in compounds 3 and 5 the pyridyl groups of neighboring bpy molecules are almost coplanar between each other (centroidcentroid distances from 3.62 to 4.01 Å, and interplanar angles from 3.6 to 4.2°). In compound 4 the pyridyl rings are twisted, which can be attributed to a larger separation between the aromatic rings (centroid-centroid distances from 4.06 to 4.20 Å; interplanar angle 15.9°). The torsion angles between the pyridyl ring planes in the bpy molecules are 20.5° for 3, 15.9° for 4 and 31.9/32.1° for 5. 3.2. Structural Analysis of the Secondary Interactions in Compounds 1-5. The hydrogen-bonding motifs described in Figures 1-3 are further linked through a variable number of four types of secondary interactions between the C-H acid hydrogen atoms of the pyridyl moieties and neighboring boric/ boronic acid molecules: (i) C-H · · · O, (ii) C-H · · · N, (iii) C-H · · · π and (iv) C-H · · · B interactions (Figures S4-S6 and Table S1 in the Supporting Information). All C-H · · · O, C-H · · · N and C-H · · · π interactions are within the previously established limits.34,35 As far as we know, experimentally determined C-H · · · B interactions have not been reported so far and might at first sight be questionable, because threecoordinate boron atoms are known to behave as Lewis acids and not bases. However, in this case the boron atoms are involved in pπpπ-interactions with the oxygen atoms, which provide them with electron density. A search of the CSDdatabase36 revealed 27 entries for boronic acids, eight of which showed intermoleculer C-H · · · B interactions in their crystal structures (Table 3). The (C)H · · · B and C · · · B distances found range from 2.74-3.08 Å (mean value: 2.96 Å) and 3.52-3.95 Å (mean value: 3.72 Å). The C-H · · · B angles vary from 112 to 160 ° (mean value: 137°). Therefore, it can be suggested that C-H · · · B interactions play a nonnegligible role in supramolecular structures. 3.3. Theoretical Calculations. The aim of this section was to compare the hydrogen-bonding geometries and interaction energies of patterns containing alkyl- and arylboronic acids and pyridine. For this purpose geometry optimizations of motifs G, H and I′ were carried out, and compared to the data obtained for the carboxylic acid-pyridine dimer F. Analysis of the Hydrogen-Bonding Geometries. The equilibrium structure for the RCOOH · · · py dimer F is planar, and apart from the O-H · · · N bond there is a secondary C-H · · · O interaction between the carboxylate oxygen and the R-hydrogen of the pyridine molecule (Table 4). Ferna´ndez-Berridi et al. have described an equivalent structure for the formic acid-pyridine system. Their natural bond analysis revealed that cooperative effects are important for this system, since the C-H · · · O hydrogen-bonding interaction promotes an electronic rearrangement in the dimer that reinforces the O-H · · · N interaction.37 The C-H · · · O interaction is also present in the corresponding RB(OH)2 · · · py adducts (motif G), however, in this case the intermolecular distances are longer. The O-H · · · N and O · · · N distances are 1.74/1.74 Å and 2.74/2.76 Å for RCOOH · · · py versus 1.83/1.85 Å and 2.82/2.84 Å for RB(OH)2 · · · py (R ) Me, Ph). In both dimers, RCOOH · · · py and RB(OH)2 · · · py, the O-H · · · N bond angles were found to be close to linearity, as is usual for structures in which nitrogen atoms form a double bond and act as hydrogen-acceptors. These results also show that the substituents on the carboxyl/dihydroxyboryl moiety have a small effect on the hydrogen-bond length (=0.02 Å).

1580 Crystal Growth & Design, Vol. 9, No. 3, 2009

Rodrı´guez-Cuamatzi et al.

Table 4. Geometrical Parameters for the ab Initio Optimized Hydrogen Bonded Adducts F-I′ R ) phenyl dimeric system F RCOOH · · · pya G RB(OH)2 · · · pya H RB(OH)2 · · · (py)2

R ) methyl

dD-H (Å)

dH · · · A (Å)

dD · · · A (Å)

∠DHA (deg)

DD-H (Å)

DH · · · A (Å)

DD · · · A (Å)

∠OHN (deg)

1.004 1.082 0.987 1.082

1.740 2.327 1.830 2.407

2.744 3.177 2.817 3.267

180.0 134.0 178.9 135.4

1.001 1.082 0.984 1.082 0.977 0.974 0.986 0.984 0.973

1.761 2.322 1.853 2.405 1.913 1.973 1.800 1.737 1.942

2.762 3.182 2.838 2.265 2.850 2.866 2.747 2.715 2.905

180.0 135.0 179.4 135.2 160.0 149.5 159.6 172.2 170.0

I′ [RB(OH)2]2 · · · pyb

a First line: D ) O, A ) N. Second line: D ) C, A ) O. b First line: D ) O, A ) N. Second line: D ) O, A ) O (H-bond with py). Third line: D ) O, A ) O.

Table 6. Three-Body Analysis for Motifs H and I′a

Figure 4. Hydrogen-bonding interactions (in Å) for the optimized structures of motifs I′ and H. Table 5. Interaction Energies for the ab Initio Optimized Adducts F-I′ dimeric system

Eint (kcal/mol)

F MeCOOH · · · py G MeB(OH)2 · · · py H MeB(OH)2 · · · (py)2 I′ [MeB(OH)2]2 · · · py

-11.3 -8.3 -14.1 -19.2

Since the effect of the substituent attached to the dihydroxyboryl group was found to be small, the trimer structures RB(OH)2 · · · (py)2 (H) and [RB(OH)2]2 · · · py (I′) were analyzed only for methylboronic acid. For motif I′, the hydrogen-bonds in the dimeric boronic acid subunit are not equivalent due to the lack of symmetry. With respect to the optimum geometry for the RB(OH)2 · · · (HO)2BR homodimer, the H-bond close to the pyridine molecule shortens by 0.13 Å and the other one lengthens by 0.09 Å (Table 4). Interestingly, the pyridine molecule forms two hydrogen-bonding interactions with the boronic acid homodimer. First, there is a O-H · · · N interaction with one of the boronic acid molecules, which is shorter than that found in motif G (∆d ) 0.04 Å for O-H · · · N and ∆d ) 0.08 Å for O · · · N). Second, there is a secondary C-H · · · O interaction (2.57 Å) to the second half of the RB(OH)2 · · · (HO)2BR homodimer (Figure 4). The hydrogen-bonds in motif H are longer than those described for motif G (1.91 and 1.96 Å T 1.83 Å). In the fully optimized structure of this trimer (Figure 4) the two pyridine molecules adopt a slightly displaced parallel-sandwich geometry with a centroid-centroid distance of 3.6 Å that is in agreement with the optimal interplanar separation determined by theoretical calculations.33,35a Analysis of the Hydrogen-Bonding Interaction Energies. The calculated interaction energies for adducts F-G are given in Table 5. The MeCOOH · · · py dimer is more stable than the MeB(OH)2 · · · py dimer (∆E ) 3 kcal/mol). The same order of stability was also found in our previous study of homo- and heterodimeric motifs formed between carboxylic and boronic

motif I′

Eint

[MeB(OH)2]2 · · · py MeB(OH)2 (A) · · · py MeB(OH)2 (B) · · · py MeB(OH)2 · · · (HO)2BMe ∑Eij ηijk

-19.20 -7.56 -1.57 -8.68 -17.81 -1.39

motif H

Eint

MeB(OH)2 · · · (py)2 MeB(OH)2 · · · py (A) MeB(OH)2 · · · py (B) py (A) · · · py (B) ∑Eij ηijk

-14.14

a

Eij

Eij -7.95 -7.55 +0.55 -14.96 +0.81

All energies are in kcal/mol.

acid derivatives A-D,11b and is in agreement with the shorter hydrogen bonds for motifs containing carboxylic acids. The calculated binding energies for motifs H and I′ are -14.1 and -19.2 kcal/mol, respectively (Table 5). However, due to the variation in the molecular composition, the interaction energies of motifs G, H and I′ cannot be compared directly. In order to compare at least the B(O)-H · · · N interaction energies, a three-body analysis has been carried out for motifs H and I′, which gave also insight in the cooperative contributions present in these hydrogen-bonded clusters.38 As shown in Table 6, the calculated overall interaction energy for motif I′ was -19.20 kcal/mol, of which -8.68 kcal/mol corresponds to the interaction energy of the MeB(OH)2 · · · (HO)2BMe homodimer,39 -7.56 kcal/mol to the O-H · · · N hydrogen-bond and -1.57 kcal/mol to the C-H · · · O interaction. Since the sum of the two-body contributions described above is -1.39 kcal/mol smaller than the interaction energy of the intact trimer, approximately 7.2% of the stabilization energy of this structure can be attributed to cooperative effects. For motif H the MeB(OH)2 · · · py interaction energies were calculated to be -7.95 and -7.55 kcal/mol, thus being comparable to the (B)O-H · · · N binding energies found in motifs G and I′. The calculated π · · · π interaction energy between the two pyridine molecules is +0.55 kcal/mol, thus indicating a slightly repulsive interaction, which might reflect that the system tends to optimize primordinarily the geometry of the O-H · · · N interactions.40 Conclusions This study has shown that there is only a relatively small energy difference between the interaction energies for the (B)O-H · · · N hydrogen bonds in the different motifs formed between boronic acids and pyridines. Considering that the

H-Bonded Architectures with Cyclophane-Type Motifs

hydrogen-bonding interaction energies are sensitive to subtle changes of the hydrogen-bonding pattern, e.g. the involvement of dihydroxyboryl groups in additional hydrogen-bonding interactions, the prediction of the supramolecular structures for these species will be more difficult than for those with carboxylic acid analogues. Furthermore, boronic acids can act as two-fold O-H donors, in contrast to carboxylic acids, so that it is possible to form also 1:2 adducts with pyridines. The comparative analysis of the boric/boronic acid-pyridine adducts has also shown that water molecules play an important role as spacer molecules in RB(OH)2 · · · py synthons, since their incorporation in the hydrogen-bonding pattern allows to optimize π · · · π interactions between the aromatic rings of pyridine by modulating the interplanar distances and parallel displacement of the aromatic moieties within the supramolecular structure. Acknowledgment. This work was supported by Consejo Nacional de Ciencia y Tecnología (CIAM-59213 for H.H. and 38326 for M.I.B.U.). Supporting Information Available: Table with complete list of intermolecular contacts and additional figures for the solid-state structures of compounds 1-5. This material is available free of charge via the Internet at http://pubs.acs.org.

References (1) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483. (b) Matteson, D. S. Tetrahedron 1989, 45, 1859–1885. (c) Hall, D. G. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine; Wiley-VCH: Weinheim, Germany, 2005. (2) (a) Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, R.-A.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. Chem. ReV. 1998, 98, 1515– 1562. (b) Yang, W.; Gao, X.; Wang, B. Med. Res. ReV. 2003, 23, 346–368. (3) (a) Nozaki, K.; Tsutsumi, T.; Takaya, H. J. Org. Chem. 1995, 60, 6668–6669. (b) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature 1995, 374, 345–347. (c) Kikuchi, A.; Suzuki, K.; Okabayashi, O.; Hoshino, H.; Kataoka, K.; Sakurai, Y.; Okano, T. Anal. Chem. 1996, 68, 823–828. (d) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1910–1922. (e) Shinkai, S.; Ikeda, S. M.; Sugasaki, A.; Takeuchi, M. Acc. Chem. Res. 2001, 34, 494–503. (f) Wiskur, S. L.; Lavigne, J. J.; Ait-Haddou, H.; Lynch, V.; Chiu, Y. H.; Canary, J. W.; Anslyn, E. V. Org. Lett. 2001, 3, 1311–1314. (g) Rohovec, J.; Maschmeyer, T.; Aime, S.; Peters, J. A. Chem. Eur. J. 2003, 9, 2193–2199. (h) Gamsey, S.; Baxter, N. A.; Sharrett, Z.; Cordes, D. B.; Olmstead, M. M.; Wessling, R. A.; Singaram, B. Tetrahedron 2006, 62, 6321–6331. (i) Gamsey, S.; Miller, A.; Olmstead, M. M.; Beavers, C. M.; Hirayama, L. C.; Pradhan, S.; Wessling, R. A.; Singaram, B. J. Am. Chem. Soc. 2007, 129, 1278– 1286. (j) Sartain, F. K.; Yang, X.; Lowe, C. R Chem Eur. J. 2008, 14, 4060–4067. (4) (a) Liu, X. C.; Scouten, W. H. J. Chromatogr. A 1994, 687, 61–69. (b) Westmark, P. R.; Valencia, L. S.; Smith, B. D. J. Chromatogr. A 1994, 664, 123–128. (c) Wulff, G. Angew. Chem., Int. Ed. Engl. 1995, 34, 1812–1832. (d) Liu, G.; Hubbard, J. L.; Scouten, W. H. J. Organomet. Chem. 1995, 493, 91–94. (5) (a) Reetz, M. T.; Niemeyer, C. M.; Harms, K. Angew. Chem., Int. Ed. Engl. 1991, 30, 1474–1476. (b) Reetz, M. T.; Niemeyer, C. M.; Hermes, M.; Goddard, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 1017–1019. (c) Aldridge, S.; Bresner, C.; Fallis, I. A.; Coles, S. J.; Hursthouse, M. B. Chem. Commun. 2002, 740–741. (d) Rohovec, J.; Maschmeyer, T.; Aime, S.; Peters, J. A. Chem. Eur. J. 2003, 9, 2193– 2199. (e) Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Chun, J.; Kim, Y.; Kim, S.-J.; Yoon, J. J. Org. Chem. 2006, 71, 8626–8628. (6) (a) Li, Y.; Liu, Y.; Bu, W.; Guo, J.; Wang, Y. Chem. Commun. 2000, 1551–1552. (b) Lame`re, J. F.; Lacroix, P.; Farfa´n, N.; Rivera, J. M.; Santillan, R.; Nakatani, K. J. Mater. Chem. 2006, 16, 1–9. (7) (a) Ho¨pfl, H. Structure and Bonding; Roesky, H. W., Atwood, D. A., Eds.; Springer Verlag: Berlin, 2002; Vol. 103, pp 1-56. (b) Zhu, L.; Shabbir, S. H.; Gray, M.; Lynch, V. M.; Sorey, S.; Anslyn, E. V. J. Am. Chem. Soc. 2006, 128, 1222–1232. (c) Fujita, N.; Shinkai, S; James, T. D. Chem. Asian J. 2008, 3, 1076–1091.

Crystal Growth & Design, Vol. 9, No. 3, 2009 1581 (8) For crystal structures of boronic acids see:(a) Rettig, S. J.; Trotter, J. Can. J. Chem. 1977, 55, 3071–3075. (b) Zobetz, E.; Preisinger, A. Monatsh. Chem. 1989, 120, 291–298. (c) Soundararajan, S.; Duesler, E. N.; Hageman, J. H. Acta Crystallogr. C 1993, 49, 690–693. (d) Scouten, W. H.; Liu, X.-C.; Khangin, N.; Mullica, D. F.; Sappenfield, E. L. J. Chem. Crystallogr. 1994, 24, 621–626. (e) Reetz, M. T.; Huff, J.; Rudolph, J.; To¨llner, K.; Deege, A.; Goddard, R. J. Am. Chem. Soc. 1994, 116, 11588–11589. (f) Pilkington, M.; Wallis, J. D.; Larsen, S. Chem. Commun. 1995, 1499–1500. (g) Gainsford, G. J.; Meinhold, R. H.; Woolhouse, A. D. Acta Crystallogr. C 1995, 51, 2694–2696. (h) Bradley, D. C.; Harding, I. S.; Keefe, A. D.; Motevalli, M.; Zheng, D. H. J. Chem. Soc., Dalton Trans. 1996, 3931–3936. (i) Schilling, B.; Kaiser, V.; Kaufmann, D. E. Chem. Ber. 1997, 130, 923–932. (j) Akita, T.; Kobayashi, K. AdV. Mater. 1997, 9, 346–349. (k) Shull, B. K.; Spielvogel, D. E.; Gopalaswamy, R.; Sankar, S.; Boyle, P. D.; Head, G.; Devito, K. J. Chem. Soc., Perkin Trans 2 2000, 557–561. (l) Zheng, C.; Spielvogel, B. F.; Smith, R. Y.; Hosmane, N. S. Z. Kristallogr.-New Cryst. Struct. 2001, 216, 341–342. (m) Norrild, J. C.; Sotofte, I. J. Chem. Soc., Perkin Trans. 2 2001, 727–732. (n) Parry, P. R.; Wang, C.; Balsanov, A. S.; Bryce, M. R.; Tarbit, B. J. Org. Chem. 2002, 67, 7541–7543. (o) Stoddard, J. M.; Shea, K. J. Organometallics 2003, 22, 1124–1131. (p) Ganguly, A.; Meyers, C. Y.; Robinson, P. D. Acta Crystallogr. 2003, E59, o759–o761. (q) Dreos, R.; Nardin, G.; Randaccio, L.; Siega, P. Inorg. Chem. 2003, 42, 612– 617. (r) Ejsmont, K.; Zaleski, J.; Sporzynski, A.; Lewandowski, M. Acta Crystallogr. 2003, E59, o1324–o1326. (s) Santos, J. S.; Lancelot, J.-C.; Bouillon, A.; Rault, S. Acta Crystallogr. 2003, C59, o111–o113. (t) Bresner, C.; Aldridge, S.; Fallis, I. A.; Ooi, L.-L. Acta Crystallogr. 2004, E60, m441–m443. (u) Zarychta, B.; Zaleski, J.; Sporzynski, A.; Dabrowski, M.; Serwatowski, J. Acta Crystallogr. 2004, C60, o344– o345. (v) Zarychta, B.; Ejsmont, K.; Bujak, M.; Zaleski, J.; Sporzynski, A.; Miskiewicz, A.; Strutynska, A.; Serwatowski, J. Acta Crystallogr. 2004, E60, o1925–o1927. (w) Thompson, A. E.; Batsanov, A. S.; Bryce, M. R.; Saygili, N.; Parry, P. R.; Tarbit, B. Tetrahedron 2005, 61, 5131–5135. (x) Thompson, A. E.; Huges, G.; Batsanov, A. S.; Bryce, M. R.; Parry, P. R.; Tarbit, B. J. Org. Chem. 2005, 70, 388– 390. (y) Zhang, Y.; Li, M.; Chandrasekaran, S.; Gao, X.; Fang, X.; Lee, H.-W.; Hardcastle, K.; Yang, J.; Wang, B. Tetrahedron 2007, 63, 3287–3292. (z) Klis, T.; Lulinski, S.; Serwatowski, J. Acta Crystallogr. 2007, C63, o145–146. (9) Leiserowitz, L. Acta Crystallogr. B 1976, 32, 775–802. (10) Etter, M. C. Acc. Chem. Res 1990, 23, 120–126, and references therein. (11) (a) McKee, M. L. J. Phys. Chem. 1996, 100, 8260–8267. (b) Rodrı´guez-Cuamatzi, P.; Arillo-Flores, O. I.; Bernal-Uruchurtu, M. I.; Ho¨pfl, H. Cryst. Growth Des. 2005, 5, 167–175. (c) Rogowska, P.; Cyranski, M. K.; Sporzynski, A.; Ciesielski, A. Tetrahedron Lett. 2006, 46, 1389–1393. (d) Larkin, J. D.; Bhat, K. L.; Markham, G. D.; Brooks, B. R.; Schaefer, H. F., III; Bock, C. W. J. Phys. Chem. A 2006, 110, 10633–10642. (e) Larkin, J. D.; Milkevitch, M.; Bhat, K. L.; Markham, G. D.; Brooks, B. R.; Bock, C. W. J. Phys. Chem. A 2008, 112, 125– 133. (12) For theoretical calculations of monomeric boronic acids see:(a) Chen, X.; Liang, G.; Whitmire, D.; Bowen, J. P. J. Phys. Org. Chem. 1998, ¨ zduran, M. Spectrochim. 11, 378–386. (b) Kurt, M.; Sertbakan, T. R.; O Acta, Part A 2008, 70, 664–673. (13) (a) Sa´nchez, M.; Ho¨pfl, H.; Ochoa, M.-E.; Farfa´n, N.; Santillan, R.; Rojas-Lima, S. Chem. Eur. J. 2002, 8, 612–621. (b) Barba, V.; Ho¨pfl, H.; Farfa´n, N.; Santillan, R.; Beltra´n, H. I.; Zamudio-Rivera, L. S. Chem. Commun. 2004, 2834–2835. (c) Barnea, E.; Andrea, T.; Kapon, M.; Eisen, M. S. J. Am. Chem. Soc. 2004, 126, 5066–5067. (d) Christinat, N.; Scopelliti, R.; Severin, K. Chem. Commun. 2004, 1158– 1159. (e) Abrahams, B. F.; Price, D. J.; Robson, R. Angew. Chem., Int. Ed. 2006, 45, 806–810. (f) Barba, V.; Villamil, R.; Luna, R.; Godoy-Alcantar, C.; Ho¨pfl, H.; Beltra´n, H. I.; Zamudio-Rivera, L. S.; Santillan, R.; Farfa´n, N. Inorg. Chem. 2006, 45, 2553–2561. (g) Christinat, N.; Scopelliti, R.; Severin, K. J. Org. Chem. 2007, 72, 2192–2200. (h) Day, J. K.; Bresner, C.; Fallis, I. A.; Ooi, L.-L.; Watkin, D. J.; Coles, S. J.; Male, L.; Hursthouse, M. B.; Aldridge, S. Dalton Trans. 2007, 3486–3488. (i) Iwasawa, N.; Takahagi, H. J. Am. Chem. Soc. 2007, 129, 7754–7755. (j) Ikeda, C.; Nabeshima, T. Chem. Commun. 2008, 721–723. (k) Christinat, N.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2008, 47, 1848–1852. (l) Hutin, M.; Bernardinelli, G.; Nitschke, J. R. Chem. Eur. J. 2008, 14, 4585–4593. (14) (a) Niu, W.; O’Sullivan, C.; Rambo, B. M.; Smith, M. D.; Lavigne, J. J. Chem. Commun. 2005, 4342–4344. (b) Niu, W.; Smith, M. D.; Lavigne, J. J. J. Am. Chem. Soc. 2006, 128, 16466–16467. (c) Katagiri, H.; Miyagawa, T.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2006, 45, 1741–1744. (d) Albrecht, M.; Fiege, M.; Baumert, M.; de Groot, M; Fro¨hlich, R.; Russo, L.; Rissanen, K. Eur. J. Inorg. Chem.

1582 Crystal Growth & Design, Vol. 9, No. 3, 2009

(15)

(16)

(17)

(18)

(19)

(20)

(21)

2007, 609–616. (e) Rambo, B. M.; Lavigne, J. J. Chem. Mater. 2007, 19, 3732–3739. (f) Christinat, N.; Croisier, E.; Scopelliti, R.; Cascella, M.; Ro¨thlisberger, U.; Severin, K. Eur. J. Inorg. Chem. 2007, 5177– 5181. (a) Kataoka, K.; James, T. D.; Kubo, Y. J. Am. Chem. Soc. 2007, 129, 15126–15127. (b) Custelcean, R.; Vlassa, M.; Jackson, J. E. Angew. Chem., Int. Ed. 2000, 39, 3299–3302. (c) Maki, T.; Ishihara, K.; Yamamoto, H. Org. Lett. 2005, 7, 5043–5046. (d) Barba, V.; Betanzos, I. J. Organomet. Chem. 2007, 692, 4903–4908. (e) Nishimura, N.; Kobayashi, K. Angew. Chem., Int. Ed. 2008, 47, 6255–6258. (a) Coˆte´, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166–1170. (b) Tilford, R. W.; Gemmill, W. R.; zur Loye, H.-C.; Lavigne, J. J. Chem. Mater. 2006, 18, 5296–5301. (c) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Corte´s, J. L.; Coˆte, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268–272. (d) Cote´, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 129, 12914–12915. For crystal engineering with homodimeric motifs of boronic acids see: (a) Fournier, J.-H.; Maris, T.; Wuest, J. D.; Guo, W.; Galoppini, E. J. Am. Chem. Soc. 2003, 125, 1002–1006. (b) Rodrı´guez-Cuamatzi, P.; VargasDı´az, G.; Ho¨pfl, H. Angew. Chem., Int. Ed. 2004, 43, 3041–3044. (c) Rodrı´guez-Cuamatzi, P.; Vargas-Dı´az, G.; Maris, T.; Wuest, J. D.; Ho¨pfl, H. Acta Crystallogr. 2004, E60, o1316–o1318. (d) Maly, K. E.; Maris, T.; Wuest, J. D. CrystEngComm 2006, 8, 33–35. (e) Zhang, Y.; Li, M.; Chandrasekaran, S.; Gao, X.; Fang, X.; Lee, H.-W.; Hardcastle, K.; Yang, J.; Wang, B. Tetrahedron 2007, 63, 3287–3292. (f) Shimpi, M. R.; SeethaLekshmi, N.; Pedireddi, V. R. Cryst. Growth Des. 2007, 7, 1958– 1963. (g) Filthaus, M.; Oppel, I. M.; Bettinger, H. F. Org. Biomol. Chem. 2008, 6, 1201–1207. For crystal engineering with heterodimeric motifs containing boronic acids and pyridine derivatives see:(a) Braga, D.; Polito, M.; Bi, M.; D’Addario, D.; Tagliavini, E.; Sturba, L. Organometallics 2003, 22, 2142–2150. (b) Pedireddi, V. R.; SeethaLekshmi, N. Tetrahedron Lett. 2004, 45, 1903–1906. (c) Aakero¨y, C. B.; Desper, J.; Levin, B.; Salmon, D. J. ACA Trans. 2004, 39, 123–129. (d) Aakero¨y, C. B.; Desper, J.; Levin, B. CrystEngComm 2005, 7, 102–107. (e) Dabrowski, M.; Lulinski, S.; Serwatowski, J.; M.; Szczerbinska, M. Acta Crystallogr. 2006, 62, o702. For crystal engineering with further heterodimeric motifs containing boronic acids see:(a) Rodrı´guez-Cuamatzi, P.; Arillo-Flores, O. I.; Bernal-Uruchurtu, M. I.; Ho¨pfl, H. Cryst. Growth Des. 2005, 5, 167– 175. (b) Kara, H; Adams, C. J; Orpen, A. G; Podesta, T. J. New. J. Chem. 2006, 30, 1461–1469. (c) SeethaLekshmi, N.; Pedireddi, V. R. Inorg. Chem. 2006, 45, 2400–2402. (d) SeethaLekshmi, N.; Pedireddi, V. R. Cryst. Growth Des. 2007, 7, 944–949. For crystal engineering with boric acid see:(a) Freyhardt, C. C.; Wiebcke, M. J. Chem. Soc., Chem. Commun. 1994, 1675–1676. (b) Li, Q.; Xue, F.; Mak, T. C. W. Inorg. Chem. 1999, 38, 4142–4145. (c) Schubert, D. M.; Visi, M. Z.; Knobler, C. B. Inorg. Chem. 2000, 39, 2250– 2251. (d) Roy, A.; Choudhury, A.; Rao, C. N. R. J. Mol. Struct. 2002, 613, 61–66. (e) Mashuta, M. S.; Cheruzel, L.; Buchanan, R. M. Acta Crystallogr. 2002, C58, o629–o631. (f) Shi, H.; Shan, Y.; He, M.; Liu, Y. J. Solid State Chem. 2003, 176, 33–36. (g) Cheruzel, L. E.; Mashuta, M. S.; Buchanan, R. M. Chem. Commun. 2005, 2223–2225. (h) Wang, G.-M.; Sun, Y.-Q.; Yang, G.-Y. Cryst. Growth Des. 2005, 5, 313–317. (i) Batsanov, A. S.; Copley, R. C. B.; Davidson, M. G.; Fox, M. A.; Hibbert, T. G.; Howard, J. A. K.; Wade, K. J. Cluster Sci. 2006, 17, 119–137. (j) Liu, Z.-H.; Li, L.-Q.; Zhang, W.-J. Inorg. Chem. 2006, 45, 1430–1432. (k) Liu, G.-Z.; Zheng, S.-T.; Yang, G.Y. Inorg. Chem. Commun. 2007, 10, 84–87. (l) Pan, C.-Y.; Wang, G.-M.; Zheng, S.-T.; Yang, G.-Y. Z. Anorg. Allg. Chem. 2007, 633, 336–340. (a) Paleos, C. M.; Tsiourvas, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1696–1711. (b) Kane, J. J.; Liao, R.; Lauher, J. W.; Fowler, F. W. J. Am. Chem. Soc. 1995, 117, 12003–12004. (c) Sharma, K. C. V.; Zawarotko, M. J. Chem. Commun. 1996, 2655–2656. (d) Meiners, C.; Valiyaveettil, S.; Enkelmann, V.; Mullen, K. J. Mater. Chem. 1997, 7, 2367–2374. (e) Pedireddi, V. R.; Ranganathan, A.; Chatterjee, S. Tetrahedron Lett. 1998, 39, 9831–9834. (f) Chatterjee, S.; Pedireddi, V. R.; Rao, C. N. R. Tetrahedron Lett. 1998, 39, 2843–2846. (g) Pedireddi, V. R.; Chatterjee, S.; Ranganathan, A.; Rao, C. N. R. Tetrahedron 1998, 54, 9457–9474. (h) Palmore, G. T. R.; McBride, M. T. Chem. Commun. 1998, 145–146. (i) Ferguson, G.; Glidewell, C.; McManus, G. D.; Meehan, P. R. Acta Crystallogr. 1998, C55, 418–421. (j) Wheatley, P. S.; Lough, A. J.; Ferguson, G.; Glidewell, C. Acta Crystallogr. 1999, C55, 1486–1489. (k) Lough, A. J.; Wheatley, P. S.; Ferguson, G.; Glidewell, C. Acta Crystallogr. 2000, B56, 261–272. (l) Aakero¨y, C. B.; Beatty, A. M.; Tremayne, M; Rowe, D. M.; Seaton, C. C. Cryst. Growth Des. 2001, 1, 377–382. (m) Lynch,

Rodrı´guez-Cuamatzi et al.

(22)

(23)

(24)

(25) (26) (27) (28)

(29) (30) (31)

(32)

(33) (34)

D. E.; McClenaghan, I. Acta Crystallogr. 2001, C57, 830–832. (n) Ishida, H.; Rahman, B.; Kashino, S. Acta Crystallogr. 2001, C57, 876– 879. (o) Pedireddi, V. R. Cryst. Growth Des. 2001, 1, 383–385. (p) Steiner, T. Acta Crystallogr. 2001, B57, 103–106. (q) Shan, N.; Bond, A. D.; Jones, W. Cryst. Eng. 2002, 5, 9–24. (r) Bhogala, B. R.; Vishweshwar, P.; Nagia, A. Cryst. Growth Des. 2002, 2, 325–328. (s) Shin, D. M.; Chung, Y. K.; Lee, I. S. Cryst. Growth Des. 2002, 2, 493–496. (t) Farrell, D. M. M.; Ferguson, G.; Lough, A. J.; Glidewell, C. Acta Crystallogr. 2002, B58, 530–544. (u) Zakaria, C. M.; Ferguson, G.; Lough, A. J.; Glidewell, C. Acta Crystallogr. 2002, B58, 786– 802. (v) Bond, A. D. Chem. Commun. 2003, 250–251. (w) Bowes, K. F.; Ferguson, G.; Lough, A. J.; Glidewell, C. Acta Crystallogr. 2003, B59, 100–117. (x) Karle, I.; Gilardi, R. D.; Rao, C. C.; Muraleedharan, K. M.; Ranganathan, S. J. Chem. Crystallogr. 2003, 33, 727–749. (y) Dale, S. H.; Elsegood, R. J.; Hemmings, M.; Wilkinson, A. L. CrystEngComm 2004, 6, 207–214. (z) Aakero¨y, C. B.; Hussain, I.; Forbes, S.; Desper, J. CrystEngComm 2007, 9, 46– 54. (a) Krygowski, T. M.; Grabowski, S. J.; Konarski, J. Tetrahedron 1998, 54, 11311–11316. (b) Pe´rez, C.; Rodrı´guez, M. L.; Foces-Foces, C.; Pe´rez-Herna´ndez, N.; Pe´rez, R.; Martı´n, J. D. Org. Lett. 2003, 5, 641– 644. (a) Coutts, I. G. C.; Goldschmid, H. R.; Musgrave, O. C. J. Chem. Soc. C 1970, 488–493. (b) Wiley, J. P.; Hughes, K. A.; Kaiser, R. J.; Kesicki, E. A.; Lund, K. P.; Stolowitz, M. L. Bioconjugate Chem. 2001, 12, 240–250. (a) Bruker Analytical X-ray Systems. SMART: Bruker Molecular Analysis Research Tool, Versions 5.057 and 5.618; 1997 and 2000. (b) Bruker Analytical X-ray Systems. SAINT + NT, Versions 6.01 and 6.04, 1999 and 2001. (c) Sheldrick, G. M. SHELX86, Program for Crystal Structure Solution; University of Go¨ttingen: Germany, 1986. (d) Bruker Analytical X-ray Systems. SHELXTL-NT Versions 5.10 and 6.10; 1999 and 2000. Cambridge Crystallographic Data Center. Mercury, Version 1.1.2; 2002. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838. Hehre, R. D. W. J.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257–2261. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A, Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, ReVision A.11.3; Gaussian, Inc.: Pittsburgh, PA, 2002. (a) Pei, K.; Li, Y.; Li, H. J. Mol. Struct. 2003, 660, 113–118. (b) Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am. Chem. Soc. 2002, 124, 104–112. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553–566. (a) Gillon, A. M.; Orpen, A. G.; Starbuck, J.; Wang, X.-M.; Rodrı´guezMartı´n, Y.; Ruiz-Pe´rez, C. Chem. Commun. 1999, 2287–2288. (b) Gillon, A. M.; Lewis, G. R.; Orpen, A. G.; Rotter, S.; Starbuck, J.; Wang, X.-M.; Rodrı´guez-Martı´n, Y.; Ruiz-Pe´rez, C. J. Chem. Soc., Dalton Trans. 2000, 3897–3905. (c) Dolling, B.; Gillon, A. L.; Orpen, A. G.; Starbuck, J.; Wang, X.-M. Chem. Commun. 2001, 567–568. (d) Felloni, M.; Hubberstey, P.; Wilson, C.; Schro¨der, M. CrystEngComm 2004, 6, 87–95. (e) Dorn, T.; Janiak, C.; Abu-Shandi, K. CrystEngComm 2005, 7, 633–641. (f) Sokolov, A. N.; MacGillivray, L. R. Cryst. Growth Des. 2006, 6, 2615–2624. (a) Wheatley, P. S.; Lough, A. J.; Ferguson, G.; Glidewell, C. Acta Crystallogr. 1999, C55, 1489–1492. (b) MacGillivray, L.; Reid, J. L.; Ripmeester, J. A. J. Am. Chem. Soc. 2000, 122, 7817–7818. (c) Sokolov, A. N.; Friscic, T.; Blais, S. P.; Ripmeester, J. A.; MacGillivray, L. R. Cryst. Growth Des. 2006, 6, 2427–2428. Mishra, B. K.; Sathyamurthy, N. J. Phys. Chem. A 2005, 109, 6–8. For reviews on C-H · · · O and C-H · · · N interactions see: (a) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441–449. (b) Steiner, T. Chem. Commun. 1997, 727–734. (c) Berger, I.; Egli, M. Chem. Eur. J. 1997, 3, 1400–1404. (d) Bodige, S. G.; Rogers, R. D.; Blackstock, S. C. Chem. Commun. 1997, 1669–1670. (e) Calhorda, M. J. Chem. Commun. 2000, 801–809. (f) Rahman, A. N. M. M.; Bishop, R.; Craig, D. C.; Scudder, M. L. Eur. J. Org. Chem. 2003, 72–81.

H-Bonded Architectures with Cyclophane-Type Motifs (35) For reviews on interactions with aromatic rings see:(a) Glo´wka, M. L.; Martynowski, D.; Kozlowska, K. J. Mol. Struct. 1999, 474, 81–89. (b) Nishio, M. CrystEngComm 2004, 6, 130–158. (c) Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int. Ed. 2003, 42, 1210–1250. (36) Cambridge Structural Database, Cambridge Crystallographic Data Centre, version 5.25, November 2003, Cambridge, U.K. (37) Ferna´ndez-Berridi, M. J.; Iruin, J. J.; Irusta, L.; Mercero, J. M.; Ugalde, J. M. J. Phys. Chem. A 2002, 106, 4187–4191. (38) For the three-body anialysis the following equation has been employed: Eint ) E1. . n- nE0 ) ∑Eij + ηijk +. . where E1. . n is the total energy

Crystal Growth & Design, Vol. 9, No. 3, 2009 1583 of the cluster composed of n monomers, E0 is the energy of each monomer, Eij is the interaction energy of each dimer in the cluster, and ηijk corresponds to the nonadditive contributions. (39) This interaction energy was calculated as single point energy without a further geometry optimization after eliminating the remaining part of the corresponding motif. (40) For a review on π · · · π interactions in benzene dimers see: Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2006, 110, 10656–10668.

CG8012238