14
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
Helix-Coil Transition i n Deuterated Poly-γ-Benzyl-L-Glutamate
F. E. KARASZ and
J.
M.
O'REILLY
General Electric Research and Development Center, Schenectady, Ν. Y.
Our present knowledge of the helix-coil polypeptides,
with particular
transition
-glutamate-dichloroacetic acid-1,2-dichloroethane ly reviewed. position
Recent results concerning
and of polypeptide
modynamic
properties
modynamics transition ously
synthetic
system, is brief
the effect of solvent com
and solvent deuteration
of the transition
and presumably are generally
in
reference to the poly-γ-benzyl-L
on the ther
show that both the ther
the molecular
more complicated
mechanism
of the
than had been previ
supposed.
/ C e r t a i n s y n t h e t i c p o l y p e p t i d e s i n d i l u t e s o l u t i o n c a n undergo a r e v e r s i b l e c o o p e r a t i v e t r a n s i t i o n f r o m a h e l i c a l t o a r a n d o m l y coiled c o n f i g u r a t i o n (16).
F o r p o l y p e p t i d e s i n o r g a n i c s o l v e n t s t h e t r a n s i t i o n c a n be i n
d u c e d b y c h a n g i n g t h e t e m p e r a t u r e of t h e s o l u t i o n o r t h e c o m p o s i t i o n of t h e solvent.
O f t h e s e v e r a l systems t h a t h a v e been i n v e s t i g a t e d , t h e m o s t t h o r
o u g h l y s t u d i e d h a v e been s o l u t i o n s of p o l y - 7 - b e n z y l - L - g l u t a m a t e ( P B G ) i n m i x t u r e s of d i c h l o r o a c e t i c a c i d ( D C A ) a n d e i t h e r ( D C E ) o r c h l o r o f o r m (17).
1,2-dichloroethane
T h e w o r k presented here deals w i t h t h e P B G -
D C A - D C E system. T h e t r a n s i t i o n c a n p e r h a p s m o s t c o n v e n i e n t l y be f o l l o w e d p o l a r i m e t rically.
F i g u r e 1 shows t h e change i n specific o p t i c a l r o t a t i o n of a 3 % P B G
s o l u t i o n (solvent, 70 v o l u m e % D C A - 3 0 v o l u m e % D C E ) as t h e t e m p e r a t u r e is v a r i e d t h r o u g h t h e t r a n s i t i o n range.
F r o m optical rotatory dis
p e r s i o n m e a s u r e m e n t s one m a y o b t a i n t h e M o f f i t t p a r a m e t e r , b , a n d f r o m 0
t h i s i t has been s h o w n t h a t for P B G t h e h i g h t e m p e r a t u r e f o r m ( w i t h p o s i t i v e [a] ) D
corresponds t o t h e h e l i c a l c o n f o r m a t i o n of t h e p o l y p e p t i d e 180
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
(12).
14.
KARASZ AND
Helix-Coil
O'REILLY
181
Transition
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
I5i
H5h 14
18
Figure 1.
22
26
30
34
38
Specific optical rotation of a 3% PBG solution as a function of temperature
T h e changes w h i c h o c c u r i n s o l u t i o n a r o u n d t h e t r a n s i t i o n t e m p e r a t u r e , T
C.,
c a n be w r i t t e n s c h e m a t i c a l l y a n d o n l y t o a first a p p r o x i m a t i o n , as f o l
lows:
(1)
A s the t e m p e r a t u r e is raised, the D C A b o u n d t o t h e c o i l is released a n d d i m e r i z e s , p e r m i t t i n g t h e p o l y p e p t i d e α-helix t o f o r m , t h e e q u i l i b r i u m t h u s m o v i n g to t h e r i g h t . I t is i m p o r t a n t t o realize t h a t i n t h i s a p p r o x i m a t i o n t h e t o t a l n u m b e r of h y d r o g e n b o n d s i n t h e s y s t e m remains u n c h a n g e d ; therefore i t is c l e a r l y t h e r e l a t i v e l y s m a l l differences i n t h e enthalpies a n d entropies of t h e b o n d s t h a t are p e r t i n e n t i n a n y q u a n t i t a t i v e discussion. A s s u c h differences are n o t calculable w i t h a n y confidence, i t is n o t possible t o decide a priori w h e t h e r , for example, t h e h e l i c a l or t h e r a n d o m l y coiled c o n f i g u r a t i o n is stable at h i g h t e m p e r a t u r e s i n a n y g i v e n s y s t e m . F r o m p o l a r i m e t r i c d a t a , s u c h as are s h o w n i n F i g u r e 1, t h e f r a c t i o n a l h e l i c a l content, f , of t h e p o l y p e p t i d e m a y be c a l c u l a t e d as a f u n c t i o n of t e m p e r a t u r e , a n d b y t h e f o r m a l a p p l i c a t i o n of the v a n ' t H o f f e q u a t i o n , a n a p p a r e n t heat of t r a n s i t i o n , AH, is d e r i v e d . F i g u r e 2 shows s u c h a p l o t [slightly m o d i f i e d b y u s i n g f values i n s t e a d of l o g ( e q u i l i b r i u m constants) i n t h e ordinate) (#)] for t h e d a t a s h o w n i n F i g u r e 1. F o r P B G u n d e r these H
H
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
182
ORDERED
FLUIDS AND
LIQUID
CRYSTALS
conditions, the v a n ' t H o f f heat, AH = 80 k c a l . / m o l e . A n o b v i o u s q u e s t i o n is: t o w h a t p h y s i c a l process does t h i s r e l a t i v e l y large e n t h a l p y v a l u e relate, or, e q u i v a l e n t l y , w h a t is the significance, i n t h i s context, of a mole? I t is t h e differences i n h y d r o g e n b o n d strengths t h a t are r e l e v a n t . T h e s e m i g h t be of the order of a few h u n d r e d calories per m o l e or less; t h u s 80 k c a l . is e q u i v a l e n t to u p w a r d s of 10 o r 10 of s u c h bonds. A s s h o w n q u a n t i t a t i v e l y below, AH is related to the s t a t i s t i c a l n u m b e r of n e i g h b o r i n g 2
3
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
p o l y p e p t i d e residues w h i c h c o o p e r a t i v e l y change t h e i r c o n f o r m a t i o n a l state i n t h e course of the t r a n s i t i o n . '.Or--
o.eh
3.24
3.32
3.40
3.48
l/T, •Κ." χ 10* 1
Figure ;
Fractional helical content, f , of PBG as a function of reciprocal absolute temperature H
P o l a r i m e t r i c (or indeed, a n y optical) d a t a alone c a n y i e l d o n l y t w o t h e r m o d y n a m i c parameters d e s c r i b i n g the t h e r m a l t r a n s i t i o n , T a n d AH. To c
proceed f u r t h e r , i t becomes desirable to use one of t h e s t a t i s t i c a l m e c h a n i c a l t r e a t m e n t s of o n e - d i m e n s i o n a l cooperative t r a n s i t i o n s w h i c h h a v e been r e c e n t l y f o r m u l a t e d to treat t h i s a n d m o r e generalized p r o b l e m s (8, 15). In the present w o r k we use t h e t h e o r y of Z i m m a n d B r a g g (18, 19) a n d ex tensions of t h i s b y A p p l e q u i s t (2). T h e t h e o r y p r e d i c t s a l l the m a j o r fea tures of t h e t r a n s i t i o n f o u n d e x p e r i m e n t a l l y i n terms of a p a r a m e t e r , σ, w h i c h i n our n o m e n c l a t u r e is g i v e n b y
i n w h i c h AH is t h e c a l o r i m e t r i c heat associated w i t h the transfer of a m o l e of a m i n o a c i d residues f r o m t h e r a n d o m c o i l c o n f o r m a t i o n t o t h e e n d of e x i s t i n g h e l i c a l sequences. S u p e r f i c i a l l y , therefore, i t is analogous to t h e heat of fusion of a o n e - c o m p o n e n t s y s t e m a n d as s u c h c a n be o b t a i n e d c a l o r i m e t r i c a l l y b y m e a s u r i n g t h e heat c a p a c i t y of t h e a p p r o p r i a t e p o l y p e p t i d e s o l u t i o n as a f u n c t i o n of t e m p e r a t u r e . T h e result of s u c h a m e a s Q
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
14.
KARASZ
AND
I
ι
0
Helix-Coil
O'REILLY
I
ι
I
10
183
Transition
ι
20
I
ι
30
L
40
TEMPERATURE, C. E
Figure 8.
Heat capacity of PBG solution
1 gram of solution contains 0.02002 gram of PBG
u r e m e n t is s h o w n i n F i g u r e 3 ; AH
0
the peak.
F o r P B G , AH
0
(7)
is d i r e c t l y p r o p o r t i o n a l to the area u n d e r
is of the order of 500 c a l . per m o l e of residue
(11)]
therefore σ lies b e t w e e n 10~ a n d 10~ . σ can be i n t e r p r e t e d p h y s i c a l l y i n several essentially e q u i v a l e n t w a y s . I t is f u n d a m e n t a l l y a measure of the cooperativeness of t h e t r a n s i t i o n . I n p a r t i c u l a r , a t T (i.e., a t / / / = 1/2), σ i s e q u a l t o t h e average n u m b e r of residues i n a h e l i c a l sequence; a l o w v a l u e of σ i n d i c a t e s a h i g h degree of cooperation. T h u s σ m a y also be regarded a n a n e q u i l i b r i u m constant for t h e f o r m a t i o n of a n i n t e r r u p t i o n i n a h e l i c a l sequence (2). Other i n t e r p r e t a t i o n s of σ are b r o u g h t o u t below. 4
c
5
_ 1 / 2
W e h a v e been interested i n the b e h a v i o r of σ as a f u n c t i o n of a n u m b e r of v a r i a b l e s . Structure of Polypeptides. I t h a d o r i g i n a l l y been suggested t h a t σ m i g h t be r e l a t i v e l y unaffected b y changes i n t h e c h e m i c a l n a t u r e of t h e a m i n o a c i d side groups or i n t h e solvent s y s t e m . T h i s was based o n the b e lief t h a t as σ was r e l a t e d t o t h e r e l a t i v e d i f f i c u l t y of i n t e r p o s i n g a r a n d o m l y coiled sequence i n a n e x i s t i n g h e l i c a l sequence i n a p o l y p e p t i d e c h a i n , i t s h o u l d be d e t e r m i n e d b y i n t e r a c t i o n s a l o n g t h e p o l y g l y c i n e - t y p e basic s t r u c t u r e of the c h a i n . T h i s has n o w been s h o w n to be too d r a s t i c a n as s u m p t i o n ; i n c h e m i c a l l y r a t h e r s i m i l a r p o l y p e p t i d e s , σ changed b y a factor of ~ o (10). I n d i s s i m i l a r systems ( P B G c o m p a r e d w i t h p o l y g l u t a m i c a c i d
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
184
ORDERED
FLUIDS A N D
LIQUID CRYSTALS
i n aqueous s o l u t i o n ) orders of m a g n i t u d e differences h a v e been o b s e r v e d (13). Temperature Variation of σ. I f σ were i n fact l a r g e l y d e t e r m i n e d b y t h e c o n f o r m a t i o n a l r e s t r i c t i o n s i m p o s e d o n a d j a c e n t residues i n f o r m i n g a r a n d o m c o i l sequence, as w a s i n effect p o s t u l a t e d a b o v e , t h e n i t m i g h t be expected t o be e n t i r e l y entropie, i n w h i c h case i t c o u l d be w r i t t e n a s : σ = e '
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
LSi
(3)
R
T h e large n e g a t i v e v a l u e of ASi ( ~ —19 e.u. p e r m o l e of i n t e r r u p t i o n s for P B G ) i m p l i e d b y t h i s r e l a t i o n s h i p h a s been f a i r l y w e l l a c c o u n t e d for b y c a l c u l a t i n g t h e r e d u c t i o n i n t h e n u m b e r of accessible configurations (19). T h e t e m p e r a t u r e independence of σ, also i m p l i e d i n E q u a t i o n 3, h a d n o t u p t o n o w been d i r e c t l y v e r i f i e d for a n y s y s t e m , t h o u g h b o t h t h e o r e t i c a l (18,19) a n d some r a t h e r i n d i r e c t e x p e r i m e n t a l evidence (13) h a d suggested t h a t a n y t e m p e r a t u r e dependence m i g h t be s m a l l . R e c e n t l y i t has been suggested, h o w e v e r , t h a t d i p o l e i n t e r a c t i o n s a l o n g t h e p o l y p e p t i d e c h a i n m i g h t be i m p o r t a n t i n b o t h t h e r a n d o m - c o i l a n d h e l i c a l configurations. I f t h i s i s t h e case, i t w o u l d r e s u l t i n a significant e n t h a l p i c t e r m i n σ (4). Deuteration of Polypeptide and Solvent. A l t h o u g h i t h a d been p r e v i o u s l y s h o w n t h a t σ w a s s o m e w h a t affected b y v a r i a t i o n s i n side g r o u p i n t e r a c t i o n s , i t m i g h t be p o s t u l a t e d t h a t σ w o u l d be i n v a r i a n t t o t h e s u b s t i t u t i o n of deuterons for t h e l a b i l e h y d r o g e n - b o n d i n g p r o t o n s i n t h e p o l y p e p t i d e a n d t h e D C A . I n s u c h a n exchange side g r o u p i n t e r a c t i o n s w o u l d be m i n i m a l l y affected; f u r t h e r m o r e one w o u l d s i m i l a r l y p r e d i c t r a t h e r s m a l l entropie (as d i s t i n c t f r o m e n t h a l p i c ) p e r t u r b a t i o n s of t h e o v e r - a l l r e a c t i o n . T h e test of t h i s h y p o t h e s i s f o r m e d t h e o r i g i n a l basis of t h e w o r k d e s c r i b e d below. Other Variables. T h e effect of the p o l y p e p t i d e m o l e c u l a r w e i g h t u p o n σ h a s n o t y e t been c o n c l u s i v e l y e s t a b l i s h e d for a n y p o l y p e p t i d e - o r g a n i c s o l v e n t s y s t e m . R e c e n t extensive studies of t h e charge-induced t r a n s i t i o n of p o l y g l u t a m i c a c i d i n aqueous s o l u t i o n h a v e s h o w n a n increase i n σ w i t h a r e d u c t i o n i n m o l e c u l a r w e i g h t (15). S i m i l a r l y t h e influence of p o l y p e p t i d e solute c o n c e n t r a t i o n i s n o t y e t clear, t h o u g h A c k e r m a n n a n d R u t e r j a n s (1) h a v e d e m o n s t r a t e d a r e m a r k a b l y large effect of t h i s v a r i a b l e u p o n AH i n PBG. N e i t h e r of these p o i n t s is discussed f u r t h e r i n t h e present p a p e r . 0
Deuterated
PBG
C a l v i n , H e r m a n s , a n d S c h e r a g a (5) h a v e s h o w n p o l a r i m e t r i c a l l y , for P B G i n a s o l v e n t of c o n s t a n t c o m p o s i t i o n (80 v o l u m e % D C A - 2 0 v o l u m e % D C E ) , t h a t i n t h e d e u t e r a t e d s y s t e m T decreased f r o m 40° t o 29°C., a n d t h e c o r r e s p o n d i n g AH's rose f r o m 65 ( p r o t o n a t e d P B G ) t o 83 k c a l . / m o l e (deuterated P B G ) . T h e r e f o r e i f σ were to d i s p l a y no isotope effect (see a b o v e ) , t h e n a c c o r d i n g t o E q u a t i o n 2, AH w o u l d h a v e t o u n d e r g o a c o n c o m i t a n t change. c
0
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
KARASZ A N D O'REILLY
Helix-Coil
185
Transition
I n the course of t h i s w o r k i t developed, h o w e v e r , t h a t t h i s change i n AH w a s m o r e d i r e c t l y r e l a t e d t o t h e change i n T i n t h e d e u t e r a t e d , as c o m p a r e d w i t h t h e p r o t o n a t e d , s y s t e m , a n d a s t u d y of AH vs. T for b o t h s y s tems w a s u n d e r t a k e n . T w a s v a r i e d o v e r t h e range 5 ° - 5 0 ° C . b y v a r y i n g t h e c o m p o s i t i o n of t h e solvent f r o m a b o u t 62 t o 84 v o l u m e % D C A (the other c o m p o n e n t being D C E ) . E x p e r i m e n t a l details are g i v e n elsewhere (9). T h e results are s h o w n i n F i g u r e 4. I n b o t h cases T rises w i t h D C A c o n c e n t r a t i o n ; t h i s agrees w i t h t h e s c h e m a t i c r e a c t i o n m e c h a n i s m ( E q u a t i o n 1), w h i c h shows t h a t t h e presence of D C A f a v o r s t h e coiled o r l o w t e m p e r a t u r e f o r m . T h e r e f o r e b y a p p l i c a t i o n of L e C h a t e l i e r ' s p r i n c i p l e , a h i g h e r t e m p e r a t u r e is needed t o i n d u c e t h e e n d o t h e r m i c r e a c t i o n . F i g u r e 4 c
c
c
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
c
50
40
30 T /C., c
». 10
°60
64
68 — •
72 76 VOLUME V· OCA
80
Figure J+. T as a function of solvent composition for PBG(H) PBG(D) solutions c
84 and
also confirms t h e fact t h a t d e u t e r a t i o n lowers T for a g i v e n solvent c o m p o s i t i o n , b y f r o m 5° t o 10°C. T h e s e results are i n good q u a n t i t a t i v e agree m e n t w i t h those of C a l v i n , H e r m a n s , a n d Scheraga (5). C.,
F i g u r e 5 shows t h e AH's c a l c u l a t e d f r o m p o l a r i m e t r i c d a t a for t h e v a r i o u s solutions, as a f u n c t i o n of T . W i t h i n t h e r a t h e r sizable e x p e r i m e n t a l errors t h e d a t a for b o t h t h e p r o t o n a t e d a n d d e u t e r a t e d solutions c a n be represented b y a single c u r v e . T h e i m p l i c a t i o n is therefore t h a t differc
ences i n AH f o r P B G ( H ) a n d P B G ( D ) solutions w i t h i d e n t i c a l solvent compositions are reflections of changes i n T r a t h e r t h a n a result of d e u t e r a t i o n p e r se. c
T h e c a l o r i m e t r i c heats, AH , for t w o d e u t e r a t e d solutions w i t h T 's of 40° a n d 8.5°C. are g i v e n , together w i t h t h e c o r r e s p o n d i n g AH's, i n T a b l e I . W h i l e b o t h AH a n d AH decrease w i t h i n c r e a s i n g T t h e rates are n o t 0
0
c
C.,
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
186
ORDERED
I
20I 0
I
10
20
— Figure 5.
equal.
FLUIDS AND
LIQUID
CRYSTALS
1
I
I
30
40
50
V
e
AH as a function of T for PBG(H) solutions c
and
PBG(D)
B e c a u s e of the e x p e r i m e n t a l errors a r i s i n g i n b o t h AH
0
a n d AH, the
a c c u r a c y w i t h w h i c h σ c a n be d e t e r m i n e d at present is r a t h e r l o w .
Never
theless, t h e c a l c u l a t e d σ'β (last c o l u m n i n T a b l e I) show a significant v a r i ation.
T h i s is t h e first d i r e c t i n d i c a t i o n t h a t , c o n t r a r y to earlier s u p p o s i
t i o n , σ is s u b s t a n t i a l l y temperature-dependent,
at least i n P B G .
I f we
w r i t e σ i n the e x p a n d e d f o r m , (AH,
ASA
f
.
we find AHi = —3700 c a l . a n d AS ι = —33.1 e.u., b o t h per mole of i n t e r r u p t i o n s . I n a d d i t i o n , b y c o m p a r i n g the values of σ for the d e u t e r a t e d s o l u t i o n s w i t h a p r e v i o u s l y o b t a i n e d result for a p r o t o n - c o n t a i n i n g P B G s o l u t i o n of i n t e r m e d i a t e T (26°C.) (11), i t is f o u n d t h a t w i t h i n e x p e r i m e n t a l error a l l three results f a l l o n t h e same l i n e w h e n p l o t t e d as a f u n c t i o n of T . T h i s fact appears to c o n f i r m o u r o r i g i n a l h y p o t h e s i s t h a t d e u t e r a t i o n i n itself does n o t affect σ. I t does h a v e a n i n d i r e c t effect because of t h e r e s u l t a n t change i n T a n d t h e t e m p e r a t u r e dependence of σ. c
c
C.,
Table I.
Data on Deuterated Solutions
T , °C.
AHo,Cal./ Mole Residues
8.5 40.0 26.0
670 ± 50 380 ± 50 525 ± 80
e
PBG(D) PBG(H)
AH, Kcal./Mois 100 ± 1 5 80 ± 10 95 ± 1 2
σ Χ 10* 4.5+2.0 2.3 ± 1.1 3.1 ± 1.4
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
KARASZ AND o ' R E I L L Y
Helix-Coil
187
Transition
Discussion A n u m b e r of i m p l i c a t i o n s of these results are discussed i n greater d e t a i l elsewhere (9). H o w e v e r , we t o u c h briefly o n some p o i n t s below. F i r s t , t h e AH ο results i n d i c a t e t h a t a t least f o r m a l l y a large AC t e r m is i n v o l v e d i n the t r a n s i t i o n . F r o m the t e m p e r a t u r e dependence of AH we calculate t h a t t h e heat c a p a c i t y of t h e r a n d o m c o i l c o n f o r m a t i o n exceeds t h a t of the h e l i c a l c o n f o r m a t i o n b y ~ 9 c a l . / d e g . / m o l e of P B G residues, or a p p r o x i m a t e l y 0.04 c a l . / d e g . / g r a m of P B G . T h i s is the order of m a g n i t u d e change f o u n d i n c r y s t a l - l i q u i d t r a n s i t i o n s i n m a n y organic solids a n d m i g h t t h u s be a c c o u n t e d for o n t h i s basis. A AC of s i m i l a r m a g n i t u d e was also f o u n d i n t h e e q u i v a l e n t change i n ribonuclease A (3). T w o reservations m u s t be a t t a c h e d to these considerations, however. F i r s t , the w h o l e s y s t e m has to be t a k e n i n t o account. T h e r e f o r e a n u n k n o w n f r a c t i o n of t h e AC observed m u s t be caused b y changes i n the solvent d u r i n g the t r a n s i t i o n . S e c o n d , the f a c t t h a t the AH measurements refer t o solutions of different solvent c o m p o s i t i o n suggests t h a t i t m a y be necessary t o consider w h e t h e r t h e change i n AH ο w i t h T is a n inherent solvent effect (and not caused b y the existence of a finite AC ). P
0
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
P
P
0
c
V
T h e appearance of a large e n t h a l p y t e r m i n σ is unexpected f r o m the basis of the Z i m m - B r a g g t h e o r y . I n p h y s i c a l t e r m s t h e i m p l i c a t i o n is t h a t t h e i n t e r p o s i t i o n of a r a n d o m c o i l sequence i n a h e l i c a l sequence, as w e l l as i n v o l v i n g significant entropie r e s t r a i n t s o n t h e adjacent residues, also i n v o l v e s c o m p a r a t i v e l y large energetic changes. T h e m a g n i t u d e of t h e l a t t e r is s u c h as t o m a k e t h e suggestion t h a t t h e y s t e m e x c l u s i v e l y f r o m changes i n h y d r o g e n b o n d i n g d o u b t f u l . F u r t h e r m o r e , whereas i t was possible to e x p l a i n a n e n t r o p y t e r m i n σ of ^ — 1 9 e.u. per mole of i n t e r r u p t i o n s [a n e t of t w o a d d i t i o n a l residues is i n v o l v e d per i n t e r r u p t i o n (19)], a v a l u e as h i g h as 33 e.u. suggests t h a t f u r t h e r o r d e r i n g w i t h i n t h e s y s t e m a c c o m panies t h e change. I n t h i s connection, therefore, i t is p e r t i n e n t to consider t h e recent results of H a n l o n a n d K l o t z (7) a n d H a n l o n (6), w h o f o u n d , i n P B G a n d other p o l y p e p t i d e s , t h a t t h e t r a n s i t i o n i n v o l v e d changes i n p r o t o n a t e d as w e l l as h y d r o g e n - b o n d e d species. S u c h changes m a y be ex p e c t e d t o i n v o l v e e n t h a l p i e s closer t o t h e m a g n i t u d e of those f o u n d here. A n o t h e r possible e n t h a l p i c c o n t r i b u t i o n stems f r o m the dipole i n t e r a c t i o n between p e p t i d e u n i t s (4), w h i l e a t h i r d is t h e changes i n n o n c o v a l e n t b o n d i n g between t h e a m i n o a c i d side groups as a r e s u l t of changes i n c o n f i g u r a t i o n (14)Conclusions T h e present results d e m o n s t r a t e o n a t h e r m o d y n a m i c basis t h a t the h e l i x - c o i l t r a n s i t i o n i n P B G i s generally m o r e c o m p l i c a t e d t h a n p r e v i o u s l y supposed.
I n p a r t i c u l a r , t h e large t e m p e r a t u r e dependencies of b o t h
a n d AH ο c a r r y new i m p l i c a t i o n s .
AH
E x p e r i m e n t a l l y i t w o u l d seem h i g h l y d e -
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
188
ORDERED FLUIDS A N D LIQUID CRYSTALS
sirable to reconcile all the thermodynamic parameters involved with the molecular changes that occur i n solution during the transition.
Downloaded by UNIV OF TEXAS AT DALLAS on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch014
Literature
Cited
(1) Ackermann, T., Rüterjans, H., Z. Physik. Chem. 41, 116 (1964). (2) Applequist, J., J. Chem. Phys. 38, 934 (1963). (3) Beck, K., Gill, S. J., Downing, M . , J. Am. Chem. Soc. 87, 901 (1965). (4) Brant, D . Α., Flory, P. J., J. Am. Chem. Soc. 87, 663 (1965). (5) Calvin, M . , Hermans, J., Jr., Scheraga, Η. Α., J. Am. Chem. Soc. 81, 5048 (1959). (6) Hanlon, S., "Abstracts of Papers," 150th Meeting, ACS, September 1965, 105C. (7) Hanlon, S., Klotz, I. M . , Biochemistry 4, 37 (1965). (8) Hill, T. L., J. Chem. Phys. 30, 383 (1959). (9) Karasz, F. E., O'Reilly, J. M . , Biopolymers, in press. (10) Karasz, F. E., O'Reilly, J. M . , Bair, Η. E., Biopolymers 3, 241 (1965). (11) Karasz, F. E., O'Reilly, J. M . , Bair, Η. E., Nature 202, 693 (1964). (12) Moffitt, W., Yang, J. T., Proc. Natl. Acad. Sci. U. S. 42, 596 (1956). (13) Rifkind, J., Applequist, J., J. Am. Chem. Soc. 86, 4207 (1964). (14) Scheraga, Η. Α., 'The Proteins," 2nd ed., H . Neurath, ed., Vol. 1, Academic Press, New York, 1963. (15) Snipp, R. L., Miller, W. G., Nylund, R. E., J. Am. Chem. Soc. 87, 3547 (1965). (16) Urnes, P., Doty, P., Advan. Protein Chem. 16, 401 (1961). (17) Ibid., 16, 434, 474 (1961). (18) Zimm, Β. H., Bragg, J. K., J. Chem. Phys. 31, 526 (1959). (19) Zimm, Β. H., Doty, P., Iso, K., Proc. Natl. Acad. Sci. U. S. 45, 1601 (1959). RECEIVED February 11, 1966.
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.