9 Occurrence of Different Mesomorphous Phases in Ternary Systems of Amphiphilic Substances and Water
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
L E O M A N D E L L , K R I S T E R F O N T E L L , and
PER
EKWALL
Laboratory for Surface Chemistry, Royal Swedish Academy of Engineering Sciences, Stockholm, Sweden
A thorough study has been made of the system sodium caprylate -decanol-water at 20°C. Various mesophases in the heterogene ous regions can be separated by centrifugation under suitable conditions. The mesomorphous substance has different in ternal structures in different concentration regions, and these structures do not change continuously into one another but repre sent separate mesophases. The regions of existence of the various mesophases are separated by two- and three-phase regions, where two or three phases occur side by side in accordance with the re quirements of the phase rule. Similar conditions have been shown in a large number of other ternary systems. A systematic study of the dependence of phase equilibrium on molecular struc ture in such ternary systems has so far disclosed five main types of phase diagram.
J η a d d i t i o n to t h e order o n t h e m o l e c u l a r l e v e l , w h i c h is c h a r a c t e r i s t i c of systems w i t h t h e r m o t r o p i c m e s o m o r p h i s m , t h e l y o t r o p i c mesomorphous systems are also distinguished b y the arrangement of aggregates i n a s u p e r l a t t i c e . T h e s e systems e x h i b i t n o t o n l y t h e j o i n i n g a n d d i r e c t i n g forces between i n d i v i d u a l molecules b u t also t h e i n t e r a c t i o n between larger m o l e c u l a r aggregates—for instance, m i c e l l e - l i k e aggregates—and a c c o u n t m u s t be t a k e n of t h e i r i n t e r n a l a r r a n g e m e n t . T h i s w o u l d appear to e x p l a i n t h e v a r i e t y of t h e i n n e r s t r u c t u r e of t h e l y o t r o p i c mesomorphous systems. L i q u i d c r y s t a l l i n e p r o d u c t s are f o r m e d i n aqueous soap systems at h i g h concentrations. T h e existence of different mesophases i n s u c h systems w a s observed b y M c B a i n (17, 18). T o w a r d t h e end of t h e 1950's L u z z a t i et al. (11,14,15,16) discovered b y x - r a y d i f f r a c t i o n v a r i o u s m e s o m o r p h o u s s t r u c tures i n these t w o - c o m p o n e n t systems a n d regarded this as a proof t h a t t h e y c o n t a i n e d different mesophases, w h i c h , however, t h e y d i d n o t separate, 89 Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
90
ORDERED FLUIDS A N D LIQUID CRYSTALS
T h e presence i n systems of soap a n d s o a p l i k e substances of a t h i r d c o m p o n e n t w i t h a m p h i p h i l i c a n d p r e d o m i n a n t l y l i p o p h i l i c properties s t r o n g l y promotes t h e f o r m a t i o n of aqueous m e s o m o r p h o u s phases. I n s u c h t e r n a r y systems a n extensive, c o n t i n u o u s c o n c e n t r a t i o n region c o n t a i n i n g mesomorphous substances often forms, f r o m f a i r l y l o w c o n c e n t r a tions u p w a r d . T h e v i e w c o m m o n l y h e l d d u r i n g t h e 1950's a n d l a t e r t h a t there is o n l y one mesomorphous phase i n t h i s region (1, 2, 3, 12, 13, 22) w o u l d seem to be i n c o r r e c t ; o u r x - r a y d i f f r a c t i o n studies h a v e disclosed t h a t the region contains areas of different i n n e r s t r u c t u r e of t h e m e s o m o r p h o u s m a t t e r a n d t h a t d i s t i n c t m e s o m o r p h o u s phases, each w i t h i t s o w n i n n e r s t r u c t u r e , properties, a n d area of existence, c a n be separated b y c e n t r i f u g a t i o n . B e t w e e n these areas are t w o - a n d three-phase regions, where, i n c o n f o r m i t y w i t h t h e phase rule, t h e phases occur side b y side (J+-8, 10, 19, 20, 21). Previous Investigations of Sodium Decanol-Water System
Caprylate-
W e first consider a m o d e l s y s t e m of s o d i u m c a p r y l a t e , decanol, a n d water. I n F i g u r e 1 a l l t h e c o n c e n t r a t i o n areas i n w h i c h a n y mesomorphous substance at a l l has been observed are i n c l u d e d i n one extensive region r e ferred t o as ' ' l i q u i d c r y s t a l / ' R e g i o n s L\ a n d L consist of homogeneous, 2
Decanol
Water
Na-caprylate
Figure 1.
Triangular diagram of three-component system sodium caprylate-decanol-water at 20°C.
L\. Homogeneous, isotropic solutions in water L. Homogeneous, isotropic solutions in decanol L\ + J'2· Two-phase region consisting of L\ and L2 Liquid crystal" area comprises all regions where mesomorphous matter exists. Areas denoted by - f contain mesomorphous matter and homogeneous isotropic solutions in equilibrium 2
u
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
9.
MANDELL ET AL.
Mesomorphous
91
Phases
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
Decanol
Water Figure 2.
Na-caprylate Triangular diagram of three-component system sodium caprylate-decanol-water at 20°C.
L\. Homogeneous, isotropic solutions in water L. Homogeneous, isotropic solutions in decanol L\ + L . Two-phase region consisting of L\ and L Li + L.C. Two-phase region consisting of L\ and mesomorphous matter L + L.C. Two-phase region consisting of L and mesomorphous matter Liquid crystal area comprises all regions where only mesomorphous matter exists. 2
2
2
2
2
i s o t r o p i c s o l u t i o n s ; i n L i w a t e r is t h e solvent, i n L , decanol. 2
L\ extends t o
t h e w a t e r corner (as a n a r r o w region close t o t h e base l i n e , j u s t discernable o n t h e scale of t h e figure.).
T h e region L\ + L
two-phase region where solutions L\ a n d L
2
2
o n t h e extreme left is a
are i n e q u i l i b r i u m .
Within
t h e large l i q u i d c r y s t a l region there are areas w i t h a n i s o t r o p i c s o l u t i o n L\ o r L , as w e l l as t h e m e s o m o r p h o u s 2
i n d i c a t e d b y a p l u s sign.
matter.
T h e sites of s u c h areas are
I n some cases t h e s o l u t i o n w i l l u l t i m a t e l y sep
arate m o r e o r less c o m p l e t e l y f r o m t h e m e s o m o r p h o u s s u b s t a n c e ; s e p a r a t i o n c a n be effected b y c e n t r i f u g a t i o n . taining solution a n d mesomorphous F i g u r e 2 is o b t a i n e d .
complete
W h e n these regions
con
m a t t e r are m a r k e d i n t h e d i a g r a m ,
H e r e , t h e l i q u i d c r y s t a l area c o n t a i n s o n l y c o n c e n
t r a t i o n regions where there is m e s o m o r p h o u s substance b u t n o solutions. X - r a y d i f f r a c t i o n has s h o w n t h a t t h e i n n e r s t r u c t u r e of t h e m e s o m o r p h o u s m a t t e r v a r i e s f r o m one p a r t of t h e l i q u i d c r y s t a l area t o a n o t h e r (5, 6, 10).
T h e o v e r - a l l p i c t u r e of t h e x - r a y d i f f r a c t i o n p i n h o l e p a t t e r n s
p r o v i d e d b y t h e substance i n t h i s area is t h e f o l l o w i n g (10) : a l l t h e p a t t e r n s show a diffuse, w e a k , w a t e r reflection w i t h a v a l u e of 1/3.2 A . a n o t h e r reflection w i t h a v a l u e of 1/4.5 A . flection
- 1
.
-
1
for S a n d
T h e fact t h a t t h e l a t t e r r e
is i d e n t i c a l i n p o s i t i o n a n d shape t o t h a t for l i q u i d paraffin c h a i n
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
92
ORDERED FLUIDS A N D LIQUID CRYSTALS
h y d r o c a r b o n s indicates t h a t t h e paraffin chains of t h e a m p h i p h i l i c c o m p o u n d s i n t h e mesomorphous substance are i n a m o r e o r less l i q u i d state. I n a d d i t i o n t o these reflections there is i n t h e " l o w a n g l e " r e g i o n — t h a t i s , at angles below 10°—a series of s h a r p lines, w h i c h are as d i s t i n c t as i f t h e y were g i v e n b y a t r u l y c r y s t a l l i n e substance.
T h e s e l o w angle p a t t e r n s ,
however, differ f r o m one p a r t of t h e l i q u i d c r y s t a l region t o another. A r o u n d position ·
x - r a y d i f f r a c t i o n p a t t e r n s designated as t y p e Ε are
o b t a i n e d (10) ( F i g u r e 3 ) .
A n a l y s i s of t h e p h o t o g r a m s gives t h e r a t i o b e
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
tween t h e B r a g g spacings as 1:
1 / V 3 : 1/ V~4—that i s , t h e y satisfy t h e
Figure 8. Low-angle x-ray diffraction pat terns of a mesomorphous substance with type Ε hexagonal structure Bragg spacing ratio 1:1/
V8:l/\/4
c r i t e r i o n f o r a t w o - d i m e n s i o n a l h e x a g o n a l arrangement. T h e d i f f r a c t i o n d i a g r a m has a s p o t t y appearance even w h e n t h e s a m p l e is r o t a t e d . T h e spots are often arranged i n a definite h e x a g o n a l p a t t e r n , a n d occasionally p h o t o g r a m s were o b t a i n e d w i t h three concentric six-rings w i t h a r e l a t i v e displacement of 30°. T h i s suggests a s y s t e m of h e x a g o n a l l y a r r a n g e d p a r a l l e l c y l i n d e r s . T h e c y l i n d e r s themselves are composed of a m p h i p h i l i c m a t t e r — c a p r y l a t e a n d d e c a n o l — a n d t h e i r core consists of h y d r o c a r b o n chains i n a l i q u i d o r s e m i l i q u i d s t a t e ; t h e h y d r o p h i l i c e n d groups are anchored t o t h e surface of t h e c y l i n d e r s a n d are i n contact w i t h t h e w a t e r s e p a r a t i n g t h e c y l i n d e r s . T h e u n i t cell p a r a m e t e r of t h i s hexagonal n e t w o r k is 30 t o 35 A . T h e same t y p e of x - r a y d i f f r a c t i o n p a t t e r n is o b t a i n e d i n t h e p a r t s of the s y s t e m a r o u n d p o s i t i o n | (10) ( F i g u r e 4 ) ; t h i s indicates t h a t here, too, is a s i m i l a r t w o - d i m e n s i o n a l h e x a g o n a l arrangement. T h e u n i t cell p a r a m e t e r for t h e h e x a g o n a l n e t w o r k , however, is u p t o 47 Α . , a v a l u e t h a t is inconsistent w i t h t h e above m o d e l since t h e p r o p o r t i o n of w a t e r is too l o w i n r e l a t i o n t o t h e a m o u n t of a m p h i p h i l i c substance. I t is therefore neces s a r y t o assume w h a t m a y be referred t o as a n inverse h e x a g o n a l s t r u c t u r e ,
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
9.
MANDELL ET AL.
Mesomorphous
93
Phases
Figure 4- Low-angle x-ray diffraction pat tern of a mesomor phous substance with type F hexagonal structure Bragg spacing ratio
1:1/V8:1/V4 w i t h l o n g p a r a l l e l w a t e r c y l i n d e r s i n h e x a g o n a l a r r a n g e m e n t , separated b y a l i q u i d or s e m i l i q u i d h y d r o c a r b o n e n v i r o n m e n t consisting of molecules of the a m p h i p h i l e s w i t h t h e h y d r o p h i l i c groups f a c i n g the water. W e c a l l this s t r u c t u r e t y p e F . I n the m i d d l e of t h e s y s t e m , a r o u n d p o i n t s X i n F i g u r e 2, a m e s o m o r p h i c s t r u c t u r e was encountered t h a t gave x - r a y d i f f r a c t i o n p a t t e r n s of a c o m p l e t e l y different k i n d (10) ( F i g u r e 5). T h e s e show u p t o three d i s t i n c t reflections, whose B r a g g spacings are i n the r a t i o 1 : 1 / 2 : 1 / 3 . Here, t h e n , is a n arrangement w i t h l i n e a r s y m m e t r y consisting of layers of a m p h i p h i l i c substance a l t e r n a t i n g w i t h layers of w a t e r molecules. T h e for m e r are o b v i o u s l y c o m p o s e d of double layers of a m p h i p h i l i c molecules, arranged w i t h the h y d r o p h i l i c groups facing o u t w a r d t o w a r d t h e w a t e r a n d
Figure 5. Low-angle x-ray diffraction patterns of mesomorphous substances with lamellar structures types D (left) and C (right) Bragg spacing ratio 1: Λ: Α λ
λ
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
O R D E R E D FLUIDS A N D LIQUID CRYSTALS «20 A
r
100
80 9
Phase Β Phase D
y
60 40 10
20
30
50
40
moles of H 0
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
2
molts of (No Cy + Decanol) 100 A
80
Phase Β
60
40 10
20 moles of H 0
30
40
2
moles of (N a Cy4-Decanol) 45 A Phase C
401-
35 PhaseD 30
8 10 12 moles of H 0
14
16
2
moles of (N a C y 4-Decanol) Figure 6. Dependence of Bragg spacing on water content of meso morphous substance, sodium caprylate-decanol-water, at 20°C. Upper. Center. Lower.
Transition from mesophase D to mesophase B. Molar ratio for decanol-sodium caprylate. Meso phase D = 2.4, mesophase Β = 1.4 to 1.9 Transition from mesophase C to mesophase B. Molar ratio for decanol-sodium caprylate X 1.56 Transition from mesophase D to mesophase C. Molar ratio for decanol-sodium caprylate X 1.56
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
9.
MANDELL ET AL.
Mesomorphous
Phases
95
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
the m o r e or less p a r a l l e l h y d r o c a r b o n chains i n w a r d , f o r m i n g a l i q u i d o r semiliquid hydrocarbon region w i t h i n the double layer. W e have, h o w ever, f o u n d three d i s t i n c t s u b t y p e s w i t h l i n e a r s y m m e t r y , w h i c h differ i n t h a t t h e i r B r a g g spacings v a r y d i f f e r e n t l y w i t h t h e w a t e r content of the mesomorphous substance ( F i g u r e 6) (5). T h e s e w e c a l l t y p e s D , C., a n d B . T h e m o s t extensive is t y p e D . I f a l l t h e mesomorphous m a t t e r of t h e l i q u i d c r y s t a l area belonged to one phase, there w o u l d be a c o n t i n u o u s change of t h e different i n n e r s t r u c tures i n t o another. H o w e v e r , t h i s was n o t t h e case, for each s t r u c t u r e represents a d i s t i n c t phase, a n d t h e areas c o n t a i n i n g homogeneous m e s o phases are separated f r o m one a n o t h e r b y t w o - a n d three-phase zones, w i t h i n w h i c h the t w o or three phases, r e s p e c t i v e l y , exist i n e q u i l i b r i u m (4, 5, 0, 10). Is There a True Equilibrium
State?
T o e x a m i n e t h e phase e q u i l i b r i a i n t h e s y s t e m m e n t i o n e d , m i x t u r e s of s o d i u m c a p r y l a t e , d e c a n o l , a n d w a t e r were p r e p a r e d i n different w a y s . T h e t i m e to r e a c h e q u i l i b r i u m was shortened b y m i x i n g , v i g o r o u s s h a k i n g , a n d p r o l o n g e d w a r m i n g . I n some experiments finely p o w d e r e d s o d i u m c a p r y l a t e a n d d e c a n o l were m i x e d t h o r o u g h l y a n d a l l o w e d to s t a n d at v a r i ous t e m p e r a t u r e s before w a t e r was a d d e d , e i t h e r i n s m a l l p o r t i o n s at d i f f e r ent i n t e r v a l s or a l l at once. T h e m i x t u r e was s u b s e q u e n t l y t r e a t e d at d i f ferent t e m p e r a t u r e s . I n o t h e r experiments s o d i u m c a p r y l a t e a n d w a t e r were m i x e d a n d h e a t e d u n t i l a homogeneous s o l u t i o n was o b t a i n e d or u n t i l there w a s no f u r t h e r c h a n g e ; d e c a n o l w a s t h e n a d d e d , e i t h e r i n s m a l l p o r tions at different i n t e r v a l s or as a single v o l u m e . I n t h e o t h e r e x p e r i m e n t s a l l three components were m i x e d , a n d the r e a c t i o n was p r o m o t e d b y t h o r o u g h m i x i n g a n d a g i t a t i o n for different periods a n d at a range of f a i r l y h i g h t e m p e r a t u r e s (100° to 1 8 0 ° C ) . A l l the m i x t u r e s were m i x e d i n glass a m p o u l e s , w h i c h were t h e n sealed. I r r e s p e c t i v e of t h e m e t h o d of t r e a t m e n t , a l l t h e samples were cooled to r o o m t e m p e r a t u r e w i t h c o n s t a n t a g i t a t i o n . T h e p e r i o d of storage was never less t h a n 24 h o u r s , even i f e q u i l i b r i u m h a d been o b t a i n e d i n a shorter t i m e , a n d some were stored for as l o n g as 13 weeks. W h a t e v e r t h e m e t h o d of p r e p a r a t i o n , t h e state of e q u i l i b r i u m o b t a i n e d for each m i x t u r e was a l w a y s t h e same (5, 6). T h a t t h e systems were i n t r u e e q u i l i b r i u m is e v i d e n t f r o m t h e findings g i v e n i n the f o l l o w i n g tables for samples w i t h t h e same c o m p o s i t i o n b u t different t r e a t m e n t . I r r e s p e c t i v e of t h e m e t h o d of t r e a t m e n t , samples h a v i n g t h e same c o m p o s i t i o n gave t h e same x - r a y d i f f r a c t i o n p a t t e r n s w i t h the same B r a g g s p a c i n g . T h e y also d i s p l a y e d the same m i c r o s c o p i c t e x t u r e a n d o t h e r ex t e r n a l properties. I n the examples presented i n T a b l e I c e n t r i f u g a t i o n d i d n o t result i n s e p a r a t i o n i n t o l a y e r s , n o r d i d i t disclose a n y difference i n x - r a y p a t t e r n or e x t e r n a l p r o p e r t i e s ; w e therefore concluded t h a t t h e samples were homogeneous f r o m t h e s t a n d p o i n t of phase. A l l the p r e p a r a t i o n s i n T a b l e s I I a n d I I I separated i n t w o l a y e r s , w h i c h differed i n c o m p o s i t i o n , x - r a y d i f f r a c t i o n p a t t e r n , a n d m i c r o s c o p i c t e x t u r e .
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
96
O R D E R E D
F L U I D S
A N D
L I Q U I D
Table I.
C R Y S T A L S
Samples from Storage
Initial Composition, % Sample
NaCy
E l
41.0
^l^n^
H0
Dec.
48.0
11.0
2
Treatment
Days
Heating to homogeneous solution(130°C.). Cooling to
23
20° in air by agitation (ca. 5°/ i ) Heating to homogeneous solution(130°). Cooling in stages to 20° over 5 days Heating to homogeneous solution(130°). Rapid cooling in ice bath. Warming in stages to 20°, over 5 days
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
m
E2
41.0
48.0
11.0
Ε 3
41.0
48.0
11.0
D 1
30.0
31.0
39.0
D 2
30.0
31.0
39.0
D3
30.0
31.0
39.0
n u t e
81
22
Heating to homogeneous solution(130°). Cooling to 20° in air by agitation (ca. 5 ° / minute) Heating to homogeneous solution(130°). Cooling i n stages to 20°, over 5 days Heating to homogeneous solution (130°). Rapid cooling in ice bath. Warming in stages to 20°, over 5 days
21
81
22
Table II. Preparations Samples w i t h the Same C o m p o s i t i o n Centrifuge
Data
Top
Approximate Storage Initial Composition, Sample I
E
2
b
3
C
4
d
5
e
NaCy
Distribution
Time %
„,
m
o
fry r
Days
Layer
%
W
4
p
M
g
T
i
m
e
^
fyO
Dec.
hrs.
3 9 . 5
3 9 . 5
2 1 . 0
9
100,000
17
3 9 . 5
3 9 . 5
2 1 . 0
7
100,000
39.5
3 9 . 5
2 1 . 0
30
3 9 . 5
3 9 . 5
2 1 . 0
39.5
3 9 . 5
2 1 . 0
Volume N
o
o
f
layers
T
o
p
B
o
t
t
o
m
Composition, NaCy
Ηφ
layer
2
5 8 . 0
4 2 . 0
3 9 . 0
3 2 . 9
2 8 . 1
16
2
5 7 . 0
4 3 . 0
3 8 . 8
3 2 . 8
28.4
100,000
15
2
5G.0
4 4 . 0
3 8 . 8
32.9
2 8 . 3
G
100,000
10
2
5 0 . 0
4 4 . 0
38.9
3 3 . 0
2 8 . 1
0
100,000
10
2
5 0 . 0
4 4 . 0
3 9 . 0
33.1
27.9
Treatment a
b
c
Heating
to
100°C.
%
layer
N o n h o m o g e -
neous solution. Cooling in air b y agitation (ca. 5 ° / m i n u t e ) Heating to homogeneous solution (ca. 160°). Cooling to 20° in air b y agitation (ca. 5 ° / m n i u t e ) A s preparation 2
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Dee.
9.
M A N D E L L
Mesomorphous
E TA L .
97
Phases
One-Phase Regions X-Ray Diffraction Data
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
Bragg spacing, Α.
Structure
Centrifuge Data
Micro scopic Texture
Field, g
Time, hr.
32.0, 18.4, 15.9
Hexagonal type Ε
Type Ε
130,000
3
31.5,18.2,15.8
Hexagonal type Ε
Type Ε
130,000
4
31.6, 18.5, 15.9
Hexagonal type Ε
Type Ε
130,000
3
31.8, 16.0, 10.6
Linear type D
Type D
130,000
5
31.8,
16.0
Linear type D
Type D
130,000
4
32.2,
16.0
Linear typeD
Type D
130,000
6
Resuit
No separation. No change in properties
No separation. N o change in properties
from a Two-Phase Region but Different Treatment, Ε + Top
X-Ray
Micro
Bottom
Diffraction
texture
spacing, A.
Structure
Micro-
Data
Bragg
scopic
D
Layer
Composition, NaCy
%
X-Ray
Diffraction
scopic
H0
Dec.
texture
2
Layer
Type D
Linear, type D
40.7
48.0
11.3
Type Ε
Hexagonal, type Ε
Type D
Linear, type D
40.7
48.1
11.2
Type Ε
Hexagonal, type Ε
Type D
Linear, type D
40.6
48.2
11.2
Type Ε
Hexagonal, type Ε
Type D
Linear, type D
40.6
48.2
11.2
Type Ε
Hexagonal, type Ε
Type D
Linear, type D
40.8
48.4
10.8
Type Ε
Hexagonal, type Ε
d
e
30.2,
15.0
Data
Bragg Structure
spacing, A.
I 32.0, 18.3, I 16.0
H e a t i n g to homogeneous solution (ca. 1 6 0 ° ) . R a p i d cooling i n ice bath. W a r m i n g i n stages to 2 0 ° over 3 d a y s H e a t i n g to homogeneous solution (160°). C o o l i n g i n stages to 2 0 ° over 5 d a y s
Porter and Johnson; Ordered Fluids and Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
98
ORDERED
FLUIDS A N D LIQUID
CRYSTALS
Table III. Preparations Samples w i t h Same Composition Centrifuge
Data
Top
Approximate Storage Initial
Downloaded by RUTGERS UNIV on December 28, 2017 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch009
Sample
NaCy
Distribution 6?/
Volume
~To~p
Bottom
Time %
Composition,
t20°C.,
a
Days
Layer
%
Field,
Time,
g
No.
hr.
of
layers
Composition, NaCy
H2O
%
H2O'
Dec.
layer
layer
I
e
21.0
25.0
54.0
10
20,000
17
2
49
51
17.3
20.4
62.3
Dec.
2
6
21.0
25.0
54.0
30
20,000
19
2
50
50
17.3
20.2
62.5
3
C
21.0
25.0
54.0
40
20,000
16
2
52
48
17.3
20.4
62.3
4*
21.0
25.0
54.0
6
20,000
17
2
51
49
17.4
20.1
62.5
5·
21.0
25.0
54.0
6
20,000
17
2
51
49
17.4
20.2
62.4
6/
21.0
25.0
54.0
3
20,000
16
2
51
49
17.3
20.4
62.3
Treatment a
b c
H e a t i n g to homogeneous solution. C o o l i n g to 2 0 ° C . i n a i r b y a g i t a t i o n (ca. 5 ° / m i n u t e ) A s i n preparation 1 A s i n preparation 1
Table IV.
Preparation
Samples w i t h the Same Composition Top
Initial Composition, Sample
l
a
NaCy
^Time %
H2O
Dec.
36.0
47.2
16.8
at20°C.,
Centrifuge
Data
Micro-
Field
Time,
g
hr.
5
100,000
17
3
Days
Layer
No. layers
of
Composition, NaCy
%
scopic
H2O
Dec.
texture
36.2
34.3
29.5
Type D
2
b
36.0
47.2
16.8
28
70,000
16
3
36.4
33.5
30.1
Type D
3
C
36.0
47.2
16.8
6
100,000
16
3
36.1
34.2
29.7
Type D
47.2
16.8
100,000
17
3
36.2
34.3
29.5
Type D
4