pubs.acs.org/Langmuir © 2010 American Chemical Society
One-Step Synthesis of Monodisperse and Hierarchically Mesostructured Silica Particles with a Thin Shell Hongmin Chen,† Tao Hu,† Xinmeng Zhang,†,§ Kaifu Huo,†,^ Paul K. Chu,*,† and Junhui He*,‡ †
Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China, ‡Functional Nanomaterials Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China, §State Key Lab of Advanced Welding Production Technology, School of Materials Science & Engineering, Harbin Institute of Technology, Harbin 150001, China, and ^College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China Received May 4, 2010. Revised Manuscript Received July 12, 2010 Monodisperse, uniform, and hierarchically mesostructured silica particles with a thin shell have been fabricated via onestep synthesis using dodecanethiol (C12-SH) and CTAB as dual templates. A series of hierarchically mesostructured silica particles with a morphology similar to that of pomegranate can be obtained by simply adjusting the mass ratio of C12-SH to CTAB. When the mass ratio is increased, a mesophase transformation occurs from an ordered 2D hexagonal structure to a mesostructured cellular foam in the core of the hierarchically mesoporous silica particles. These unique silica particles are characterized by small-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption-desorption measurements. The formation mechanism of the hierarchically mesostructured silica particles with a thin shell is proposed according to the experimental results. Synergistic self-assembly of C12-SH and CTAB in the solution is believed to play a key role in mediating the formation of these hierarchical silica mesostructures, and the hydrophobic dodecanethiol can act as both the swelling agent for CTAB micelles and coagent for the formation of a microemulsion with CTAB micelles. This synthesis method is simple, straightforward, and suitable for the preparation of the other biomineral nanostructures that are unique scaffolds in biological, medical, and catalytic applications.
1. Introduction Recently, synthesis of hierarchically silica mesostructures has attracted much attention due to promising applications1 and the possibility to elucidate the fundamental mechanisms about biomineralization.2 The important goal and big challenge concerning the design and fabrication of silica mesostructures are to *To whom correspondence should be addressed. E-mail: paul.chu@ cityu.edu.hk (P.K.C.);
[email protected] (J.H.). (1) (a) Davis, M. E. Nature 2002, 417, 813. (b) Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.; Lin, V. S.-Y. Acc. Chem. Res. 2007, 40, 846. (c) Piao, Y. Z.; Burns, A.; Kim, J.; Wiesner, U.; Hyeon, T. Adv. Funct. Mater. 2008, 18, 3745. (d) Yang, Z. L.; Lu, Y. F.; Yang, Z. Z. Chem. Commun. 2009, 2270. (e) Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nature Mater. 2009, 8, 126. (f) Han, Y.; Zhang, D. L.; Chng, L. L.; Sun, J. L.; Zhao, L.; Zou, X. D.; Ying, J. J. Nature Chem. 2009, 1, 123. (2) (a) Sanchez, C.; Arribart, H.; Guille, M. M. G. Nature Mater. 2005, 4, 277. (b) Pouget, E.; Dujardin, E.; Cavalier, A.; Moreac, A.; Valery, C.; Marchi-Artzner, V.; Weiss, T.; Renault, A.; Paternostre, M.; Artzner, F. Nature Mater. 2007, 6, 434. (c) Yang, S.; Zhou, X. F.; Yuan, P.; Yu, M. H.; Xie, S. H.; Zou, J.; Lu, G. Q.; Yu, C. Z. Angew. Chem., Int. Ed. 2007, 46, 8579. (3) Guo, X.; Deng, Y.; Tu, B.; Zhao, D. Langmuir 2010, 26, 702. (4) Chen, Y.; Li, Y.; Chen, Y.; Liu, X.; Zhang, M.; Li, B.; Yang, Y. Chem. Commun. 2009, 5177. (5) Zhang, H.; Hardy, G. C.; Rosseinsky, M. J.; Cooper, A. I. Adv. Mater. 2003, 15, 78. (6) Karkamkar, A. J.; Kim, S.; Mahanti, S. D.; Pinnavaia, T. J. Adv. Funct. Mater. 2004, 14, 507. (7) Andersson, J.; Johannessen, E.; Areva, S.; Baccile, N.; Azaı¨ s, T.; Linde, M. J. Mater. Chem. 2007, 17, 463. (8) Sel, O.; Sallard, S.; Brezesinski, T.; Rathousky, J.; Dunphy, D. R.; Collord, A.; Smarsly, B. M. Adv. Funct. Mater. 2007, 17, 3241. (9) Zhong, H.; Liu, J.; Wang, P.; Yang, J.; Yang, Q. Microporous Mesoporous Mater. 2009, 123, 63. (10) Ji, Q.; Acharya, S.; Hill, P. J.; Vinu, A.; Yoon, S. B.; Yu, J.; Sakamoto, K.; Ariga, K. Adv. Funct. Mater. 2009, 19, 1792. (11) Loiola, A. R.; Silva, L. R. D.; Cubillas, P.; Anderson, M. W. J. Mater. Chem. 2008, 18, 4985. (12) Li, F.; Wang, Z.; Ergang, N. S.; Fyfe, C. A.; Stein, A. Langmuir 2007, 23, 3996.
13556 DOI: 10.1021/la101778z
produce hierarchical silica materials with multiple pore sizes, namely micropores, mesopores, and macropores.3-13 In particular, mesostructures with well-defined morphologies are especially interesting and important because they may offer more advantages than monomodal mesostructures.5-8,10,12,14 First of all, introduction of hierarchical structures may enhance the functionality of the pore wall and interactions with various species. Second, hierarchical combinations of multiscale pores allow for mass transport pathways within inorganic networks. Third, the coexistence of multiscale pores may enhance and harmonize the diffusion of foreign molecules of different sizes through the porous matrices. Last but not least, silica materials with hierarchical structures are promising in a myriad of applications including catalysis, adsorption, separation, biomedicine, and especially multifunctional carriers in drug delivery.15-18 The composition, internal porous structure, and morphology of silica structures greatly impact their applications. In general, surfactant-assisted self-assembly is one of most promising (13) (a) Wang, H. N.; Wang, Y. H.; Zhou, X. F.; Zhou, L.; Tang, J. W.; Lei, J.; Yu, C. Z. Adv. Funct. Mater. 2007, 17, 613. (b) Cai, X.; Zhu, G.; Zhang, W.; Zhao, H.; Wang, C.; Qiu, S.; Wei, Y. Eur. J. Inorg. Chem. 2006, 3641. (14) Ho, W.; Yu, J. C.; Lee, S. Chem. Commun. 2006, 1115. (15) (a) Lim, Y. T.; Kim, J. K.; Noh, Y. W.; Cho, M. Y.; Chung, B. H. Small 2009, 5, 324. (b) Yoon, T. J.; Kim, J. S.; Kim, B. G.; Yu, K. N.; Cho, M. H.; Lee, J. K. Angew. Chem., Int. Ed. 2005, 44, 1068. (16) (a) Fang, C.; Zhang, M. J. Mater. Chem. 2009, 19, 6258. (b) Lin, Y. S.; Haynes, C. L. Chem. Mater. 2009, 21, 3979. (c) Wang, W.; Gu, B.; Liang, L.; Hamilton, W. A. J. Phys. Chem. B 2004, 108, 17477. (17) (a) Liong, M.; Angelos, S.; Choi, E.; Patel, K.; Stoddart, J. F.; Zink, J. I. J. Mater. Chem. 2009, 19, 6251. (b) Shiomi, T.; Tsunoda, T.; Kawai, A.; Matsuura, S.; Mizukami, F.; Sakaguchi, K. Small 2009, 5, 67. (c) Chen, H.; He, J.; Tang, H. M.; Yan, C. X. Chem. Mater. 2008, 20, 5894. (18) (a) Gu, J. L.; Fan, W.; Shimojima, A.; Okubo, T. Small 2007, 3, 1740. (b) Climent, E.; Berardos, A.; Martinez-Manez, R.; Maquieira, A.; Marcos, M. D.; PastorNavarro, N.; Puchades, R.; Sancenon, F.; Soto, J.; Amoros, P. J. Am. Chem. Soc. 2009, 131, 14075.
Published on Web 07/21/2010
Langmuir 2010, 26(16), 13556–13563
Chen et al.
approaches for the synthesis of silica materials with the designed composition, pore structure, function, and morphology.19 Despite success in the synthesis of mesoporous silica nanostructures (including spheres, rods, fibers, tubes, films, and foams, etc.) with single-size pore by surfactant-assisted assembly, it is not easy to fabricate hierarchical silica mesostructures using only one template. It is known from the chemistry of surfactants that surfactant assemblies with varied morphologies and supermolecular structures, including micelles, vesicles, liquid crystals, and other assemblies, can be obtained in mixed surfactant solutions by the interactions with cotemplates such as hydrogen bonding, van der Waals forces, and electrostatic interaction.20 Hence, a cotemplate approach has been proposed to produce hierarchical silica structures. By simple regulation of the ratio of the cosolvents or cosurfactants, silica nanostructures with varied morphologies and pore structures have been successfully synthesized.21-29 One of the general synthetic route is by electrostatically matching various anionic organalkoxysilanes with the cationic surfactant micelles in a base-catalyzed condensation reaction of tetraethoxysilane based on the costructure-directing effect.21-24 Moreover, siliceous nanopods, helical structures, and ordered mesoporous capsules can be fabricated by simply tuning the ratio of the two surfactants.25,26 Chiral mesoporous silica fibers, tubes, and bundles have also been prepared using dual template27 and silica spheres with controllable cavities in the shell have recently been synthesized by using similar techniques.18c,28 Although anionic hydrophilic surfactants (carboxylate, sulfate, sulfonate, and so on) have been successfully used as cosurfactants to prepare silica materials with well-controlled morphologies and structures,29 to the best of our knowledge, hydrophobic anionic surfactants (19) (a) Fukao, M.; Sugawara, A.; Shimojima, A.; Fan, W.; Arunagirinathan, M. A.; Tsapatsis, M.; Okubo, T. J. Am. Chem. Soc. 2009, 131, 16344. (b) Blas, H.; Save, M.; Pasetto, P.; Boissoere, C.; Sanchez, C.; Charleux, B. Langmuir 2008, 24, 13132. (c) Yu, M. H.; Wang, H. N.; Zhou, X. F.; Yuan, P.; Yu, C. Z. J. Am. Chem. Soc. 2007, 129, 14576. (d) Wang, W.; Gu, B.; Liang, L. J. Colloid Interface Sci. 2007, 313, 169. (e) He, J.; Chen, H.; Zhang, L. Prog. Chem. 2007, 19, 1488. (20) (a) Holland, P. M.; Rubingh, D. N. Mixed Surfactant Systems; American Chemical Society: Washington, DC, 1992.(b) Yin, H.; Zhou, Z.; Huang, J.; Zheng, R.; Zhang, Y. Angew. Chem., Int. Ed. 2003, 42, 2188. (c) Discher, D. E.; Eisenberg, A. Science 2002, 297, 967. (21) (a) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Tersaki, O.; Tatsumi, T. Nature 2004, 429, 281. (b) Che, S.; Garcia-Bennett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O.; Tatsumi, T. Nature Mater. 2003, 2, 801. (22) (a) Wu, X. J.; Xu, D. S. J. Am. Chem. Soc. 2009, 131, 2774. (b) Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Cheng, L.; Yan, Z. F.; Lu, G. Q. Adv. Funct. Mater. 2008, 18, 3834. (c) Rambaud, F.; Valle, K.; Thibaud, S.; Julian-Lopez, B.; Sanchez, C. Adv. Funct. Mater. 2009, 19, 2896. (23) (a) Wang, J.; Xiao, Q.; Zhou, H. J.; Sun, P. C.; Yuan, Z. Y.; Li, B. H.; Ding, D. T.; Shi, A. C.; Chen, T. H. Adv. Mater. 2006, 18, 3284. (b) Wang, J.; Li, F.; Zhou, H. J.; Sun, P. C.; Ding, D. T.; Chen, T. H. Chem. Mater. 2009, 21, 612. (c) Liu, J.; Yang, Q. H.; Zhang, L.; Jiang, D. M.; Shi, X.; Yang, J.; Zhong, H.; Li, C. Adv. Funct. Mater. 2007, 17, 569. (d) Chen, H.; He, J. Chem. Commun. 2008, 4422. (24) (a) Cauda, V.; Schlossbauer, A.; Kecht, J.; Zurner, A.; Bein., T. J. Am. Chem. Soc. 2009, 131, 11361. (b) Muhlstein, L. A.; Sauer, J.; Bein, T. Adv. Funct. Mater. 2009, 19, 2027. (c) Kobler, J.; Moller, K.; Bein, T. ACS Nano 2008, 2, 791. (25) (a) Li, Y.; Bi, L. F.; Wang, S. B.; Chen, Y. L.; Li, B. Z.; Zhu, X. L.; Yang, Y. G. Chem. Commun. 2010, 2680. (b) Yang, S.; Zhao, L. Z.; Yu, C. Z.; Zhou, X. F.; Tang, J. W.; Yuan, P.; Chen, D. Y.; Zhao, D. Y. J. Am. Chem. Soc. 2006, 128, 10460. (c) Djijiputro, H.; Zhou, X. F.; Qiao, S. Z.; Wang, L. Z.; Yu, C. Z.; Lu, G. Q. J. Am. Chem. Soc. 2006, 128, 6320. (26) (a) Yang, S.; Zhou, X.; Yuan, P.; Yu, M.; Xie, S.; Lu, G. Q.; Yu, C. Z. Angew. Chem., Int. Ed. 2007, 46, 8579. (b) Yuan, P.; Yang, S.; Wang, H.; Yu, M.; Zhou, X.; Lu, G.; Zou, J.; Yu, C. Z. Langmuir 2008, 24, 5038. (c) Wu, X.; Ruan, J.; Ohsuna, T.; Terasaki, O.; Che, S. Chem. Mater. 2007, 19, 1577. (27) (a) Yang, Y.; Nakazawa, M.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Chem. Mater. 2004, 16, 3791. (b) Yang, Y.; Suzuki, M.; Owa, S.; Shirai, H.; Hanabusa, K. Chem. Commun. 2005, 4462. (c) Yang, Y.; Suzuki, M.; Fukui, H.; Shirai, H.; Hanabusa, K. Chem. Mater. 2006, 18, 1324. (d) Yang, Y.; Nakazawa, M.; Suzuki, M.; Shirai, H.; Hanabusa, K. J. Mater. Chem. 2007, 17, 2936. (28) (a) Shiomi, T.; Tsunoda, T.; Kawai, A.; Matsuura, S.; Mizukami, F.; Sakaguchi, K. Small 2009, 5, 67. (b) Chen, H.; He, J. Dalton Trans. 2009, 6651. (29) (a) Yokoi, T.; Sakamoyo, Y.; Terasaki, O.; Kubota, Y.; Okubo, T.; Tatsumi, T. J. Am. Chem. Soc. 2006, 128, 13664. (b) Yokoi, T.; Wakabayashi, J.; Otsuka, Y.; Fan, W.; Iwama, M.; Watanabe, R.; Aramaki, K.; Shimojima, A.; Tatsumi, T.; Okubo, T. Chem. Mater. 2009, 21, 3719.
Langmuir 2010, 26(16), 13556–13563
Article Table 1. Summary of the Different Amounts of C12-SH and CTAB Added with R Values Change in Reaction Solution sample
R
C12-SH (mL)
CTAB (g)
corresponding figure
S1 S2 S3 S4 S5 S6 S7 S0
0.04 0.08 0.20 0.40 0.80 2.0 4.0 0
0.01 0.02 0.05 0.10 0.20 0.50 1.00 0
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Figures 1a and 2 Figures 1b and 3 Figures 1c and 4 Figures 1d and 5 Figure 6a Figure 6b Figure 6c Figure 7
Table 2. Physicochemical Properties of Fabricated Mesoporous Silica Nanospheres sample
d (nm)a
BET surface area (m2/g)
pore volumeb (cm3/g)
pore size distributionc (nm)
S1 4.211 763 0.299