Orbital alignment for high performance thermoelectric YbCd2Sb2

Jul 10, 2018 - These effects are simultaneously realized in this work, where the p orbitals of anions in YbCd2-xZnxSb2 alloys are well-aligned for max...
0 downloads 0 Views 2MB Size
Article Cite This: Chem. Mater. 2018, 30, 5339−5345

pubs.acs.org/cm

Orbital Alignment for High Performance Thermoelectric YbCd2Sb2 Alloys Xiao Wang,† Juan Li,† Chen Wang,‡ Binqiang Zhou,† Liangtao Zheng,† Bo Gao,† Yue Chen,‡ and Yanzhong Pei*,† †

Downloaded via UNIV OF SUNDERLAND on October 11, 2018 at 19:07:40 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China ‡ Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China S Supporting Information *

ABSTRACT: As a typical class of Zintl thermoelectrics, AB2C2 (A = Eu, Yb, Ba, Ca, Mg; B = Zn, Cd, Mg, and C = Sb, Bi) compounds have shown a superior thermoelectric performance, largely stemming from the existence of multiple transporting bands in both conduction types. Being similar to many III−V and elemental semiconductors, the transport of holes in AB2C2 Zintls usually involves multiple valence bands with extrema at the Brillouin zone center Γ. However, these valence bands, originating from different orbitals, are unnecessarily aligned in energy due to the crystal field splitting. Formation of solid solutions between constituent compounds having opposite arrangements in energy of band orbitals is believed to be particularly helpful for thermoelectric enhancements, because orbital alignment increases band degeneracy while alloy defects scatter phonons. These effects are simultaneously realized in this work, where the p orbitals of anions in YbCd2−xZnxSb2 alloys are well-aligned for maximizing the electronic performance, and meanwhile high-concentration Cd/Zn substitutions are introduced for minimizing the lattice thermal conductivity. As a result, a significantly enhanced thermoelectric figure of merit, zT ∼ 1.3, is achieved, being a record among AB2C2 Zintls in p-type. This work demonstrates not only YbCd2−xZnxSb2 alloys as efficient thermoelectrics but also orbital alignment as an effective strategy for advancing thermoelectrics.



INTRODUCTION In the last decade or two, the increase in energy demand and the resulting environmental issues have largely driven the advancement of thermoelectric technology. This is a clean and sustainable energy technology, since it enables a direct conversion between heat and electricity based on the Seebeck effect. However, a large-scale application of thermoelectricity is still a worldwide challenge due to its relatively low conversion efficiency, which is determined by the thermoelectric materials’ dimensionless figure of merit, zT = S2T/ρ(κE + κL), where S, T, ρ, κE, and κL are the Seebeck coefficient, absolute temperature, resistivity, and electronic and lattice components of thermal conductivity, respectively. In order to enhance zT, optimizing the electronic transport properties and reducing the lattice thermal conductivity are particularly effective and have been widely used. However, because of the strong coupling effect among S, ρ, and κE, most thermoelectric research activities for zT enhancements focused on reducing the lattice thermal conductivity, which is the only independent parameter determining zT. Successful thermal strategies are typified by nanostructuring,1,2 lattice anharmonicity,3,4 liquid phonons,5 dislocations,6−8 and point defects including vacancies,9−11 substitutions, 12,13 and interstitials,14−16 as well as low sound velocity17 and complex crystal structures.17−20 Recently, decoupling the electronic transport properties by the concept of band engineering has been proven © 2018 American Chemical Society

to be effective for zT improvements. These electronic approaches include band convergence,21,22 band nestification,23 and low band effective mass,24 which have been successfully demonstrated in various thermoelectric materials, such as PbTe,25−30 SnTe,31−34 GeTe,35−38 Mg2Si,39,40 halfHeusler,41−43 and Te.23 Zintl compounds, which usually have a complex crystal structure and are rich in materials chemistry, enabling an intrinsic low lattice thermal conductivity and a broad range of manipulation on transport properties, have attracted increasing attention as potential thermoelectric materials.44−51 As a typical family of thermoelectric Zintls crystallizing in the CaAl2Si2 structure (space group P3̅m1),52 AB2C2 (A = Eu, Yb, Ba, Ca; B = Zn, Cd, Mg, and C = As, Sb, Bi)44,45,48,53−63 have been intensively investigated for the past decade. It is recently revealed that this class of Zintl compounds involves rich band structures in both conduction types64−67 for charge transport by multiple band valleys. In more detail for p-type conduction, the p orbitals of C anions, which are in the form of a doubly degenerate pxy and a nondegenerate pz at the Brillouin zone center (Γ) due to the crystal field splitting, determine the valence band structure of Received: May 22, 2018 Revised: July 10, 2018 Published: July 10, 2018 5339

DOI: 10.1021/acs.chemmater.8b02155 Chem. Mater. 2018, 30, 5339−5345

Article

Chemistry of Materials AB2C2 compounds.64 In order to maximize the degeneracy of band valleys (Nv) for enhancing electronic performance, alignment of these orbitals in energy seems to be quite straightforward and effective.55,64 Once an energy offset between orbitals (ΔE = E(Γ(pxy)) − E(Γ(pz))) is defined, this leads a design of solid solutions to have a ΔE as close to zero as possible.45,64 In addition, such an alloying process would lead to a reduction in lattice thermal conductivity, due to phonon scattering by the introduced mass and strain fluctuations between host and guest atoms in solid solutions.68−71 The combination of orbital alignment and alloy defect phonon scattering is expected to improve thermoelectric AB2C2 Zintls significantly. This work focuses on p-type YbCd2−xZnxSb2 (x ≤ 0.9) solid solutions, where a precise control of x enables a certain alloy composition showing the minimal energy offset between the p band orbitals. In addition, this is a solid solution system in the entire composition range, ensuring an alignment of Γ(pxy) and Γ(pz) orbitals to be achieved (ΔE ∼ 0) for maximizing the valence band degeneracy. Furthermore, Zn/Cd substitutions with both large mass and strain fluctuations for phonon scattering enable an effective reduction in lattice thermal conductivity. Eventually, a significantly enhanced thermoelectric figure of merit (zT ∼ 1.3 at 700 K) is achieved, being the highest among p-type AB2C2 Zintl thermoelectrics reported so far.

work. As compared to pristine YbCd2Sb2, YbCd2−xZnxSb2 alloys show diffraction peaks shifting to higher diffraction angles with increasing x, indicating a lattice shrinkage. As shown in Figure 1b, both lattice parameters a and c linearly decrease with the increasing Zn content, which nicely follows the Vegard’s Law (dashed lines without any fitting parameters). Similarly, the room temperature Hall carrier concentration linearly increases with the increasing x. Zn/Cd substitutions increase the hole concentration, which can be understood by the resultant decrease in formation energy of Yb vacancies,72 since the vacancy formation energy is found to be very low in YbZn2Sb2.72 These results consistently indicate a successful Cd substitution by Zn in the matrix phase. In addition, trace amounts of Cd13Sb10/ZnSb impurities are also observed in Figure 1a, which are further confirmed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analyses (Figure S1). Such a precipitation has been frequently observed in AB2Sb2 compounds.44,53,72,73 Importantly, the matrix phase is found to be very homogeneous as illustrated in YbCd1.5Zn0.5Sb2 (Figure 1c,d). Since both YbCd2Sb2 and YbZn2Sb2 show a very small energy offset between Γ(pxy) and Γ(pz) orbitals,64 a fine manipulation in orbital alignment can be expected in YbCd2−xZnxSb2 solid solutions. This is qualitatively supported by our band structure calculations as shown in Figure 2a. Note



RESULT AND DISCUSSION Details on synthesis, characterization, measurements, and band structure calculations can be found in the Supporting Information. The room temperature powder X-ray diffraction (XRD) patterns for YbCd2−xZnxSb2 (x ≤ 0.9) are shown in Figure 1a. All the main diffraction peaks can be well indexed to a trigonal CaAl2Si2-type crystal structure with a space group of P3̅m1,52 indicating the high purity of the samples made in this

Figure 2. Calculated valence band structures of Yb4ZnzCd8−zSb8 with z = 0, 1, 2, 3, and 4 (a), indicating pz orbital first converges with px and py orbitals at Γ and then diverges from with increasing z. Normalized optical absorption versus photon energy at room temperature for YbCd2−xZnxSb2 (x ≤ 0.9) (b) and its temperature dependence for YbCd1.5Zn0.5Sb2 (c).

that the absence of temperature effects on calculated band structures and instrumental uncertainties challenge a quantitative comparison between calculations and experimental results, since the band offset change involved is extremely small (0.7 are achieved in the measured temperature range, both of which are the highest among AB2C2 Zintl compounds. The 5342

DOI: 10.1021/acs.chemmater.8b02155 Chem. Mater. 2018, 30, 5339−5345

Article

Chemistry of Materials

high-performance PbSe thermoelectrics. Nat. Commun. 2017, 8, 13828. (7) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169. (8) Chen, Z.; Jian, Z.; Li, W.; Chang, Y.; Ge, B.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M.; Snyder, G. J.; Pei, Y. Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Adv. Mater. 2017, 29, 1606768. (9) Shen, J.; Zhang, X.; Lin, S.; Li, J.; Chen, Z.; Li, W.; Pei, Y. Vacancy scattering for enhancing the thermoelectric performance of CuGaTe2 solid solutions. J. Mater. Chem. A 2016, 4, 15464−15470. (10) Li, W.; Lin, S.; Zhang, X.; Chen, Z.; Xu, X.; Pei, Y. Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chem. Mater. 2016, 28, 6227−6232. (11) Pei, Y. Z.; Morelli, D. T. Vacancy phonon scattering in thermoelectric In2Te3-InSb solid solutions. Appl. Phys. Lett. 2009, 94, 122112. (12) Shen, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, J.; Li, W.; Li, S.; Chen, Y.; Pei, Y. Substitutional defects enhancing thermoelectric CuGaTe2. J. Mater. Chem. A 2017, 5, 5314−5320. (13) Li, J.; Chen, Z.; Zhang, X.; Yu, H.; Wu, Z.; Xie, H.; Chen, Y.; Pei, Y. Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics. Adv. Sci. 2017, 4, 1700341. (14) Pei, Y.; Zheng, L.; Li, W.; Lin, S.; Chen, Z.; Wang, Y.; Xu, X.; Yu, H.; Chen, Y.; Ge, B. Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe. Adv. Electron. Mater. 2016, 2, 1600019. (15) Zheng, L.; Li, W.; Lin, S.; Li, J.; Chen, Z.; Pei, Y. Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence. ACS Energy Lett. 2017, 2, 563−568. (16) Li, W.; Zheng, L.; Ge, B.; Lin, S.; Zhang, X.; Chen, Z.; Chang, Y.; Pei, Y. Promoting SnTe as Eco-Friendly Solution for p-PbTe thermoelectric via Band Convergence and Interstitial Defects. Adv. Mater. 2017, 29, 1605887. (17) Lin, S.; Li, W.; Li, S.; Zhang, X.; Chen, Z.; Xu, Y.; Chen, Y.; Pei, Y. High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons. Joule 2017, 1, 816−830. (18) Zhang, J.; Song, L.; Pedersen, S. H.; Yin, H.; Hung, L. T.; Iversen, B. B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 2017, 8, 13901. (19) Song, L.; Zhang, J.; Iversen, B. B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2thermoelectric materials. J. Mater. Chem. A 2017, 5, 4932− 4939. (20) Li, W.; Lin, S.; Weiss, M.; Chen, Z.; Li, J.; Xu, Y.; Zeier, W. G.; Pei, Y. Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag9AlSe6. Adv. Energy Materials 2018, 8, 1800030. (21) Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66−69. (22) Pei, Y. Z.; Wang, H.; Snyder, G. J. Band Engineering of Thermoelectric Materials. Adv. Mater. 2012, 24, 6125−6135. (23) Lin, S.; Li, W.; Chen, Z.; Shen, J.; Ge, B.; Pei, Y. Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 2016, 7, 10287. (24) Pei, Y.; LaLonde, A. D.; Wang, H.; Snyder, G. J. Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 2012, 5, 7963−7969. (25) Pei, Y. Z.; LaLonde, A. D.; Heinz, N. A.; Shi, X. Y.; Iwanaga, S.; Wang, H.; Chen, L. D.; Snyder, G. J. Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Adv. Mater. 2011, 23, 5674−5678. (26) Pei, Y. Z.; Wang, H.; Gibbs, Z. M.; LaLonde, A. D.; Snyder, G. J. Thermopower Enhancement in Pb1-xMnxTe alloys and its Effect on Thermoelectric Efficiency. NPG Asia Mater. 2012, 4, e28.

work demonstrates orbital alignment by alloying as an effective strategy for improving thermoelectrics.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b02155.



Materials and methods; SEM images and EDX analyses for YbCd2Sb2 and Yb0.96Ba0.04Cd1.5Zn0.5Sb2; temperature dependent lattice thermal conductiv ity for YbCd2−xZnxSb2 (x ≤ 0.9); thermoelectric property isotropy; and XRD patterns, composition dependent lattice parameters, electric and thermal transport properties for Yb1−yBayCd1.5Zn0.5Sb2 (y ≤ 0.1) (PDF)

AUTHOR INFORMATION

Corresponding Author

*(Y.P.) E-mail: [email protected]. ORCID

Chen Wang: 0000-0001-5736-4188 Yue Chen: 0000-0001-5811-6936 Yanzhong Pei: 0000-0003-1612-3294 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (Grant No. 11474219 and 51772215), the National Key Research and Development Program of China (2018YFB0703600), Fundamental Research Funds for Science and Technology Innovation Plan of Shanghai (18JC1414600), the Fok Ying Tung Education Foundation (Grant No. 20170072210001), and “Shu Guang” Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation. C.W. and Y.C. are grateful for the financial support from RGC under Project Numbers 27202516 and 17200017 and the research computing facilities offered by ITS, HKU.



REFERENCES

(1) Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science 2004, 303, 818−821. (2) Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. High-thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634−638. (3) Morelli, D. T.; Jovovic, V.; Heremans, J. P. Intrinsically Minimal Thermal Conductivity in Cubic I-V-VI2 Semiconductors. Phys. Rev. Lett. 2008, 101, 035901. (4) Zhao, L. D.; Lo, S. H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373−377. (5) Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11, 422−425. (6) Chen, Z.; Ge, B.; Li, W.; Lin, S.; Shen, J.; Chang, Y.; Hanus, R.; Snyder, G. J.; Pei, Y. Vacancy-induced dislocations within grains for 5343

DOI: 10.1021/acs.chemmater.8b02155 Chem. Mater. 2018, 30, 5339−5345

Article

Chemistry of Materials

properties of Eu(Zn(1-x)Cd(x))2Sb2. Dalton Trans. 2010, 39, 1101− 1104. (46) Cooley, J. A.; Promkhan, P.; Gangopadhyay, S.; Donadio, D.; Pickett, W. E.; Ortiz, B. R.; Toberer, E. S.; Kauzlarich, S. M. High Seebeck Coefficient and Unusually Low Thermal Conductivity Near Ambient Temperatures in Layered Compound Yb2−xEuxCdSb2. Chem. Mater. 2018, 30, 484−493. (47) Zevalkink, A.; Zeier, W. G.; Pomrehn, G.; Schechtel, E.; Tremel, W.; Snyder, G. J. Thermoelectric properties of Sr3GaSb3 − a chain-forming Zintl compound. Energy Environ. Sci. 2012, 5, 9121− 91. (48) Cao, Q.-G.; Zhang, H.; Tang, M.-B.; Chen, H.-H.; Yang, X.-X.; Grin, Y.; Zhao, J.-T. Zintl phase Yb1−xCaxCd2Sb2 with tunable thermoelectric properties induced by cation substitution. J. Appl. Phys. 2010, 107, 053714−5. (49) Shuai, J.; Mao, J.; Song, S.; Zhu, Q.; Sun, J.; Wang, Y.; He, R.; Zhou, J.; Chen, G.; Singh, D. J.; Ren, Z. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy Environ. Sci. 2017, 10, 799−807. (50) Mao, J.; Wu, Y.; Song, S.; Zhu, Q.; Shuai, J.; Liu, Z.; Pei, Y.; Ren, Z. Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials. ACS Energy Lett. 2017, 2, 2245−2250. (51) Ohno, S.; Imasato, K.; Anand, S.; Tamaki, H.; Kang, S. D.; Gorai, P.; Sato, H. K.; Toberer, E. S.; Kanno, T.; Snyder, G. J. Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics. Joule 2018, 2, 141−154. (52) Gladyshevsky, E.; Kripyakevich, P.; Bodak, O. Crystal Structure of CaAl 2 Si 2 and Analogous Compounds’ (in Russian), Ukrain. Fiz. Zhur 1967, 12, 447−453. (53) Toberer, E. S.; May, A. F.; Melot, B. C.; Flage-Larsen, E.; Snyder, G. J. Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). Dalton Trans. 2010, 39, 1046−1054. (54) Guo, K.; Cao, Q.-G.; Feng, X.-J.; Tang, M.-B.; Chen, H.-H.; Guo, X.; Chen, L.; Grin, Y.; Zhao, J.-T. Enhanced Thermoelectric Figure of Merit of Zintl Phase YbCd2-xMnxSb2 by Chemical Substitution. Eur. J. Inorg. Chem. 2011, 2011, 4043−4048. (55) Shuai, J.; Geng, H.; Lan, Y.; Zhu, Z.; Wang, C.; Liu, Z.; Bao, J.; Chu, C. W.; Sui, J.; Ren, Z. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E4125− E4132. (56) Takagiwa, Y.; Sato, Y.; Zevalkink, A.; Kanazawa, I.; Kimura, K.; Isoda, Y.; Shinohara, Y. Thermoelectric properties of EuZn2Sb2 Zintl compounds: zT enhancement through Yb substitution for Eu. J. Alloys Compd. 2017, 703, 73−79. (57) Wang, X.-J.; Tang, M.-B.; Chen, H.-H.; Yang, X.-X.; Zhao, J.-T.; Burkhardt, U.; Grin, Y. Synthesis and high thermoelectric efficiency of Zintl phase YbCd[sub 2−x]Zn[sub x]Sb[sub 2]. Appl. Phys. Lett. 2009, 94, 092106. (58) Wang, X.-J.; Tang, M.-B.; Zhao, J.-T.; Chen, H.-H.; Yang, X.-X. Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2. Appl. Phys. Lett. 2007, 90, 232107. (59) Wubieneh, T. A.; Wei, P.-C.; Yeh, C.-C.; Chen, S.-y.; Chen, Y.Y. Thermoelectric Properties of Zintl Phase Compounds of Ca1−x Eu x Zn2Sb2 (0 ≤ x ≤ 1). J. Electron. Mater. 2016, 45, 1942−1946. (60) Zevalkink, A.; Zeier, W. G.; Cheng, E.; Snyder, J.; Fleurial, J.-P.; Bux, S. Nonstoichiometry in the Zintl Phase Yb1−δZn2Sb2as a Route to Thermoelectric Optimization. Chem. Mater. 2014, 26, 5710−5717. (61) Zhang, H.; Fang, L.; Tang, M.-B.; Chen, H.-H.; Yang, X.-X.; Guo, X.; Zhao, J.-T.; Grin, Y. Synthesis and properties of CaCd2Sb2 and EuCd2Sb2. Intermetallics 2010, 18, 193−198. (62) Zhang, H.; Tang, M.-B.; Schnelle, W.; Baitinger, M.; Man, Z.Y.; Chen, H.-H.; Yang, X.-X.; Zhao, J.-T.; Grin, Y. Thermoelectric Properties of Polycrystalline SrZn2Sb2 Prepared by Spark Plasma Sintering. J. Electron. Mater. 2010, 39, 1772−1776.

(27) Chen, Z. W.; Jian, Z. Z.; Li, W.; Chang, Y. J.; Ge, B. H.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M. X.; Snyder, G. J.; Pei, Y. Z. Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Adv. Mater. 2017, 29, 1606768. (28) Yamini, S. A.; Mitchell, D. R. G.; Gibbs, Z. M.; Santos, R.; Patterson, V.; Li, S.; Pei, Y. Z.; Dou, S. X.; Jeffrey Snyder, G. Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p-type Multiphase Lead-Chalcogenides. Adv. Energy Mater. 2015, 5, 1501047. (29) Dado, B.; Gelbstein, Y.; Mogilansky, D.; Ezersky, V.; Dariel, M. P. Structural evolution following spinodal decomposition of the pseudo-ternary compound (Pb0.3Sn0.1Ge0.6)Te. J. Electron. Mater. 2010, 39, 2165−2171. (30) Gelbstein, Y.; Dashevsky, Z.; Dariel, M. P. Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications. Phys. Status Solidi RRL 2007, 1, 232−234. (31) Li, W.; Chen, Z.; Lin, S.; Chang, Y.; Ge, B.; Chen, Y.; Pei, Y. Band and scattering tuning for high performance thermoelectric Sn1− xMnxTe alloys. J. Materiomics 2015, 1, 307−315. (32) Al Rahal Al Orabi, R.; Mecholsky, N. A.; Hwang, J.; Kim, W.; Rhyee, J.-S.; Wee, D.; Fornari, M. Band Degeneracy, Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe− CaTe Alloys. Chem. Mater. 2016, 28, 376−384. (33) Banik, A.; Shenoy, U. S.; Anand, S.; Waghmare, U. V.; Biswas, K. Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties. Chem. Mater. 2015, 27, 581− 587. (34) He, J.; Tan, X.; Xu, J.; Liu, G.-Q.; Shao, H.; Fu, Y.; Wang, X.; Liu, Z.; Xu, J.; Jiang, H.; Jiang, J. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. J. Mater. Chem. A 2015, 3, 19974−19979. (35) Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2017, 29, 605−611. (36) Li, J.; Chen, Z.; Zhang, X.; Sun, Y.; Yang, J.; Pei, Y. Electronic origin of the high thermoelectric performance of GeTe among the ptype group IV monotellurides. NPG Asia Mater. 2017, 9, e353. (37) Hazan, E.; Ben-Yehuda, O.; Madar, N.; Gelbstein, Y. Functional Graded Germanium-Lead Chalcogenide-Based Thermoelectric Module for Renewable Energy Applications. Adv. Energy Mater. 2015, 5, 1500272. (38) Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I. T.; Faghaninia, A.; Chen, Y.; Jain, A.; Chen, L.; Snyder, G. J.; Pei, Y. Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule 2018, 2, 976−987. (39) Liu, W.; Tan, X. J.; Yin, K.; Liu, H. J.; Tang, X. F.; Shi, J.; Zhang, Q. J.; Uher, C. Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1-xSnx Solid Solutions. Phys. Rev. Lett. 2012, 108, 166601. (40) Inoue, M.; Takai, Y.; Fukui, K.; Yagi, H.; Tatsukawa, T. Magnetic properties of Sn 1-x Cr x Te crystals. J. Magn. Magn. Mater. 1983, 36, 255−258. (41) Fu, C. G.; Zhu, T. J.; Pei, Y. Z.; Xie, H. H.; Wang, H.; Snyder, G. J.; Liu, Y.; Liu, Y. T.; Zhao, X. B. High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type HalfHeusler Compounds. Adv. Energy Mater. 2014, 4, 1400600. (42) Fu, C. G.; Bai, S. Q.; Liu, Y. T.; Tang, Y. S.; Chen, L. D.; Zhao, X. B.; Zhu, T. J. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 2015, 6, 8144. (43) Appel, O.; Zilber, T.; Kalabukhov, S.; Beeri, O.; Gelbstein, Y. Morpholoical effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+δSn alloys following phase separation. J. Mater. Chem. C 2015, 3, 11653−11659. (44) Gascoin, F.; Ottensmann, S.; Stark, D.; Haïle, S. M.; Snyder, G. J. Zintl Phases as thermoelectric materials tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv. Funct. Mater. 2005, 15, 1860−1864. (45) Zhang, H.; Baitinger, M.; Tang, M. B.; Man, Z. Y.; Chen, H. H.; Yang, X. X.; Liu, Y.; Chen, L.; Grin, Y.; Zhao, J. T. Thermoelectric 5344

DOI: 10.1021/acs.chemmater.8b02155 Chem. Mater. 2018, 30, 5339−5345

Article

Chemistry of Materials (63) Zhang, H.; Zhao, J. T.; Grin, Y.; Wang, X. J.; Tang, M. B.; Man, Z. Y.; Chen, H. H.; Yang, X. X. A new type of thermoelectric material, EuZn2Sb2. J. Chem. Phys. 2008, 129, 164713. (64) Zhang, J.; Song, L.; Madsen, G. K.; Fischer, K. F.; Zhang, W.; Shi, X.; Iversen, B. B. Designing high-performance layered thermoelectric materials through orbital engineering. Nat. Commun. 2016, 7, 10892. (65) Bhardwaj, A.; Rajput, A.; Shukla, A. K.; Pulikkotil, J. J.; Srivastava, A. K.; Dhar, A.; Gupta, G.; Auluck, S.; Misra, D. K.; Budhani, R. C. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Adv. 2013, 3, 8504−8516. (66) Shi, X.; Wang, X.; Li, W.; Pei, Y. Advances in Thermoelectric Mg3Sb2 and Its Derivatives. Small Methods 2018, 1800022. (67) Imasato, K.; Kang, S. D.; Ohno, S.; Snyder, G. J. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. Mater. Horiz. 2018, 5, 59−64. (68) Abeles, B. Lattice Thermal conductivity of Disordered Semiconductor Alloys at High Temperature. Phys. Rev. 1963, 131, 1906−1911. (69) Callaway, J.; Vonbaeyer, H. C. Effect of Point Imperfections on Lattice Thermal Conductivity. Phys. Rev. 1960, 120, 1149−1154. (70) Klemens, P. G. Thermal Resistance due to Point Defects at High Temperatures. Phys. Rev. 1960, 119, 507−509. (71) Wang, X.; Li, W.; Wang, C.; Li, J.; Zhang, X.; Zhou, B.; Chen, Y.; Pei, Y. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. J. Mater. Chem. A 2017, 5, 24185−24192. (72) Pomrehn, G. S.; Zevalkink, A.; Zeier, W. G.; van de Walle, A.; Snyder, G. J. Defect-controlled electronic properties in AZn(2)Sb(2) Zintl phases. Angew. Chem., Int. Ed. 2014, 53, 3422−3426. (73) Yu, C.; Zhu, T. J.; Zhang, S. N.; Zhao, X. B.; He, J.; Su, Z.; Tritt, T. M. Improved thermoelectric performance in the Zintl phase compounds YbZn2−xMnxSb2 via isoelectronic substitution in the anionic framework. J. Appl. Phys. 2008, 104, 013705. (74) Shen, J.; Chen, Z.; lin, S.; Zheng, L.; Li, W.; Pei, Y. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J. Mater. Chem. C 2016, 4, 209−214. (75) Goldsmid, H. J. Introduction to Thermoelectricity; Springer: Heidelberg, 2009. (76) Lin, S.; Li, W.; Zhang, X.; Li, J.; Chen, Z.; Pei, Y. Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorg. Chem. Front. 2017, 4, 1066− 1072. (77) Anderson, O. L. A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909−917. (78) Sanditov, D.; Belomestnykh, V. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech. Phys. 2011, 56, 1619−1623.

5345

DOI: 10.1021/acs.chemmater.8b02155 Chem. Mater. 2018, 30, 5339−5345