Chapter 7
Amphiphilic Ligands in Chemical Separations E. Pramauro, C. Minero, and E. Pelizzetti
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
Dipartimento di Chimica Analitica, Universitàdi Torino, Torino 10125, Italy
A series of 4-alkylamido-2-hydroxybenzoic acids containing a d i f f e r e n t number of carbon atoms i n the a l k y l amido group has been studied as model ligands for metal ion extraction i n aqueous micellar solutions of nonionic surfactants. Their acid-base properties and r e a c t i v i t y towards metal ions i n the presence of micelles were i n vestigated. By operating at a proper temperature, the separation of the iron(III) chelate complexes into a micellar r i c h phase was achieved and the extraction efficiency was correlated with the ligand hydrophobicity. The use of organized molecular assemblies i n analytical chemistry has lead to the improvement of existing methods and to the development of new procedures (1, 2). In particular, its applications i n chemical separations, including chromatography and extraction, seems to be very promising (3, 4). The phase separation of nonionic micellar solutions above the cloud point has been succesfully applied to the l i q u i d - l i q u i d extraction of some metal chelate complexes (5, 6). In these systems the concentration of the analyte takes place i n the micellar r i c h layer, which can be readily analyzed. Although this approach can be interesting i n analytical chemistry because it allows one to conduct extractions without using organic non miscible solvents, no systematic investigations were performed concerning the parameters which can regulate the efficiency of the process, such as the effect of the ligand hydrophobicity, the var i a t i o n of the chemical properties of reagents i n the presence of mic e l l e s , the kinetics of complexation and extraction and so on. In this work, some of the above mentioned features were i n v e s t i gated for a simple extraction model, using suitable complexing amphiphiles having different hydrophobicity.
0097-6156/87/0342-0152$06.00/0 © 1987 American Chemical Society
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
7.
153
Amphiphilic Ligands in Chemical Separations
PRAMAURO ET AL.
A s e r i e s o f compounds c o n t a i n i n g the same c h e l a t i n g m o i e t y , mely 4 - a m i n o s a l i c y l i c a c i d , w i t h d i f f e r e n t a l k y l c h a i n s , was sized.
The
s t r u c t u r e o f the l i g a n d s
(PAS-C ) i s the
na
synthe
following:
R-CONH.
The m i c e l l a r p a r a m e t e r s were p r e v i o u s l y d e t e r m i n e d
(7) .
S i n c e a g g r e g a t i o n o c c u r s f o r t h e s e compounds o n l y a t h i g h pH
va
l u e s , a s t u d y o f complexing p r o p e r t i e s o f a g g r e g a t e s i n t h e p r e s e n c e of
u s u a l t r a n s i t i o n m e t a l i o n s c a n n o t be p e r f o r m e d .
wever, the PAS-C
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
ce o f n o n i o n i c s u r f a c t a n t s nol) in
A t lower pH,
m o l e c u l e s can be r e a d i l y s o l u b i l i z e d (e.g. B r i j
ho
i n the p r e s e n
35: p o l y o x y e t h y l e n e ( 2 3 ) d o d e c a -
and the o b t a i n e d mixed m i c e l l e s e x h i b i t complexing
capability
a c i d i c media.
tem
In o r d e r t o i n v e s t i g a t e t h e s e p a r a t i o n mechanism, the model s y s i r o n ( I I I ) - P A S - C was chosen and i t s p r o p e r t i e s were s t u d i e d i n η
the
presence of n o n i o n i c m i c e l l e s .
Experimental
Section
Potentiometry.
The d i s s o c i a t i o n c o n s t a n t s o f
benzoic a c i d s i n the presence of B r i j 25°C and 0.10
M ionic
strength
4-alkylamido-2-hydroxy-
35 m i c e l l e s were measured a t
(NaNO^).
The
ligand
(0.002 M)
t r a t e d w i t h 1 M NaOH u s i n g a 6 5 5 - M u l t i - D o s i m a t automated (Metrohm), The
t i
e q u i p p e d w i t h a 605-pH-meter and a 614-Impulsomat u n i t .
t i t r a t i o n s were p e r f o r m e d under
a l l o w the e l e c t r o d e Chromatography.
flow, very slowly, i n order to
equilibration.
The r e t e n t i o n volumes o f PAS-C
a P e r k i n Elmer S-2 tector.
was
titrator
chromatograph,
A μ-Bondapak
C
were measured w i t h
e q u i p p e d w i t h a UV-VIS-LC-55 Β de
r e v e r s e phase
column
(Waters) was
used.
18 M o b i l e phases c o n t a i n i n g B r i j red
t h r o u g h a 0.45
s o l u t e was of
ym
35
( i o n i c s t r e n g t h : 0.10
c e l l u l o s e membrane f i l t e r
dissolved i n Brij
M)
were
(Millipore).
filte Each
35 s o l u t i o n s b e f o r e t h e r u n s ; 5-10
μΐ
the sample s o l u t i o n a t a c o n c e n t r a t i o n i n t h e range 0.001-0.003 M
were i n j e c t e d and the e l u t i o n was (1-2 ml/min),
a t a f i x e d pH
performed a t constant flow r a t e
(2 o r 6 ) , a t room t e m p e r a t u r e
The a b s o r b a n c e s were m o n i t o r e d a t 280 Spectrophotometry. the
presence of B r i j
the
maximum
0.05
Μ HNO^,
The a b s o r b a n c e s o f i r o n ( I I I ) - P A S - C complexes
(520 nm). a t 0.10
(25+ 1 ° C ) .
nm. in
35 m i c e l l e s were measured a t t h e w a v e l e n g t h o f E x p e r i m e n t s were p e r f o r m e d i n the p r e s e n c e o f M i o n i c strength
(NaNO^ was
added), a t 25°C.
The
i n v e s t i g a t e d s u r f a c t a n t c o n c e n t r a t i o n was
i n t h e range 0.001-0.01
M.
The i r o n ( I I I ) p r e s e n t i n the m i c e l l a r r i c h phase
i n extraction
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
154
ORDERED MEDIA IN CHEMICAL SEPARATIONS
experiments
was
a l s o measured s p e c t r o p h o t o m e t r i e s l y , a t 520
nm,
af-
t e r d i l u t i o n o f an a l i q u o t o f t h i s l a y e r w i t h a b u f f e r e d s o l u t i o n o f T r i t o n X 100 2-5
% w/v,
(polyoxyethylene(9.5)-p-1,1,3,3-tetramethylbutylphenol)
t o ensure
a c l o u d temperature
enough h i g h i n o r d e r t o
a v o i d t u r b i d i t y e f f e c t s d u r i n g t h e measurements. A C a r y 219
spectrophotometer
(Varian) was
used
throughout
the
work. Extraction.
E x t r a c t i o n experiments
were performed
using
suitable
nonionic s u r f a c t a n t s or t h e i r mixtures having cloud p o i n t t r a n s i t i o n temperatures
n o t f a r from t h e room t e m p e r a t u r e .
c e n t r a t i o n was
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
The
i n t h e range
1-5
a n a l y t e c o n t e n t was
i n excess
%
5-10
The
ppm,
ion).
(acetic acid / acetate or
a c i d / c h l o r o a c e t a t e ) and i n e r t s a l t
(NaNO^) was
The pH
added i n o r d e r t o facilita-
centrifugation.
M i x t u r e s o f T r i t o n X 100 and BL 4.2 n o l ) were used The
(polyoxyethylene(4.2)dodeca-
i n t h i s p a r t o f t h e work.
complex f o r m a t i o n was
a f t e r few m i n u t e s ,
f a s t i n t h e r e p o r t e d c o n d i t i o n s and,
t h e absorbance
o f t h e s o l u t i o n showed no
A f t e r h e a t i n g a t a c o n s t a n t temperature
phase was
then o b t a i n e d .
The
changes.
( c a . 3 5 ° C ) , above t h e
c l o u d p o i n t o f t h e m i x t u r e , t h e heterogeneous f u g e d a t 3400 r.p.m. f o r 15 min.
d i s p e r s i o n was
c e n t r i f u g e v e s s e l s were c a l i b r a t e d i n
o f t h i s l a y e r were t a k i n g w i t h a s y r i n g e f o r t h e DC-Plasma S p e c t r o m e t r y .
aliquots
analysis.
Some c o n t r o l measurements o f t h e a n a l y t e
c o n t e n t i n the aqueous e x t r a c t e d phase were p e r f o r m e d t r a s p a n IV a p p a r a t u s
centri-
A deep v i o l e t m i c e l l a r r i c h upper
o r d e r t o a l l o w t h e measurement o f the m i c e l l a r phase volume;
was
was
chloroacetic
i n c r e a s e t h e d e n s i t y o f the aqueous r i c h lower phase, w h i c h tes f a s t
con-
with a ligand concentration
(ca. t e n times w i t h r e s p e c t t o the metal
adjusted with a proper b u f f e r
surfactant
w/v.
( S p e c t r a m e t r i c s ) . The
u s i n g a Spec-
e m i s s i o n l i n e a t 259.5
nm
used.
R e s u l t s and D i s c u s s i o n Binding Constants of Ligands with Nonionic M i c e l l e s The
acid-base p r o p e r t i e s o f the amphophilic
p r e s e n c e o f m i c e l l a r a g g r e g a t e s due
l i b r i u m o f b o t h t h e a c i d and a n i o n i c form. the a p p a r e n t pK
was
c e l l i z e d surfactant
l i g a n d s change i n t h e
t o t h e w e l l known p a r t i t i o n e q u i A continuous increase i n
observed with i n c r e a s i n g c o n c e n t r a t i o n of
mi-
(see T a b l e I ) .
A c c o r d i n g t o t h e s i m p l e pseudophase model o f B e r e z i n (8), b i n d i n g c o n s t a n t s between the l i g a n d s and c u l a t e d u s i n g the f o l l o w i n g
the
the m i c e l l e s have been
equation:
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
cal-
7.
Amphiphilic Ligands in Chemical Separations
PRAMAURO ET AL.
-1
-1
a(app)
a(w)
K
where Κ
+ K HA
155
«1 K C a(w) D
(1)
i s t h e d i s s o c i a t i o n c o n s t a n t o f c a r b o x y l a t e group i n a(app) the p r e s e n c e o f B r i j 35, Κ , i s t h e same c o n s t a n t i n water, Κ is , a(w) HA the b i n d i n g c o n s t a n t o f t h e u n d i s s o c i a t e d PAS-C t o t h e m i c e l l e s and %
ν
C i s t h e c o n c e n t r a t i o n o f m i c e l l i z e d s u r f a c t a n t (C = C - CMC). D D tot The c r i t i c a l m i c e l l a r c o n c e n t r a t i o n f o r B r i j 35, measured w i t h t h e s u r f a c e t e n s i o n method i s 6x10 Table I.
V a l u e s o f pK
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
Brij
f o r PAS-C , PAS-C 2
oAoffi,
25°C, I =
M, i n t h e e x p e r i m e n t a l c o n d i t i o n s .
i n the Presence
3 35, C x l O (M) D
PAS-C
4
and PAS-C , a t
of B r i j
7
35 M i c e l l e s
Measured pK , a(app) PAS-C PAS-C 2 4 7
0.94
3.12
3.14
1.44
3.14
3.20
1.94
3.16
3.26
2.44
3.20
3.32
2.94
3.26
3.40
3.94
3.29
3.47
4.94
3.33
3.59
6.94
3.55
3.68
9.94
3.65
3.84
14.94 19.94
P l o t s of experimental and PAS-C^, a t t h e lower
data according t o Equation
1, f o r PAS-C
2
s u r f a c t a n t c o n c e n t r a t i o n s a r e shown i n F i
gure 1. S i n c e t h e e v a l u a t i o n o f t h i s parameter i s v e r y i m p o r t a n t , a l s o measured u s i n g t h e m i c e l l a r HPLC t e c h n i q u e
i t was
( 9 ) , which a l l o w s a
b e t t e r e s t i m a t i o n o f the p a r t i t i o n c o e f f i c i e n t s i n the presence o f quite high concentrations of surfactant. ter
The c h r o m a t o g r a p h i c
parame
Ρ was measured f o r each l i g a n d as a f u n c t i o n o f s u r f a c t a n t c o n
centration, according to Equation -1 Ρ = Ρ
+ sw
2:
-1 Κ Ρ C HA sw D
(2)
where P = V / ( V - V ) , V and V a r e t h e volume o f s t a t i o n a r y and , ., s e m s m m o b i l e phase, r e s p e c t i v e l y , and V i s t h e e l u t i o n volume. Ρ repree sw s e n t s t h e p a r t i t i o n c o e f f i c i e n t o f s o l u t e s between t h e s t a t i o n a r y and the aqueous p h a s e .
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
O R D E R E D M E D I A IN C H E M I C A L S E P A R A T I O N S
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
7.
157
Amphiphilk Ligands in Chemical Separations
PRAMAURO ET AL.
F o r the i n v e s t i g a t e d PAS-C
l i g a n d s , the b i n d i n g c o n s t a n t
for
the u n d i s s ^ c i a t e d form c l e a r l y i n c r e a s e s w i t h η, from 170 M
for
and
anionic
500
M
f o r C^ up
t o c a . 1500
M
f o r C^,
form i t becomes s i g n i f i c a n t o n l y f o r C i s i n good agreement w i t h the v a l u e s a t low
surfactant concentration,
c h a i n l e n g t h f o r the
whereas f o r the
(110 M
).
estimated
and
The
from pK
C^
obtained
data
, shift, a(app) %
a l l o w us t o d e f i n e a minimum
l i g a n d i n order
t o have a s t r o n g b i n d i n g t o
the
m i c e l l e s , b o t h i n a c i d i c o r a n i o n i c form. Complex F o r m a t i o n C o n s t a n t i n the P r e s e n c e o f M i c e l l e s The
kinetics
(10)
and
the complex f o r m a t i o n
e q u i l i b r i a i n the
presen
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
ce o f n o n i o n i c m i c e l l e s have been a l s o i n v e s t i g a t e d , a t c o n s t a n t dity.
The
s t o i c h i o m e t r y was
apparent s t a b i l i t y constants Ostwald p r o c e d u r e
For
(12_,
13)
were e v a l u a t e d
according
t o Frank
the and iron/
i r o n / s a l i c y l a t e i n homogeneous aqueous a c i d i c
.
the e q u i l i b r i u m r e a c t i o n : 3+
+
Fe where H S a l
+
HSal
^ΖΞ
+
FeSal
+
Η
i n d i c a t e s the d i s s o c i a t e d c h e l a t i n g m o i e t y o f the l i g a n d ,
the o b s e r v e d changes i n the a p p a r e n t f o r m a t i o n d i r e c t l y r e l a t e d with discussed.
constants
the v a r i a t i o n o f t h e a p p a r e n t pK
(K^)
can
c r e a s i n g the B r i j change i n
values
35 c o n c e n t r a t i o n from 0.001 was
from 2.5x10
M t o 0.01
t o 4.0x10
the
(e.g., by i n M,
the
f o r PAS-C^ and
obser
from
2.3x10
t o 3.0x10
f o r PAS-C^, r e s p e c t i v e l y .
bility,
PAS-C
i n v e s t i g a t e d i n a narrow s u r f a c t a n t c o n c e n t r a t i o n
7
was
range
(0.01-0.02 M);
sured
for this The
a nearly constant
K
c
Due
be
, previously
F o r the l e s s h y d r o p h o b i c l i g a n d s , the i n c r e a s e o f
s u r f a c t a n t c o n c e n t r a t i o n gave r i s e t o h i g h e r ved
aci
by u s i n g Job's method and
(11) , as p r e v i o u s l y r e p o r t e d f o r the systems
s u l f o s a l i c y l a t e and solution
assessed
value
t o i t s lower s o l u ( c a . 3x10
experiments performed c l e a r l y
showed t h a t , whereas the
p l e x a t i o n o f i r o n ( I I I ) i s n o t v e r y much dependent on d r o p h o b i c i t y , the a s s o c i a t i o n o f the c h a r g e d 1:1 c e l l e s and
) was
mea
compound.
the l i g a n d
c h e l a t e s t o the
t h e n the e f f i c i e n c y o f the c o n c e n t r a t i o n p r o c e s s ,
comhy mi
markedly
increases. E x t r a c t i o n o f I r o n ( I I I ) from M i c e l l a r S o l u t i o n s The
s u r f a c t a n t system T r i t o n X 100
/ BL 4.2
s u i t a b l e c l o u d t e m p e r a t u r e range and towards the l i g a n d s . vestigated The
Table
was
chosen because i t s
the good s o l u b i l i z i n g
capability
I I summarizes the p r o p e r t i e s o f some i n
mixtures.
analyte content,
a f t e r e x t r a c t i o n , was
determined both i n
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
158
ORDERED MEDIA IN CHEMICAL SEPARATIONS
the m i c e l l a r and
i n the
aqueous r i c h phase by
VIS-spectrophotometry.
C a l i b r a t i o n c u r v e s were made w i t h m i c e l l a r phases c o n t a i n i n g solved
ligands,
p a r a t e d by the
i n the
absence o f i r o n ( I I I ) .
To
the
dis
these s o l u t i o n s ,
c e n t r i f u g a t i o n , were added known amounts o f a n a l y t e
se
and
a b s o r b a n c e s were r e c o r d e d . The
s t a n d a r d a d d i t i o n method was
micellar layers containing
a l s o a p p l i e d t o the
iron(III).
The
extracted
r e s u l t s obtained with both
p r o c e d u r e s were found i n good agreement, as w e l l as which o b t a i n e d from DC-plasma s p e c t r o m e t r y a f t e r a n a l y s i s o f the
aqueous d i l u t e pha
ses. The
e x t r a c t i o n e f f i c i e n c y was
i n d e p e n d e n t measurements; the
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
t e r s was
also
t h e n c a l c u l a t e d from a t l e a s t f o u r
i n f l u e n c e o f the e x p e r i m e n t a l parame
investigated.
Table I I .
Properties
o f Some T r i t o n X 100/BL
Triton X
100 : BL (%,
and
Phase
(°C) 0.50
26.3
-
26.5
:
0.75
26.6
-
26.9
8.5
1.00
:
1.00
26.8
-
27.0
11.0
1.25
:
1.25
26.8
-
27.1
14.3
1.50
:
1.50
27.0
-
27.3
21.1
2.00
:
2.00
27.5
-
27.7
30.6
2.50
:
2.50
27.8
-
28.0
31.0
2 shows the
e f f e c t o f the
BL
4.2
i t can be
(1% w/v);
(PAS-C
1Q
ligand hydrophobicity
added NaNO^: 5% w/v;
the 100
i r o n ( I I I ) : 1x10
seen, q u a n t i t a t i v e r e c o v e r y o f i r o n ( I I I ) has conditions
using
or higher analogues).
c h a i n m o l e c u l e s can
a v a i l a b l e i n the
on
i n the p r e s e n c e o f T r i t o n X
M
M.
o b t a i n e d i n the r e p o r t e d of these long
3.5,
(%)
6.5
:
PAS-C : 2χ1θ"
pounds
w/v)
0.75
and
As
5 %
Volume o f the M i c e l l a r
C l o u d Temperature
r e c o v e r y , measured a t pH
(1% w/v)
3
0.50
Figure analyte
4.2
w/v)
4. 2 M i x t u r e s
C o n d i t i o n s (NaN0
i n the E x p e r i m e n t a l
the more h y d r o f o b i c
However, the
l i m i t the
ligand
lower
been com
solubility
concentration
system, k e e p i n g the volume o f m i c e l l a r
extraction
phase c o n s t a n t . The tions the
e x t r a c t i o n p e r f o r m a n c e s under d i f f e r e n t e x p e r i m e n t a l
( i . e . varying
the pH,
the
composition of surfactant
condi
mixtures,
amount o f c h e l a t i n g compound) were a l s o i n v e s t i g a t e d f o r our
system. All
The
r e s u l t s are
the
e x t r a c t i o n s were p e r f o r m e d i n the p r e s e n c e o f added
(NaNO , 5% w/v).
The
formed a t v a r i o u s
pH
ligand concentration was
test
shown i n T a b l e I I I .
2x10
M.
For
f o r the
salt
experiments p e r
the r u n s i n w h i c h
surfactant
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
F i g u r e 2. function
P l o t of of
the p e r c e n t r e c o v e r y o f i r o n ( I I I )
ligand a l k y l chain
as
length.
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
a
160
ORDERED MEDIA IN CHEMICAL SEPARATIONS
composition
o r l i g a n d c o n c e n t r a t i o n were changed, t h e pH was c o n s t a n t
(3.5) .
Table I I I .
E x t r a c t i o n E f f i c i e n c y as a F u n c t i o n o f Experimental Parameters f o r I r o n ( I I I ) - P A S - C
pH
% Ε
PAS-C , M 7
% Ε
T r i t o n X 100/
% Ε
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
BL 4.2, *h w/v -4
2.00
39.0
5.0x10
2.65
74.5
1.0x10
80.0
0.50:0 .50
77.6
87.5
0.75:0 .75
3.10
88.4
93.6
1.5x10
92.0
1.00:1 .00
3.50
93.7
93.7
2.0x10
93.7
1.50:1 .50
3.75
94.3
94.0
-3
Conclusions The
r e s u l t s o b t a i n e d w i t h t h e r e p o r t e d e x t r a c t i o n model showed t h a t
the s e p a r a t i o n o f c h a r g e d s p e c i e s i s p o s s i b l e , p r o v i d e d a s u i t a b l e ligand hydrophobicity.
F u r t h e r a n a l y t i c a l developments o f t h e s e mul
t i p h a s e e x t r a c t i o n systems w i l l
r e q u i r e an a c c u r a t e i n v e s t i g a t i o n o f
the e q u i l i b r i a and k i n e t i c p r o c e s s e s o c c u r r i n g a t t h e i n t e r f a c e s , a s w e l l as t h e study o f the m i c e l l a r host
s t r u c t u r e and p r o p e r t i e s o f t h e
aggregates. Other f u n c t i o n a l i z e d s u r f a c t a n t s having d i f f e r e n t
groups and modular l i p o p h i l i c solubilizing
complexing
chains, together with various nonionic
s u r f a c t a n t s , a r e p r e s e n t l y under i n v e s t i g a t i o n i n o u r
laboratories. Acknowledgments S u p p o r t o f t h i s work by C.N.R (Rome) and European S t a n d a r d i z a t i o n O f f i c e , under C o n t r a c t DAJA 45-85-C-0023, i s g r a t e f u l l y
appreciated.
Literature Cited 1. Hinze, W. L. In "Solution Chemistry of Surfactants"; Mittal, K. L., Ed.; Plenum Press: New York, 1979; p. 79. 2. Pelizzetti, E.; Pramauro, E. Anal. Chim. Acta 1985, 169, 1-29. 3. Cline Love, L. J . ; Habarta, J. G.; Dorsey, J. G. Anal. Chem. 1984, 56, 1133-48 A. 4. Armstrong, D. W. Separation and Purification Methods 1985, 14, 213-304. 5. Watanabe, H.; Tanaka, H. Talanta 1978, 25, 585-9.
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
7. PRAMAURO ET AL.
Amphiphilic Ligands in Chemical Separations
161
Downloaded by YORK UNIV on November 23, 2012 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch007
6. Watanabe, H. In "Solution Behavior of Surfactants: Theoretical and Applied Aspects"; Mittal, K. L.; Fendler, Ε. J., Eds.; Plenum Press: New York, 1982; Vol. II, p. 1305. 7. Pelizzetti, E.; Pramauro, E.; Barni, E.; Savarino, P.; Corti,M.; Degiorgio, V. Ber. Bunsenges. Phys. Chem. 1982, 86, 529-32. 8. Yatsimirskii, A. K.; Martinek, K.; Berezin, I. V. Tetrahedron 1971, 27, 2855-68. 9. Armstrong, D. W.; Nome, F. Anal. Chem. 1981, 53, 1662-6. 10. Pramauro, E.; Pelizzetti, E.; Cavasino, F. P.; Sbriziolo, C. in preparation. 11. Frank, H. S.; Oswalt, R. L. J. Am. Chem. Soc. 1947, 69, 1321-5. 12. Saini, G.; Mentasti, E. Inorg. Chim. Acta 1970, 4, 210-4. 13. Saini, G.; Mentasti, E. Inorg. Chim. Acta 1970, 4, 585-8. RECEIVED October
24, 1986
In Ordered Media in Chemical Separations; Hinze, W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.