Subscriber access provided by ST FRANCIS XAVIER UNIV
Article
Optimization and Application of Paper-based Spray Ionization Mass Spectrometry for Analysis of Natural Organic Matter Donghwi Kim, Joonhee Lee, Byungjoo Kim, and Sunghwan Kim Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.8b02668 • Publication Date (Web): 21 Sep 2018 Downloaded from http://pubs.acs.org on September 21, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Analytical Chemistry
Optimization and Application of Paper-based Spray Ionization Mass Spectrometry for Analysis of Natural Organic Matter Donghwi Kim[a], Joonhee Lee[b], Byungjoo Kim[b], *, and Sunghwan Kim[a], [c],* [a]
Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea Center for Analytical Chemistry, Division of Chemical & Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea [c] Green-Nano Materials Research Center, Daegu 41566, Republic of Korea [b]
ABSTRACT: In this study, paper-based ionization techniques—paper spray ionization (PSI) and paper spray chemical ionization (PSCI)—were evaluated and applied for high-resolution mass spectrometry (MS)-based analysis of natural organic matter (NOM). Methanol:isopropyl alcohol (50:50, v/v) and ethanol emerged as good spray solvents for PSI and hexane:dichloromethane (50:50, v/v) was a good spray solvent for PSCI. PSI-MS spectra could be obtained with NOM samples in the microgram scale, which is a critical advantage over conventional electrospray ionization (ESI)-MS when the amount of available sample is limited. In addition, PSI is more tolerant to salt contamination than ESI for NOM analysis. PSCI preferentially ionized less polar compounds, which may not be ionized well using ESI. Therefore, PSCI can be used as a complimentary method to ESI or PSI. Comparison of the numbers of peaks obtained with ESI-, PSI-, and PSCI-MS showed that employing PSI and PSCI can increase the number of compounds that can be detected by high-resolution MS. In conclusion, the data presented in this study showed that PSI and PSCI are suitable ionization techniques for NOM analysis. To the best of our knowledge, this is the first study evaluating and applying PSI and PSCI for NOM analysis.
Natural organic matter (NOM) plays an important role in the global carbon cycle, for soil fertility, and for plant nutrition;1-3 hence, understanding its chemical composition is important. Despite its vital environmental roles, NOM has not yet been fully characterized at the molecular level because it is one of the most complex and heterogeneous mixtures in the environment, mainly composed of carbon, hydrogen, oxygen, and other minor heteroatoms like nitrogen and sulfur.4-6 High-resolution mass spectrometry (HRMS) techniques, such as Orbitrap and Fourier-transform ion cyclotron resonance (FT-ICR) MS, have been used for better understanding of NOM.7-15 Most of the reported studies on NOM have been conducted by using electrospray ionization (ESI) combined with HRMS due to its high efficiency in detecting polar compounds.12,16 The well-known problems associated with ESI are adduct formation and degradation of the spectral signal-tonoise (S/N) ratio caused by salt contamination in the samples.17-22 Salts can interfere with the ESI process resulting in loss of ion transfer efficiency or desolvation efficiency,18,21,23 and can limit the dynamic range of analysis and cause clogging of the ESI tip.24-27 NOM samples are often extracted from water or soil with considerable amounts of salts. Therefore, an appropriate desalting process, such as solid-phase extraction (SPE)23,28-30 and size exclusion chromatography,19,31-34 is required before MS analysis. However, these desalting processes are time-consuming and results in loss of analytes. Paper spray ionization (PSI) is a convenient and sensitive ionization technique that can be used for analyzing polar compounds in a complex mixture.35-38 PSI has increased tolerance
to salt contamination and is inherently free from the clogging issue.38-40 Paper spray chemical ionization (PSCI) is another paper-based ionization technique that can efficiently ionize less- or non-polar analytes in complex mixtures.41 Therefore, PSI and PSCI can be effective for NOM analysis. Despite these potentials, PSI- and PSCI-MS have not yet been applied for NOM analyses, to the best of our knowledge. In this study, PSI/PSCI-MS processes were optimized and evaluated to characterize NOM at the molecular level.
EXPERIMENTAL Sample Preparation Suwannee River fluvic acid (SRFA) was purchased from the International Humic Substances Society (IHSS). For PSI/PSCI-MS, 10 mg/mL SRFA solution in methanol (SigmaAldrich GmbH, Hamburg, Germany) was prepared. Methanol, methanol:water (J.T. Baker, Phillipsburg, NJ, USA) solution (50:50, v/v), 2-butanol (Sigma-Aldrich GmbH, Hamburg, Germany), isopropyl alcohol (J.T. Baker, Deventer, Holland), methanol:isopropyl alcohol solution (50:50, v/v), and ethanol (Fluka, Germany) were used as spray solvents to optimize PSI-MS analysis of SRFA. n-Hexane (Honeywell Burdick & Jackson, Ulsan, Korea) and n-hexane:dichloromethane (Honeywell Burdick & Jackson, Ulsan, Korea) solution (50:50, v/v) were used as spray solvents for PSCI-MS. All the solvents used were HPLC grade. For ESI-MS, SRFA was dissolved in methanol:water (50:50, v/v) to obtain a final concentration of 1 mg/mL. Instrumentation
ACS Paragon Plus Environment
Analytical Chemistry Analyses were performed on a Q-Exactive quadrupole orbitrap mass spectrometer (Thermo Fisher Scientific Inc., San Jose, CA, USA). The instrument setup for PSI and PSCI is provided in the supporting information (Figure S1). Chromatography paper (Whatman 1 Chr, U.K.) was cut into a triangle of approximately 7 mm base width × 14 mm height. Paper tips were pre-cleaned by sequential 5 min sonication in methanol, followed by dichloromethane and dried at 65 °C for 4 hr. For PSI-MS analysis, 1 µL of sample solution was spotted onto the paper tip using a 10 µL Hamilton syringe (Hamilton, Reno, NV) and was dried at room temperature. The sample-loaded paper was placed at a distance of 5 mm in front of the MS inlet. Each spray solvent was fed to the paper tip by a syringe pump (Fusion 100T, Chemyx, Stafford, TX, USA) at a flow rate of 8–10 µL/min. Spray voltage of 2-5 kV was applied to the paper and other parameters were as follows: mass resolution 140,000 at m/z 200; transfer temperature 300 °C; S-Lens level 50 V. For PSCI-MS, 5 µL of sample solution was loaded onto the paper tip and each spray solvent was fed at a flow rate of 40 µL/min. A spray voltage of 6 kV was applied to the paper tip and other experimental conditions were the same as those used for PSI. For ESI-MS, 1 mg/mL of SRFA solution dissolved in methanol:water solution (50:50, v/v) was infused at a flow rate of 10 µL/min. The spray voltage was set at 3 kV and the sheath gas flow rate was set at 7 (arbitrary units), while the other parameters were the same as those used for PSI. Data Processing Spectral interpretation was performed using in-house developed software with an auto-mated peak-picking algorithm for more reliable and faster results.42,43 Peaks were assigned to chemical formulae within a mass error of 1.5 ppm and typical conditions for humic substance analysis were considered (CcHhNnOoSs; c unlimited, h unlimited, 0 ≤ n ≤ 3, 0 ≤ o ≤ 30, 0 ≤ s ≤ 3).
RESULTS AND DISCUSSION Optimization and Evaluation of PSI & PSCI for SRFA Analysis *
100
100
95
95 90 85
*
60 55 50 45
40
40 35 30 25
20
20
75 70 65 60
40 35 30 25
20
20 15
0 100
5
0 100
0
0
200
300
400
300
500
500
600
100
95
700
m/z
*
100
700
800
900
900
1000
1100
1100
1200
m/z
95
500
500
600
700
m/z
700
800
900
900
1000
1100
1100
1200
m/z
85
75 70
*
65
60
60 55 50 45
40
40 35 30 25
20
20
*
0 100
75
*
70 65
60
60 55 50 45
40
40 35 30 25
20
20 15 10
0 100
5
5
0
0
200
300
400
300
500
500
600
700
m/z
*
700
800
900
900
1000
1100
1100
1200
m/z
T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
200
300
300
400
500
500
600
100
95
700
m/z
*
700
800
900
900
1000
1100
1100
1200
1100
1200
m/z
T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
90
90
65
Relative abundance (%)
70
60
60 55 50 45
40
40 35
*
30 25
20
*
85
MeOH
* *
75
20 15
80
80
EtOH
75 70 65
60
60
Relative Abundance
85 80
80
55 50 45
40
40
*
35 30 25
20
20 15
10
0 100
MeOH/IPA
80
80 Relative Abundance
Relative abundance (%)
2-BuOH
80
Relative Abundance
400
90
90
Relative abundance (%)
300
300
*
100
85
Relative Abundance
200
T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
80
95
50 45
10
5
100
55
40
10
10
*
60
15
15
IPA
80
80 Relative Abundance
H2O/MeOH
Relative abundance (%)
*
60 Relative Abundance
Relative abundance (%)
80 75
65
*
*
85
80
70
*
100
100
90
Relative abundance (%)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
10
5
0 100 5
0
0
200
300
300
400
500
500
600
700
m/z
700
m/z
800
900
900
1000
1100
1100
1200
200
300
300
400
500
500
600
700
m/z
700
800
900
900
1000
1100
m/z
Page 2 of 12
Figure 2. (a) Comparison of ionization efficiencies obtained at different magnitudes of applied voltage, and (b) spray jet images taken at each voltage using ethanol as a spray solvent.
To optimize the experimental conditions of PSI-MS for NOM analysis, SRFA was analyzed. Various solvent compositions including methanol:water (5:5, v/v), methanol (MeOH), isopropyl alcohol (IPA), 2-butanol (BuOH), methanol:isopropyl alcohol (5:5, v/v), and ethanol (EtOH) were tested to examine the ionization efficiency in (−) PSI-MS. Mass spectra obtained using various solvents are presented in Figure 1. Background peaks generated by solvents and/or paper substrates were typically observed around m/z 300 and the intensity of each background peak varied depending on the applied solvents. The details of observed background peaks are listed in Table S-1. Isopropyl alcohol, methanol:isopropyl alcohol solution (5:5, v/v), and ethanol gave the best MS signal in terms of peak intensity and signal duration. For example, MS signals last more than 10 min, consuming only 10 µg of fluvic acid when ethanol was used as the spray solvent (Figure S2). Interestingly, PSI-MS for fluvic acid did not give a good response in water:methanol solution (5:5, v/v), which is the most commonly used solvent for ESI-MS analysis of NOM. Ryan D. Espy and co-workers determined that spraying of water/organic mixtures with more than 50% water are difficult in PSI as the solvent composition is made more viscous by increasing the water content.44 To test the effect of applied voltage on the ionization efficiency of PSI-MS, various magnitudes of voltage were applied to the paper tip and the respective spectra were obtained. The summed abundances of peaks are presented in Figure 2-a. The MS signals show greater abundance at an applied voltage of 3.0 kV when either MeOH:IPA solution (5:5, v/v) or IPA was used as the spray solvent. Significant decrease in MS signals was observed when voltages larger than 3.5 kV was applied. When ethanol was used as the spray solvent, signal intensity was highest at 2.5 kV; however, signals of good intensities were observed over a wider range of applied voltage (2.2–2.8 kV). The averaged signal to noise ratios (S/N) of top 1000 peaks in the spectra shown in Figure 2 were 122.43 with EtOH, 119.56 with MeOH/IPA, and 110.39 with IPA. Therefore, based on the data presented in Figures 1 and 2, ethanol is considered the ideal solution for NOM analysis using PSI-MS.
Figure 1. Full mass spectra of SRFA obtained by negative-ionmode PSI with various solvents. Marked peaks are background peaks generated by solvents and/or paper substrates.
ACS Paragon Plus Environment
Page 3 of 12 (a)
4.0x106
3000000
4000000
2900000
3800000
2800000 T : FTMS - p ES IFull ms [100.0000- 1200.0000] 4000 00
2700000
3000 00 2800 00 2600 00 Relativ eAbundance
2400 00 2200 00 2000 00 1800 00 1600 00 1400 00 1200 00 1000 00 8000 0
1800000
6000 0 4000 0
1700000
2000 0 0 600
1600000
605
610
615
600
1500000 1400000
620
625
630
620
63 5
640
645
640
650 m/z
655
66 0
665
6 70
660
675
680
685
690
680
6 95
700
700
m/z
1300000 1200000
1.0x106
1100000 1000000 900000 800000 700000 600000 500000 400000
440000
3400000
420000 400000 380000 360000
3200000
3.0x106
340000 320000 RelativeAbundance
3200 00
2100000 2000000 1900000
3000000 2800000
100000 80000 60000 40000 20000 0 600
500
500
600
700
800
700
900
1000
900
m/z
1100
1200
1100
m/z
640
645
6 50 m/z
640
655
660
665
670
660
675
680
685
690
695
680
700
700
800000
200
300
300
400
500
500
600
700
800
700
900
1000
900
m/z
1100
1200
1100
m/z
4000000 3800000
T : FTMS - p ES IFull ms [100.0000- 1200.0000] 4000 00
2600000
3600000
500000 480000 460000
3600 00
3000 00 2800 00 2600 00 Relativ eAbundance
2100000
2400 00 2200 00 2000 00 1800 00 1600 00
2000000
1400 00 1200 00
1900000
1000 00 8000 0
1800000
6000 0 4000 0
1700000
2000 0 0 600
1600000
605
610
615
600
1500000 1400000
620
625
630
620
63 5
640
645
640
650 m/z
655
66 0
665
6 70
660
675
680
685
690
680
6 95
700
700
m/z
1300000 1200000
1.0x106
1100000 1000000 900000 800000 700000 600000 500000 400000
440000
3400000
420000 400000 380000
3200000
360000
3.0x106
340000 320000 RelativeAbundance
3200 00
2300000 2200000
3000000 2800000
300000 280000 260000 240000 220000 200000 180000 160000
2600000
140000 120000 100000
Relative Abundance
Absolute abundance
3400 00
2500000 2400000
2.0x106 Relative Abundance
635
m/z
3800 00
80000
2400000
60000 40000 20000
2200000
0 600
2.0x106
605
610
615
600
2000000
620
625
630
620
635
640
645
6 50 m/z
640
655
660
665
670
660
675
680
685
690
695
680
700
700
m/z
1800000 1600000 1400000 1200000
1.0x106
1000000 800000 600000 400000
300000 200000
200000
0 100 4.0x106
100000
0
200
300
400
300
500
600
500
700
800
900
700
1000
1100
900
m/z
1200
1100
m/z
3000000
200
300
300
400
500
500
600
700
800
700
900
1000
900
m/z
1100
1200
1100
m/z
4000000
2900000
3800000
2800000 T : FTMS - p ES IFull ms [100.0000- 1200.0000] 4000 00
2700000
3600000
500000 480000
3800 00
2600000
460000
3200 00 3000 00 2800 00 2600 00 Relativ eAbundance
2100000
2400 00 2200 00 2000 00 1800 00 1600 00
2000000
1400 00 1200 00
1900000
1000 00 8000 0
1800000
6000 0 4000 0
1700000
2000 0 0 600
1600000
605
610
615
620
625
630
600 620
1500000 1400000
63 5
640
645
640
650 m/z
655
66 0
665
660
6 70
675
680
685
680
690
6 95
700
700
m/z
1300000 1200000
1.0x106
1100000 1000000 900000 800000 700000 600000 500000 400000
440000
3400000
420000 400000 380000
3200000
360000
3.0x106
340000 320000
3000000
RelativeAbundance
3400 00
2300000 2200000
2800000
300000 280000 260000 240000 220000 200000 180000 160000
2600000
140000 120000 100000
Relative Abundance
Absolute abundance
3600 00
2500000 2400000
2.0x106 Relative Abundance
630
600000
2800000
0.005 % NaCl
625
1000000
0
400
2700000
Absolute abundance
620
620
1.0x106
400000
300
300
3000000
0.05 % NaCl
615
1400000 1200000
200000
200
2900000
2400000
80000 60000 40000 20000
2200000
0 600
2.0x106
605
610
615
600
2000000
620
625
620
630
635
640
645
640
6 50 m/z
655
660
665
660
670
675
680
685
690
695
700
680
700
1100
1200
m/z
1800000 1600000 1400000 1200000
1.0x106
1000000 800000 600000 400000
300000 200000
200000
0 100
100000
0 100
610
1800000
0 100 4.0x106
100000
0 100
605
600
2000000
1600000
300000
0 100
220000 200000 180000
140000 120000
2400000 2200000
2.0x106
200000
0 100 3.0x106
300000 280000 260000 240000
160000
2600000 Relative Abundance
Absolute abundance
3400 00
2300000 2200000
0 100
480000 460000
3600 00
2500000 2400000
2.0x106 Relative Abundance
Non-NaCl
Absolute abundance
2600000
500000
3600000
3800 00
0 100 3.0x106
velocities at voltages above 3.5 kV decreased the observed signal intensities. Figure 3 shows the effect of salt concentration on the MS signal of SRFA in negative ESI and negative PSI modes. In negative ESI mode, the addition of NaCl to the sample solution shifts the peak distribution toward lower m/z and reduces the signal intensities corresponding to the analytes. To identify the peak shift and MS signal reduction, averaged mass values for each spectrum were calculated using the following equation: ∑ ⁄ = ∑ where An and (⁄ )n designate the abundance of the nth peak and its m/z value observed in the MS spectra, respectively. Only the peaks having S/N ratio higher than 3 including 13C peaks were considered in this calculation. The calculated average m/z values are provided in Table S2. Spectrum shift is observed in both ESI and PSI modes with increasing salt concentration. The average m/z values calculated from the ESIMS and PSI-MS spectra were reduced by 13% and 5%, respectively, when 0.05% NaCl was added. When NaCl was added, abundance of (-) ESI-MS signal was significantly reduced, especially for the peaks above m/z 500, while no significant signal reduction was not observed in the () PSI mode (insets of Figure 3 and Table S3). These results show that PSI has greater tolerance to salt contamination than ESI. PSCI works with non-polar solvents and spray voltages as high as 6 kV and can ionize non- or less-polar molecules.41 To optimize the experimental conditions of PSCI-MS for SRFA study, hexane (Hex) and Hex:DCM solution (5:5, v/v) were
Negative PSI
(b)
Negative ESI 3.0x106
Absolute abundance
0
200
300
300
400
500
600
500
700
800
900
700
1000
900
m/z
1100
1200
1100
200
300
400
300
500
600
500
700
800
700
900
1000
900
m/z
1100
m/z
m/z
Figure 3. Broadband and expanded spectra of SRFA samples containing 0%, 0.005%, and 0.05% NaCl, obtained by negativeion-mode (a) ESI and (b) PSI. To clarify the effect of the added salt on MS spectrum, the Y-axis scales in broadband spectra are fixed at 3 × 106 and 4 × 106 for ESI and PSI, respectively.
Paper spray jet images at different voltages were obtained using a digital camera in a dark room with LED light illumination (Figure 2-b). Under these conditions, spray jets similar to Taylor cone-jet were observed at the paper tip.44,45 The diameter of the spray plume increased continuously as the applied spray voltage was increased from 2 to 4 kV. However, no visible spray could be observed at the paper tip at voltages below 2 kV. The spray mechanism is well documented in a previous report in terms of droplet sizes and velocity of droplets.44 For the SFRA experiment, wider angles of spray plume and faster
(a)
(b)
[C15H 17O9]-
T: FTMS - p ES I F ull ms [100.0000-1200.0000] 100
100
95
[C14H 13O10]-
90
Negative ESI
85 80 75 70
R ela tiveA b un d an ce
[C16H21O8]-
(H2O/MeOH)
65 60 55
[C22H 17O12][C23H 21O11][C21H13O13][C24H25O10][C25H29O9]-
50
50 45 40 35 30 25
15 10 5
0
[C19H21O14]-
95 90
Negative PSI
85 80 75 70
(EtOH)
65 R e la tiveA b u nd a n ce
Relative abundance (%)
20
0 100
T: FTMS - p NS I F ull ms [100.0000-1200.0000] 100
60
[C13H 9O11]-
55
50
50 45 40 35 30 25 20 15 10
0 100 5
0
100 95
[C17H25O7][C 18H29O6]-
90
Negative PSCI
85 80 75 70
(Hex/DCM)
R e la tiveA b u nd a nc e
65 60
[C26H33O8][C 27H37O7]-
55
50
50 45 40 35 30 25 20 15 10
0 100 5
0 100
(c)
200
300
400
300
500
600
700
800
900
m/z
500
700
1000
900
1100
1200
1100
340.95
341.00
341.05
341.10
341.15
341.20
341.25
340.95 341.05 m/341.15 341.25 z
m/z
17
472.95
473.00
473.05
473.1 0
473.15
473.2 0
473.25
473.3 0
473.00 473.10 473.20 473.30 m/z
m/z
m/z
16 16 15
ESI PSI PSCI
14 14 13
12 12
% Relative Abundance
Relative abundance (% )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Analytical Chemistry
11
10 10 9
88 7
66 5
44 3
22 1
00
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15
O16
O17
O18
O19
O20
O21
O22
O23
O24
O25
Class O O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O 11 12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25
Class
Figure 4. Comparison of SRFA data obtained by negative-ion-mode ESI, PSI, and PSCI; (a) Broadband spectra, (b) Expanded spectra at the 2 different nominal masses: 341 Da and 471 Da, and (c) major chemical class distribution.
ACS Paragon Plus Environment
Analytical Chemistry tested in the negative-ion mode with an applied voltage of 6 kV. DCM can be used as a PSCI solvent, but using only DCM produces ice crystals at the edge of the paper tip without adding non-volatile solutes like acids, bases, or other solvents.40,41 Therefore, pure DCM was not considered in this study. (-) PSCI-MS spectra of SRFA obtained using Hex and Hex:DCM (5:5, v/v) solvents are presented in Figure S3, in which 2309 peaks above S/N > 3 were observed with Hex and 3276 peaks were observed with Hex:DCM (5:5, v/v). In addition, higher abundance of peaks was obtained when Hex:DCM (5:5, v/v) was used as the solvent. Therefore, Hex:DCM (5:5, v/v) was determined to be a suitable solvent for (-) PSCI-MS analysis of SRFA. MS/MS analysis was performed for both PSI and PSCI using higher-energy collisional dissociation (HCD). Precursor (or parent) ions were selected using an isolation window of 1 m/z, which were then fragmented using HCD with a normalized collision energy (NCE) of 30%. The MS/MS spectra of each precursor ion are presented in Figure S4. The fragmentation resulted in losses of m/z 18 and 44, corresponding to the losses of neutral species H2O and CO2 from singly charged ions (Figure S5). It is well documented that humic substrate ions tend to lose these fragments.46-48 Therefore, the data presented in Figure S5 shows that the peaks detected by PSI- and PSCI-MS have the characteristics of SFRA that agree with the ones observed with ESI-MS. Comparison of ESI, PSI, and PSCI-MS spectra Figures 4a and b show the full mass spectra and expanded spectra of SRFA obtained by (-) ESI, PSI, and PSCI-MS, obtained using the optimized conditions described in the previous section. The observed heteroatom class distributions are shown in Figure 4c. The data presented in Figure 4 show that (-) PSI-MS and (-) ESI-MS provide similar results in terms of peak distribution and major chemical class distribution. For example, the overall m/z distribution in Figure 4a and class distribution in Figure 4c are similar for the results obtained from (-) PSI-MS and (-) ESI-MS. However, it is important to note the difference between ESI and PSI in terms of the amount of sample consumed and that (a)
(b)
Van Krevelen Diagram - Multi Level
2.02.0 1.9
Van Krevelen Diagram - Multi Level
2.02.0 1.9
ESI
1.8 1.7
1.7
1.6
1.6
1.51.5 1.4
1.51.5 1.4 1.000
1.00
0.9 0.750
0.8
0.75
H/C Atomic Ratio
1.1
1.01.0
H/C Ratio
H/C Atomic Ratio
H/C Ratio
1.3
1.2
1.2 1.1
1.000
1.00
1.01.0 0.9
0.750
0.8
0.7
0.75
0.7
0.6
0.6
0.50
0.50.5
0.50
0.50.5
0.500
0.4
0.500
0.4
0.25
0.3
0.25
0.3
0.250
0.2
0.250
0.2
0.1
00.00.0 0
PSI
1.8
1.3
0.1
0.00
00.00.0 0
0.00
0.2
0.2
0.4
0.4
0.6 O/C Atomic Ratio
0.6
0.8
0.8
1.0
1.0
1.2
1.2
0.00
0.00
0.2
0.2
0.4
0.4
O/C Ratio
(c)
0.6
1.0
1.0
1.2
1.2
2.0 Lipid-like Protein-like
1.7 1.6
1.51.4
Carbohydrates-like
1.5
1.5
1.2 1.1
1.000
1.00
1.01.0 0.9
0.750
0.8
0.75
H/C Ratio
1.3 H/C Atomic Ratio
0.8
0.8
(d) PSCI
1.8
0.6 O/C Atomic Ratio
O/C Ratio
Van Krevelen Diagram - Multi Level
2.02.0 1.9
H/C Ratio
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Unsaturated hydrocarbon Lignin-like
1.0
Tannin-like
0.7 0.6
0.50
0.50.5
0.500
0.5
Condensed aromatic structure
0.4
0.25
0.3
0.250
0.2 0.1
00.00.0 0
0.00
0.00
0.2
0.2
0.4
0.4
0.6 O/C Atomic Ratio
0.6
0.8
0.8
O/C Ratio
1.0
1.0
1.2
1.2
0 0
0.2
0.4
0.6
0.8
O/C Ratio
1.0
1.2
Page 4 of 12
ESI 158 53 571 1075
PSCI
880
526 83
PSI
Figure 6. Venn diagram showing the number of identified peaks in negative-ion-mode ESI, PSI, and PSCI.
required for analysis. In this study, about 10 of SRFA sample was used to obtain (-) ESI-MS data for 1 min. However, practically, at least 50 of SRFA sample is required for a single (-) ESI-MS analysis because a syringe and line have to be filled for injection. In case of (-) PSI-MS, data collected over 10 min could be obtained with 10 of sample (Figure S2). For PSI, no line has to be filled and hence the amount of sample consumed is the same as that required for the analysis. The small amounts of sample consumed and required for analysis provide a critical advantage to PSI when the amount of sample is limited. (-) PSCI-MS analysis gives different results from those obtained with ESI and PSI in terms of peak distribution and major chemical composition (Figure 4). In Figures 4b and c, it is shown that (-) PSCI is more effective in ionizing molecules with less number of oxygen atoms than PSI and ESI. For example, O6 class compounds are the most abundant in (-) PSCIMS spectra but O9 and O10 class compounds the most abundant are in (-) PSI-MS and (-) ESI-MS. To further compare the molecules that can be identified by the different ionization techniques, van Krevelen diagrams, a useful visualization method to interpret MS data obtained from NOM, were generated and presented in Figure 5.11,49,50 The circles in the Figure 5d are used as broad indicators representing the major biogeochemical classes of commonly identified compounds in NOM.8,12,15,51 All the spectra show that lignin and tannin-type molecules are dominant in the SRFA and this agrees with previous reports.52,53 The most abundant peaks in PSCI spectra were shown between 0.3 < O/C < 0.5 and 1.2 < H/C < 1.4. In contrast, the most abundant peaks observed by ESI and PSI were present between 0.5 < O/C < 0.8 and 0.6 < H/C < 1.0. This show that PSCI is more sensitive toward less polar lignin type molecules. The number of assigned peaks in the spectra obtained with (-) ESI, PSI, and PSCI-MS are summarized as a Venn diagram in Figure 6. The lists of compounds used to generate the Venn diagrams are provided in the supporting information (Table S4). A total of 3346 unique compounds were observed from the SRFA by using (-) ESI, PSI, and PSCI-MS. Among them, 1075 peaks were detected by all three techniques and 880 peaks were uniquely found in (-) PSCI-MS data. The peaks uniquely observed by PSI were mainly attributed to oxygenrich compounds such as O18, O19, O20, and O21 class com-
Figure 5. Van Krevelen diagrams for identifying oxygencontaining molecules in SRFA observed by (a) (-) ESI, (b) (-) PSI, PSI, and (c) (-) PSCI. Relative abundances of peaks adjusted to maximum 1 were shown as color codes. (d) Regions associated with major biogeochemical classes of compounds that are commonly detected in NOM. ACS Paragon Plus Environment
Page 5 of 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Analytical Chemistry
pounds at higher masses with m/z > 500. The compounds uniquely observed by PSCI-MS mainly included O3, O4, and O5 class compounds. Therefore, the data presented in Figure 6 and Table S4 show that application of PSI and PSCI-MS along with conventional ESI can significantly improve the number of compounds that can be identified in NOM analysis.
Sunghwan Kim: 0000-0002-3364-7367 Byungjoo Kim: 0000-0002-6557-5919
Author Contributions The manuscript was written through contributions of all authors.
Notes The authors declare no competing financial interest.
CONCLUSIONS
ACKNOWLEDGMENT
In this study, PSI and PSCI ionization techniques were optimized and applied to characterize NOM at the molecular level. The data presented herein show the advantages of using PSI and PSCI for NOM analysis. Compared to ESI-MS, PSIMS requires less amount of sample, and has increased salt tolerance. PSCI can provide data complementary to either ESI or PSI because it can ionize less-polar compounds. Oxygenrich compounds are abundantly detected using PSI and ESI, but low-oxygen-content compounds are preferentially ionized by PSCI. In summary, paper-based spray ionization can provide more comprehensive molecular information on NOM. Therefore, we propose that PSI and PSCI should be included as effective ionization methods for mass spectroscopic studies of NOM.
The authors acknowledge support for this work by the Korea Research Institute of Standards and Science under the project ‘Establishing Measurement Standards for Food and Clinical Nutrients’, grant no. 14011049.
ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website. The supporting information file contains the following information: Figure S-1. Procedures for paper spray ionization (PSI) and paper spray chemical ionization (PSCI). Figure S-2. (a) Total ion current chromatogram of SRFA in negative-ion-mode PSI, (b) broadband and (c) expanded mass spectra of SRFA averaged for three different time domains. Figure S-3. Full mass spectra of SRFA obtained by negative-ionmode PSCI with Hex and Hex/DCM solution (50:50, v/v). Figure S-4. Negative-ion-mode PSI and PSCI tandem mass spectra of three different precursor ions detected in SRFA: MS/MS spectra of (a) m/z 325, (b) m/z 369, and (c) m/z 381. Figure S-5. Broadband and expanded MS/MS spectra of SRFA obtained by negative-ion-mode PSI and PSCI. Precursor ion at m/z 381 was selected using an isolation window of 1 m/z. Table S-1. The details of observed background peaks. Table S-2. The averaged m/z values obtained by negative-ionmode ESI and PSI-MS at different salt concentrations. Table S-3. The averaged peak abundance of SRFA obtained by negative-ion-mode ESI and PSI-MS at different salt concentrations. Table S-4. The peak lists of identified compounds in each ESI-, PSI-, and PSCI-MS. (XLSX)
AUTHOR INFORMATION Corresponding Author * E-mail:
[email protected]; Phone: +82-53-950-5333 * E-mail:
[email protected]; Phone: +82-42-868-5367
ORCID
REFERENCES (1) Kononova, M. M. Soil organic matter: its nature, its role in soil formation and in soil fertility; Pergamon Press: Oxford, 1966. (2) Brown, S.; Lugo, A. E. Biotropica 1982, 14, 161-187. (3) Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; Mackenzie, F. T.; Moore III, B.; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek, V.; Steffen, W. Science 2000, 290, 291-296. (4) Kuwatsuka, S.; Tsutsuki, K.; Kumada, K. Soil Sci. Plant Nutr. 1978, 24, 337-347. (5) Christensen, J. B.; Jensen, D. L.; GrØN, C.; Filip, Z.; Christensen, T. H. Water Res. 1998, 32, 125-135. (6) Li, Y.; Harir, M.; Lucio, M.; Gonsior, M.; Koch, B. P.; SchmittKopplin, P.; Hertkorn, N. Water Res. 2016, 106, 477-487. (7) Wang, C.-F.; Fan, X.; Zhang, F.; Wang, S.-Z.; Zhao, Y.-P.; Zhao, X.Y.; Zhao, W.; Zhu, T.-G.; Lu, J.-L.; Wei, X.-Y. RSC Adv. 2017, 7, 2067720684. (8) Reemtsma, T. J. Chromatogr. A 2009, 1216, 3687-3701. (9) Hawkes, J. A.; Dittmar, T.; Patriarca, C.; Tranvik, L.; Bergquist, J. Anal. Chem. 2016, 88, 7698-7704. (10) Phungsai, P.; Kurisu, F.; Kasuga, I.; Furumai, H. Water Res. 2016, 100, 526-536. (11) Hertkorn, N.; Frommberger, M.; Witt, M.; Koch, B. P.; SchmittKopplin, P.; Perdue, E. M. Anal. Chem. 2008, 80, 8908-8919. (12) Sleighter, R. L.; Hatcher, P. G. J. Mass Spectrom. 2007, 42, 559-574. (13) Cao, D.; Huang, H.; Hu, M.; Cui, L.; Geng, F.; Rao, Z.; Niu, H.; Cai, Y.; Kang, Y. Anal. Chim. Acta 2015, 866, 48-58. (14) Blackburn, J. W. T.; Kew, W.; Graham, M. C.; Uhrín, D. Anal. Chem. 2017, 89, 4382-4386. (15) Patriarca, C.; Bergquist, J.; Sjöberg, P. J. R.; Tranvik, L.; Hawkes, J. A. Environ. Sci. Technol. 2018, 52, 2091-2099. (16) Lu, Y.; Li, X.; Mesfioui, R.; Bauer, J. E.; Chambers, R. M.; Canuel, E. A.; Hatcher, P. G. PLoS One 2016, 10, e0145639. (17) Cech, N. B.; Enke, C. G. Mass Spectrom. Rev. 2001, 20, 362-387. (18) Constantopoulos, T. L.; Jackson, G. S.; Enke, C. G. J. Am. Soc. Mass Spectrom. 1999, 10, 625-634. (19) Hoque, E.; Wolf, M.; Teichmann, G.; Peller, E.; Schimmack, W.; Buckau, G. J. Chromatogr. A 2003, 1017, 97-105. (20) Kruve, A.; Kaupmees, K.; Liigand, J.; Oss, M.; Leito, I. J. Mass Spectrom. 2013, 48, 695-702. (21) Metwally, H.; McAllister, R. G.; Konermann, L. Anal. Chem. 2015, 87, 2434-2442. (22) Pan, P.; McLuckey, S. A. Anal. Chem. 2003, 75, 5468-5474. (23) Fountain, K. J.; Gilar, M.; Gebler, J. C. Rapid Commun. Mass Spectrom. 2004, 18, 1295-1302. (24) Annesley, T. M. Clin. Chem. 2003, 49, 1041-1044. (25) Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Talanta 2013, 115, 104-122. (26) Belov, M. E.; Anderson, G. A.; Angell, N. H.; Shen, Y.; Tolic, N.; Udseth, H. R.; Smith, R. D. Anal. Chem. 2001, 73, 5052-5060. (27) Wu, L.; Han, D. K. Expert Rev. Proteomics 2006, 3, 611-619. (28) Gilar, M.; Belenky, A.; Wang, B. H. J. Chromatogr. A 2001, 921, 313. (29) Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. Limnol. Oceanogr.: Methods 2008, 6, 230-235. (30) Packer, N. H.; Lawson, M. A.; Jardine, D. R.; Redmond, J. W. Glycoconjugate J. 1998, 15, 737-747.
ACS Paragon Plus Environment
Analytical Chemistry (31) Mori, S.; Barth, H. G. Size Exclusion Chromatography; Springer Berlin Heidelberg, 2013. (32) Cavanagh, J.; Benson, L. M.; Thompson, R.; Naylor, S. Anal. Chem. 2003, 75, 3281-3286. (33) De Nobili, M.; Chen, Y. Soil Sci. 1999, 164, 825-833. (34) Perminova, I. V.; Frimmel, F. H.; Kudryavtsev, A. V.; Kulikova, N. A.; Abbt-Braun, G.; Hesse, S.; Petrosyan, V. S. Environ. Sci. Technol. 2003, 37, 2477-2485. (35) Liu, J.; Wang, H.; Manicke, N. E.; Lin, J.-M.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2010, 82, 2463-2471. (36) Wang, H.; Manicke, N. E.; Yang, Q.; Zheng, L.; Shi, R.; Cooks, R. G.; Ouyang, Z. Anal. Chem. 2011, 83, 1197-1201. (37) Zhang, Z.; Cooks, R. G.; Ouyang, Z. Analyst 2012, 137, 2556-2558. (38) Wang, H.; Liu, J.; Cooks, R. G.; Ouyang, Z. Angew. Chem. 2010, 122, 889-892. (39) Cooks, R. G.; Manicke, N. E.; Dill, A. L.; Ifa, D. R.; Eberlin, L. S.; Costa, A. B.; Wang, H.; Huang, G.; Ouyang, Z. Faraday Discuss. 2011, 149, 247-267. (40) Li, A.; Wang, H.; Ouyang, Z.; Cooks, R. G. Chem. Commun. (Cambridge, U. K.) 2011, 47, 2811-2813. (41) Kim, D.; Yim, U. H.; Kim, B.; Cha, S.; Kim, S. Anal. Chem. 2017, 89, 9056-9061. (42) Lee, S.; Cho, Y.; Kim, S. Bull. Korean Chem. Soc. 2014, 35, 749752.
(43) Hur, M.; Oh, H. B.; Kim, S. Bull. Korean Chem. Soc. 2009, 30, 26652668. (44) Espy, R. D.; Muliadi, A. R.; Ouyang, Z.; Cooks, R. G. Int. J. Mass Spectrom. 2012, 325-327, 167-171. (45) Yang, Q.; Wang, H.; Maas, J. D.; Chappell, W. J.; Manicke, N. E.; Cooks, R. G.; Ouyang, Z. Int. J. Mass Spectrom. 2012, 312, 201-207. (46) Leenheer, J. A.; Rostad, C. E.; Gates, P. M.; Furlong, E. T.; Ferrer, I. Anal. Chem. 2001, 73, 1461-1471. (47) Stenson, A. C.; Landing, W. M.; Marshall, A. G.; Cooper, W. T. Anal. Chem. 2002, 74, 4397-4409. (48) Reemtsma, T.; These, A. Anal. Chem. 2003, 75, 1500-1507. (49) Visser, S. A. Environ. Sci. Technol. 1983, 17, 412-417. (50) Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 53365344. (51) Tfaily, M. M.; Chu, R. K.; Tolić, N.; Roscioli, K. M.; Anderton, C. R.; Paša-Tolić, L.; Robinson, E. W.; Hess, N. J. Anal. Chem. 2015, 87, 5206-5215. (52) Koch, B. P.; Dittmar, T. Rapid Commun. Mass Spectrom. 2006, 20, 926-932. (53) Stenson, A. C.; Marshall, A. G.; Cooper, W. T. Anal. Chem. 2003, 75, 1275-1284.
Authors are required to submit a graphic entry for the Table of Contents (TOC) that, in conjunction with the manuscript title, should give the reader a representative idea of one of the following: A key structure, reaction, equation, concept, or theorem, etc., that is discussed in the manuscript. Consult the journal’s Instructions for Authors for TOC graphic specifications.
Insert Table of Contents artwork here (a)
(b)
ESI
Van Krevelen Diagram - Multi Level
2.0 2.0 1.9
1.9 1.8 1.7
1.6
1.6
1.5 1.5
1.5 1.5
1.000
1.00
0.9 0.750
0.8
0.75
H/C Atomic Ratio
1.3
1.1
H/C Ratio
H/C Atomic Ratio
H/C Ratio
PSI
1.4
1.3 1.2
1.0 1.0
1.2 1.1
0.7
0.50
0.750
0.8
0.6
0.500
1.00
0.9
0.7
0.5 0.5
1.000
1.0 1.0
0.6
0.75 0.50
0.500
0.5 0.5
0.4
0.4
0.25
0.3
0.2 0.1
0.00
0.0 0 0.0 0
0.00
0.2
0.2
0.4
0.4
0.6 O/C Atomic Ratio
0.6
0.8
0.8
1.0
1.0
0.25
0.3
0.250
0.2 0.1 0.0 0 0.0 0
PSI
Van Krevelen Diagram - Multi Level
2.0 2.0
ESI
1.8 1.7
1.4
1.2
1.2
0.250
0.00
0.00
0.2
0.4
0.2
0.4
O/C Ratio
(c)
(d)
PSCI
1.9
0.6 O/C Atomic Ratio
0.6
0.8
0.8
1.0
1.2
1.0
1.2
O/C Ratio
Van Krevelen Diagram - Multi Level 2.0
2.0
ESI
PSCI
158
1.8 1.7 1.6 1.5
1.5
1.4
53
H/C Atomic Ratio
1.3
H/C Ratio
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 12
1.2 1.1
571
1.000
1.00
1.0 1.0
1075
0.9 0.750
0.8
0.75
0.7 0.6
0.50
0.500
0.5 0.5 0.4
0.25
0.3
0.250
0.2 0.1 0.0 0 0.0 0
PSCI
880
526 83
0.00
0.00
0.2
0.2
0.4
0.4
0.6 O/C Atomic Ratio
0.6
0.8
0.8
1.0
1.0
1.2
1.2
O/C Ratio
ACS Paragon Plus Environment
PSI
PSI_N_1CHR_IHSS_Fulvic_5000ppm_2ul_3kv_MeOHDW #80-206 RT: 0.70-1.80 AV: 127 NL: 9.45E6 T: FTMS - p NSI Full ms [111.0000-1200.0000]
Page 7 of 12
PSI_N_1CHR_IHSS_fulvic_5000ppm_2ul_3kv_IPA_FR10 #204-324 RT: 1.78-2.83 AV: 121 NL: 8.61E6 T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
*
100
100
95
Analytical Chemistry 100 95
75
65
*
*
60
60 55 50 45
40
40 35 30 25
20
20
Relative abundance (%)
80
85
H2O/MeOH Relative Abundance
Relative abundance (%)
Relative Abundance
80
70
*
*
85
0 100
300
400
300
500
500
600
700
700
800
m/z
*
100
100
95
900
900
1000
1100
1100
1200
m/z
45
40
40 35 30 25
20
20
200
300
300
400
500
500
600
700
700
800
m/z
*
95
900
900
1000
1100
1100
1200
m/z
90
75 70
*
65
60
60 55 50 45
40
40 35 30 25
20
20
*
0 100
Relative abundance (%)
85
2-BuOH
80
80
Relative Abundance
Relative abundance (%)
50
100
85
75
*
70 65
60
60 55 50 45
40
40 35 30 25
20
20
10
0 100 5
0
0
200
300
400
300
500
500
600
700
700
800
m/z
PSI_N_1CHR_IHSS_Fulvic_5000ppm_2ul_3.9kv_MeOH #90-215 RT: 0.78-1.88 AV: 126 NL: 2.70E7 T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
*
900
900
1000
1100
1100
1200
200
m/z
95 90
* *
75 70 65
60
Relative Abundance
60 55 50 45
40
40 35
*
30 25
20
500
500
600
700
700
800
m/z
900
900
1000
1100
1100
1200
20
1100
1200
m/z
*
85
MeOH
Relative abundance (%)
85
80
400
*
100
80
300
300
PSI_N_1CHR_IHSS_Fulvic_5000ppm_2ul_3kv_EtOH_FR10 #115-228 RT: 1.00-1.99 AV: 114 NL: 5.05E6 T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
90
80
80
EtOH
75 70 65
60
60 55 50 45
40
40
*
35 30 25
20
20 15
15
ACS Paragon Plus 0Environment 10
10
0 100
MeOH/IPA
80
80
15
5
Relative abundance (%)
55
PSI_N_1CHR_IHSS_Fulvic_10000ppm_1ul_3kv_MeOHIPA_180115201920 #230-351 RT: 2.01-3.06 AV: 122 NL: 8.38E6 T: FTMS - p NSI Full ms [111.0000-1200.0000] 100
90
Relative Abundance
*
60
0
200
PSI_N_1CHR_IHSS_Fulvic_5000ppm_2ul_3kv_BuOH_FR10 #344-461 RT: 3.00-4.02 AV: 118 NL: 2.07E7 T: FTMS - p NSI Full ms [111.0000-1200.0000]
95
65
60
5
0
100
70
0 100
5
10
75
10
10
15
IPA
80
80
15
15
Relative Abundance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
*
90
90
5
5
0
0
200
300
300
400
500
500
600
700
700
m/z
m/z
800
900
900
1000
1100
1100
1200
100
200
300
300
400
500
500
600
700
700
m/z
m/z
800
900
900
1000
1100
(a) 88
(b)
Analytical Chemistry
Page 8 of 12
2.0kV
2.5kV
1 cm
1 cm
3.0kV
3.5kV
1 cm
1 cm
Summed abundance
8.0E+08 7.0E+08
88 6.0x10 6.0E+08 6.0x10 5.0E+08 4.0E+08
88 3.0x10 3.0E+08 3.0x10 2.0E+08
1.0E+08
0
0.0E+00 0
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.6 3.8 3.8 4.0 4.0 2.4 2.6 2.8 3.0 3.2 3.4
SprayVoltage voltage (kV) Spray (kV)
Spray solvent : MeOH/IPA Spray solvent : MeOH/IPA
1.8E+09
Summed abundance
Summed abundance
9 2.0E+09 2.0x10 1.6E+09
9 1.5x10 1.4E+09 1.2E+09
9 1.0E+09 1.0x10 8.0E+08 6.0E+08
9 0.5x10 4.0E+08 2.0E+08
0 2.4 2.4 2.6 2.6 2.8 2.8 3.0 3.0 3.2 3.2 3.4 3.4 3.6 3.6 3.8 3.8 4.0 4.0
0.0E+00
Spray (kV) SprayVoltage voltage (kV)
99 2.0x10 2.0E+09 2.0x10
Spay solvent : EtOH: EtOH Spray solvent
4.0kV
1.8E+09
Summed abundance
Summed abundance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Summed abundance
9.0x10 9.0E+08 9.0x10
Spray solvent : IPA Spray solvent : IPA
1.6E+09
1.5x109 1.5x10 1.4E+09 1.2E+09
9 1.0x10 1.0E+09 1.0x10 8.0E+08
6.0E+08 0.5x10 0.5x1099
4.0E+08 2.0E+08
ACS Paragon Plus Environment 0 2.0 2.0 2.2 2.2 2.4 2.4 2.6 2.6 2.8 2.8 3.0 3.0 3.2 3.2 3.4 3.4 3.6 3.6 3.8 3.8 4.0 4.0
0.0E+00 0
Spray (kV) SprayVoltage voltage (kV)
1 cm
Page 9 of 12
(b)
3.0x106
4.0x106
4000000
2900000
3800000
2800000
psi_n_ihss_fulvic_10000ppm_1ul_3kv_etoh_180121195511 #109-230 RT: 0.95-2.01 AV: 122 NL: 5.00E5 T: FTMS - p NSI Full ms [110.0000-1200.0000]
ESI_N_IHSS_fulvic_1000ppm_2.7kv_DWMeOH #1-100 RT: 0.01-0.87 AV: 100 NL: 4.01E5 T: FTMS - p ESI Full ms [100.0000-1200.0000] 400000
2700000
3600000
2600000
280000 260000
2300000 Relative Abundance
240000
2200000
2.0x106
2100000
220000 200000 180000 160000
2000000
140000 120000
1900000
100000 80000
1800000
60000 40000
1700000
20000 0 600
1600000
605
610
600
1500000 1400000
615
620
625
630
620
635
640
645
640
650 m/z
655
660
665
670
660
675
680
685
690
680
695
700
700
m/z
1300000 1200000
1.0x106
1100000 1000000 900000 800000 700000 600000 500000 400000
380000
320000
2800000
300000 280000 260000 240000 220000 200000 180000 160000
2600000
140000 120000 100000
2400000
80000 60000 40000 20000
2200000
0 600
2.0x106
300
300
400
500
500
600
700
800
700
900
1000
900
m/z
1100
1100
625
630
635
640
645
640
650 m/z
655
660
665
670
660
675
680
685
690
695
700
680
700
1100
1200
m/z
1400000 1200000
1.0x106
1000000 800000 600000
200
300
300
400
500
500
600
700
800
700
900
1000
900
m/z
psi_n_ihss_fulvic_10000ppm_1ul_0.005pnacl_3kv_etoh_180121201834 #66-188 RT: 0.58-1.64 AV: 123 NL: 4.00E6 T: FTMS - p NSI Full ms [110.0000-1200.0000]
1100
m/z
4000000 3800000
psi_n_ihss_fulvic_10000ppm_1ul_0.005pnacl_3kv_etoh_180121201834 #67-185 RT: 0.58-1.61 AV: 119 NL: 5.00E5 T: FTMS - p NSI Full ms [110.0000-1200.0000]
esi_n_ihss_fulvic_1000ppm_2.7kv_0.005pnacl_dwmeoh_sg7 #1-100 RT: 0.01-0.87 AV: 100 NL: 4.00E5 T: FTMS - p ESI Full ms [100.0000-1200.0000] 400000
3600000
380000
320000 300000
2400000
280000 260000
2300000
240000
Relative Abundance
2200000
2.0x106
2100000
220000 200000 180000 160000
2000000
140000 120000
1900000
100000 80000
1800000
60000 40000
1700000
20000 0 600
1600000
605
610
600
1500000 1400000
500000 480000 460000
340000
615
620
625
630
620
635
640
645
640
650 m/z
655
660
665
670
660
675
680
685
690
680
695
700
700
m/z
1300000 1200000
1.0x106
1100000 1000000 900000 800000 700000 600000 500000
440000
3400000
420000 400000 380000
3200000
360000
3.0x106
340000 320000 300000
Relative Abundance
2500000
Relative Abundance
360000
Absolute abundance
2600000
400000
3000000 2800000
280000 260000 240000 220000 200000 180000 160000
2600000
140000 120000 100000
2400000
80000 60000 40000 20000
2200000
0 600
2.0x106
605
610
600
2000000
615
620
625
630
620
635
640
645
640
650 m/z
655
660
665
670
660
675
680
685
690
695
700
680
700
1100
1200
m/z
1800000 1600000 1400000 1200000
1.0x106
1000000 800000 600000
300000
400000
200000
200000
0 100 6 4.0x10
100000
0
200
300
400
300
500
600
700
500
800
900
700
2900000
1000
900
m/z
esi_n_ihss_fulvic_1000ppm_2.7kv_0.05pnacl_dwmeoh_sg7 #1-100 RT: 0.01-0.87 AV: 100 NL: 3.00E6 T: FTMS - p ESI Full ms [100.0000-1200.0000] 3000000
1100
1200
1100
200
300
300
400
500
500
600
700
m/z
800
700
900
1000
900
m/z
psi_n_ihss_fulvic_10000ppm_1ul_0.05pnacl_3kv_etoh #159-278 RT: 1.39-2.42 AV: 120 NL: 4.00E6 T: FTMS - p NSI Full ms [110.0000-1200.0000]
1100
m/z
4000000 3800000
2800000
psi_n_ihss_fulvic_10000ppm_1ul_0.05pnacl_3kv_etoh #159-278 RT: 1.39-2.42 AV: 120 NL: 5.00E5 T: FTMS - p NSI Full ms [110.0000-1200.0000]
esi_n_ihss_fulvic_1000ppm_2.7kv_0.05pnacl_dwmeoh_sg7 #1-100 RT: 0.01-0.87 AV: 100 NL: 4.00E5 T: FTMS - p ESI Full ms [100.0000-1200.0000] 400000
2700000
3600000
500000 480000
380000
460000
340000
2500000
320000
2400000
280000
300000
260000
2300000 Relative Abundance
240000
2200000
2.0x106
2100000
220000 200000 180000 160000
2000000
140000 120000
1900000
100000 80000
1800000
60000 40000
1700000
20000 0 600
1600000
605
600
1500000 1400000
610
615
620
625
620
630
635
640
645
640
650 m/z
655
660
665
660
670
675
680
685
680
690
695
700
m/z
1300000
700
1200000
1.0x106
1100000 1000000 900000 800000 700000 600000 500000 400000
440000
3400000
420000 400000 380000
3200000
360000
3.0x106
340000 320000
3000000
300000
Relative Abundance
360000
Relative Abundance
2600000
Absolute abundance
Relative Abundance
620
620
1600000
0 100 6 4.0x10
1200
m/z
2700000
Absolute abundance
615
1800000
2800000
2800000
280000 260000 240000 220000 200000 180000 160000
2600000
140000 120000 100000
2400000
80000 60000 40000 20000
2200000
0 600
2.0x106
605
600
2000000
610
615
620
625
620
630
635
640
645
640
650 m/z
655
660
665
660
670
675
680
685
690
695
700
1100
1200
1600000 1400000 1200000
1.0x106
1000000 800000 600000 400000
200000
200000
100000
200
300
300
400
500
500
600
700
700
m/z
m/z
800
900
900
1000
ACS Paragon Plus Environment 1100
1100
1200
0 100 0
200
300
300
400
500
500
600
700
700
m/z
m/z
800
900
900
1000
700
680
m/z
1800000
300000
0 100
610
0
200
2900000
0 100
605
600
2000000
200000
esi_n_ihss_fulvic_1000ppm_2.7kv_0.005pnacl_dwmeoh_sg7 #1-100 RT: 0.01-0.87 AV: 100 NL: 3.00E6 T: FTMS - p ESI Full ms [100.0000-1200.0000] 3000000
Relative Abundance
340000
3000000
400000
100000
Absolute abundance
360000
3.0x106
200000
0.005 % NaCl
420000 400000
3200000
300000
0 100
440000
3400000
Relative Abundance
300000
Relative Abundance
320000
2400000
0 100 6 3.0x10
480000 460000
2500000
0 100
500000
360000 340000
Absolute abundance
Relative Abundance
Absolute abundance
Non-NaCl
380000
0 100 6 3.0x10
Negative PSI psi_n_ihss_fulvic_10000ppm_1ul_3kv_etoh_180121195511 #108-226 RT: 0.94-1.97 AV: 119 NL: 4.00E6 T: FTMS - p NSI Full ms [110.0000-1200.0000]
ESI_N_IHSS_fulvic_1000ppm_2.7kv_DWMeOH #1-100 RT: 0.01-0.87 AV: 100 NL: 3.00E6 T: FTMS - p ESI Full ms [100.0000-1200.0000] 3000000
0.05 % NaCl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Analytical Chemistry
Negative ESI
(a)
1100
Analytical Chemistry
(a) RT: 0.01-0.87
AV: 100
NL: 4.27E6
100
[C15H17O9]-
100
95
[C14H13O10]-
90 85 80 75
(H2O/MeOH)
60
60
40
40
20
20
0 100
0 100
60
Relative Abundance
[C16H21O8]-
80
65
55
50
[C22H17O12][C23H21O11][C H O13][C24H25O10]NL: 3.55E6 esi_n_ihss_fulvic_1000ppm_3kv _dwmeoh#1-100 RT: 0.01-0.87 21 AV: 100 T: FTMS - p ESI Ful13 l ms [100.0000-1200.0000]
100
Negative ESI
70
80
45
NL: 7.47E5 esi_n_ihss_fulvic_1000ppm_3kv _dwmeoh#1-100 RT: 0.01-0.87 AV: 100 T: FTMS - p ESI Full ms [100.0000-1200.0000]
[C25H29O9]-
50
40 35 30 25
15 10
0 100
5
0 100 200 300 400 PSI_N_1CHR_IHSS_fulvic_5000ppm_2ul_3kv_EtOH_Chro #75-539 T: FTMS - p NSI Full ms [100.0000-1200.0000] 100
500 RT: 0.65-4.70 AV: 465
600 NL: 7.80E6
700
800
900
1000
1100
1200
m/z
NL: 8.03E6 PSI_N_1CHR_IHSS_fulvic_5000 ppm_2ul_3kv_EtOH_Chro#116306 RT: 1.01-2.67 AV: 191 T: FTMS - p NSI Full ms [100.0000-1200.0000]
95 90
80 75 70
(EtOH)
65 60
80
55
50
50 45 40 35 30 25
[C60 13H9O11]40
20
80
Relative Abundance
Negative PSI
85
Relative Abundance
Relative abundance (%)
Relative Abundance
20
NL: 2.80E6 PSI_N_1CHR_IHSS_fulvic_5000 ppm_2ul_3kv_EtOH_Chro#116306 RT: 1.01-2.67 AV: 191 T: FTMS - p NSI Full ms [100.0000-1200.0000]
[C19H21O14]-
60 40
20
20
0 100
0 100
15 10
0 100
5
0 100 200 300 400 PSCI_N_1CHR_IHSS_SRFA_10000ppm_5ul_HexDCM_1PFA #33-183 T: FTMS - p NSI Full ms [100.0000-1200.0000] 100
500 RT: 0.29-1.60
AV: 151
600 NL: 7.37E6
700
800
900
1000
1100
1200
m/z
95
[C17H25O7]80 -
90 85 80 75
NL: 3.29E6 psci_n_1chr_ihss_srfa_10000pp m_5ul_hexdcm_1pfa#38-114 RT: 0.33-0.99 AV: 77 T: FTMS p NSI Full ms [100.0000-1200.-0000]
Negative PSCI
80
(Hex/DCM)
60
[C18H60 29O6]
40
40
20
20
0
0
70 65 60
[C26H33O8]-
50
50 45 40 35 30 25 20 15 10
0 100 5
0 100
(c)
200
300
400
300
500
600
700
800
m/z
500
700
900
1000
900
1100
1200
1100
340.95 341.00 341.05 341.10 341.15 341.20 341.25 472.90 340.95 341.05 341.25 m/341.15 z
m/z
17
472.95
473.00 473.05 473.10 473.15 473.20 473.25 473.30 473.35 473.00 473.10 473.20 473.30 m/z
m/z
m/z
16 16 15
ESI PSI PSCI
14 14 13
% Relative Abundance
12 12 11
10 10 9
88 7
66 5
44 3
22 1
00
Paragon Plus Environment Class O1 O2 O3 O4 O5 O6 O7 O8 O9 OACS 10 O 11 O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25 O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
Class
O15
O16
O17
O18
O19
O20
NL: 3.95E5 psci_n_1chr_ihss_srfa_10000pp m_5ul_hexdcm_1pfa#38-114 RT: 0.33-0.99 AV: 77 T: FTMS p NSI Full ms [100.0000-1200.0000]
[C27H37O7]-
55
Relative abundance (%)
Relative Abundance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
(b) ESI_N_IHSS_fulvic_1000ppm_3kv_DWMeOH #1-100 T: FTMS - p ESI Full ms [100.0000-1200.0000] 100
Page 10 of 12
O21
O22
O23
O24
O25
Page 11 of 12
(a)
(b)
Van Krevelen Diagram - Multi Level
2.0
Van Krevelen Diagram - Multi Level
2.0
2.0
2.0
ESI
1.9 1.8
1.8
1.7
1.7
1.6
1.6
1.5
1.5
1.5 1.4
1.4
1.3
1.1
1.000
1.00
1.0
1.0 0.9
0.750
0.8
0.75
H/C Atomic Ratio
1.2
H/C Ratio
H/C Atomic Ratio
H/C Ratio
1.3
1.1
1.000
1.00
1.0 0.9
0.750
0.8
0.75
0.7
0.6
0.6
0.50
0.5
0.500
0.5
0.50
0.500
0.5
0.5 0.4
0.4
0.25 0.250
0.3
0.25
0.3
0.250
0.2
0.2 0.1 0.0
1.2
1.0
0.7
0
PSI
1.9
1.5
0.1
0.00
0
0.00 0.0
0
0.2
0.2
0.4
0.4
0.6 O/C Atomic Ratio
0.6
0.8
0.8
1.0
1.0
0.0
1.2
1.2
0.00
0.00 0.0
0
0.2
0.2
0.4
0.4
O/C Ratio
(c)
1.0
1.2
1.2
Lipid-like Protein-like
1.7 1.6
1.5
Carbohydrates-like
1.5
1.5 1.4
1.2 1.1
1.000
1.00
1.0
1.0 0.9
0.750
0.8
0.75
H/C Ratio
1.3
H/C Atomic Ratio
0.8
1.0
2.0
PSCI
1.8
0.6
0.8
(d)
2.0 1.9
0.6 O/C Atomic Ratio
O/C Ratio
Van Krevelen Diagram - Multi Level
2.0
H/C Ratio
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Analytical Chemistry
Unsaturated hydrocarbon Lignin-like
1.0
Tannin-like
0.7 0.6
0.50
0.5
0.500
0.5
0.5
Condensed aromatic structure
0.4
0.25
0.3
0.250
0.2 0.1
0
0.0
0.00
0.00 0.0
0
0.2
0.2
0.4
0.4
0.6 O/C Atomic Ratio
0.6
0.8
0.8
1.0
1.0
1.2
1.2
0
O/C Ratio
0
0.2
0.4
0.6
0.8
O/C Ratio ACS Paragon Plus Environment
1.0
1.2
Analytical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Page 12 of 12
ESI 158
53 571
1075
PSCI
880
526 83
ACS Paragon Plus Environment
PSI