Organic elemental analysis - ACS Publications - American Chemical

Apr 1, 1984 - Organic elemental analysis. T. S. Ma and C. Y. Wang. Anal. Chem. , 1984, 56 (5), pp 88–96. DOI: 10.1021/ac00269a008. Publication Date:...
0 downloads 0 Views 2MB Size
Anal. Chem. 1984, 56, 88 R-96 R (194) Vylov, Ts. D.; et al. Meas. Tech. 1081, 4, 52. (195) Endt, P. M. Verh. Dtsch. fhys. 1 3 s . 1081, 16. 801. (196) Millsap, D. A. “New Raffle Cross-Section Libraries Incorporating Version V Materials”; EWG Idaho, EGG-PHYS-5469, 1981. (197) Pearlstein, S. “Evaluation and Processing of Nuclear Data”; Brookhaven National Laboratory, BNL-NCS-27892, 1980.

(198) Duchemln, 6.; et 81. “Decay Heat Calculatlons with the CEA Radioactlvlty Data Bank and the Code PEPIN”; CEA Centre d’Etudes Nucleaires de Saclay, CEA-CONF-6455, 1982. (199) Tasaka, K. “DCHAIN 2 A Computer Code for Calculation of Transmutation of Nuclides”; Japan Atomlc Energy Research Institute, Tokyo, JAERI-M-8727, 1980.

Organic Elemental Analysis T.S . Ma* Department of Chemistry, City University of New York, Brooklyn, New York 11210

C . Y . Wang Department of Chemistry, Yunnan University, Kunming, Yunnan, China

This review follows the last one (1) and covers the period from October 1981to September 1983. During the later part of 1983 the senior author made a trip to several countries where he previously served as visiting rofessor and visited a number of laboratories in order to o serve the recent developments in organic elemental analysis. It was found that the automated CHN analyzer has become standard equipment, while the manually operated combustion trains are used for checking analytical results which are at variance with the theoretical values or for testing compounds which may explode on combustion. No new instruments were introduced after the publication of the author’s comprehensive treatise (2). For the determination of major constituents, reference compounds for C, H, N, 0, C1, Br, I, F, and S are available (3); thus the analyst can use them for verification of analytical procedures and as calibration standards. The demand for determination of trace elements in organic materials has increased by leaps and bounds lately. Most samples come from projects related to biomedical, agricultural, or environmental investigations. Since these analytical specimens are always very complicated mixtures (4) and are different from case to case, the analyst must choose a particular method for each situation and prove the reliability of the experimental data.

i

CARBON, HYDROGEN, NITROGEN Determination of carbon and hydrogen in fluorine-containing compounds wm studied by several investigators (5-8); use of Co O4 as a combustion catalyst avoids the formation of CF4. 8 0 3 0 4 is also recommended for the combustion of organic compounds which contain arsenic or phosphorus (9, 10). Wei et al. (11) determined carbon and hydrogen in organometallic compounds by covering the sample With freshly prepared c0304 in a platinum boat and burning in a stream of oxygen a t 500-550 “C in a silica tube packed with the thermal decompositionproduct of AgMn04. For the analysis of phthalocyannines, Miroshina et al. (12) used ground vitreous silica or platinum as catalyst. Wang et al. (13) described a sampling technique for highly hygroscopic compounds. Namiesnik et al. (14) analyzed centigram amounts of volatile liquids by injecting the sample into a chamber, where it is flushed by air into the combustion tube. Kopycki et al. (15) constructed an automated sampler with a closed deaeration chamber. Dirscherl(16) prepared a special copper layer for CHN determinations. Fadeava et al. (17) studied various oxides as combustion catalysts and concluded that a mixture containing 64% Mn02, 13% Cr,O3,13% PbO,, and 10% Si0 gave the best results. The performance of several automated CHN analyzers was evaluated (18-20). Allain et al. (21) determined carbon and hydrogen in hydrocarbons by burning the sample in a furnace a t 1050 “C, passing the combustion products through CuO, silver alumina, and silver wool in another furnace at 850 “C, diluting the gas 88 R

0003-2700184/0356-88R$O1.5010

with oxygen, and conducting the mixture to two nondispersive infrared detectors for measuring H 2 0 and CO,, respectively. Otsuki et al. (22) determined carbon and nitrogen together with their stable isotopes by coupling a mass spectrometer with a modified CHN analyzer. In the determination of hydrogen concentration and stable-isotope composition, Krishnamurthy et al. (23) found that the presence of sulfur in the samples can cause low yields of hydrogen and also large errors in ,H to IH ratios, probably due to the formation of CuSO46HzO. For nitrogen determination by the Kjeldahl method, modified apparatus (24,25) and catalysts (26) were reported. Jurecek et al. (27) continued to study the conversion of organic nitrogen into NHSby catalytic hydrogenolysis in the gas phase, while Nomura et al. (28) employed pyrolysis in steam. Ionselective electrodes (29) are recommended for the finishing step (3&32). Some workers used the indophenol-blue reaction (3.9) or polarography (34). For the Dumas method. Zlakowska (35)used CeO, as a catalyst in the combustion tube to analyze nitrogen-con&ning organophosphorus compounds. Kirillova (36) determined nitrogen in compounds which contain the Si-C-N bond by coulometric titration with electrogeneratedBrO-. Hernandez (37) described an apparatus to determine nitrogen by pyrochemiluminescence: The sample is pyrolyzed in oxygen at 1000 “C to produce NO which is passed into a reaction chamber where it is mixecfwith ozone, and the light intensity resulting from the reaction is measured with a photomultiplier tube. Automated methods for nitrogen using the Dumas or Kjeldahl principle were evaluated and compared (38-41).

OXYGEN, SULFUR, HALOGENS Yoshimori et al. (42) determined oxygen by decomposing the sample in a graphite crucible at 1900 “C in a stream or argon to produce CO,; after purification, the CO was oxidized by CuO and the resulting COz was absorbed in a solution of ethanolamine in dimethylformamide and titrated with tetrabutylammonium hydroxide, using thymolphthalein as indicator. Wang (43) employed a combustion tube in argon atmosphere and gravimetric finish for CO,. Uhdevoa et al. (44) used a stream of helium for combustion at 1050 “C, removed products containing sulfur or halogen by means of silver, separated the gas mixture in gas chromatograph, and measured the CO content by thermal conductivity. Wan et al. (45) pyrolyzej the organic compound in a flask under nitrogen, conducted the products through platinized carbon to yield CO which was subsequently converted to CO,, and determined by photocoulometric titration with a constant current of 20 mA. Xiang et al. (46) decomposed sulfur compounds in a vertical quartz tube under oxygen at 950 “C, retained the H,S04 produced on quartz wool soaked in H202,and determined HzS04by acid-base coulometric titration. Hirohara et al. (47) 0 1984 American Chemical Society

ORGANIC ELEMENTAL ANALYSIS

Table 1. Simdtaneolu Determination ofMajor Element6 elements method ref

c, CI

gaschromatography titrimetry, colorimetry titrimetry m, 1 CI, s titrimetry 1, s titrimetry halogen, P cbelometry F,B titrimetry s, p Polarography )H, 'IS radioactivity Si, Sn gravimetry C , H, halogen gravimetry C , H. I gravimetry C , H, coulometry C. H. Te coulometrv c; N;H gas chrodtography CI, Br, I titrimetry C, H. 0, N gas chromatography C , H, 0, N, halogens gas chromatography + ion chromatography C, H, F,S,Si gravimetry c1, Br, P, s ion chromatography

CI,Br

76 77,78 79 80 81 82 83 84 85

86 81 88 89

on .. 91 92 93 94

95 96

the absorb= solution wan titrated photometrically at 610 nm with Th(NO& using pyroeatheool as indicator. Hassan et d (62) determined arsenic or phosphorus by acid digestion and

used closed flesk combustion for the determination of sulfur in o anometallic compounds and added sulfonated sytrene-%vinylbenzene resin to the absorbing solution to remove interference from metal ions in the titration of Sod2-with Ba(CI0,)2, using thoron I as indicator. Saitoh et aL (48)used ion chromatographyto determine SO,* after flask combustion. Chumachenko et al. (49) performed reductive pyrolysis of sulfur compounds in a silica apparatus by thermal shock a t 1150 "C and determined the H,S produced by gas chromatography. Kozlowski and Maciak (50) described a computerized rocedure for automated titrimatic determination of chlorine, romme, or iodine that involves combustion of the compound in a wide tube connected to a titration vessel; potentiometric titration is performed with AgClO, to the preset end point potential with use of a combination silver electrode to detect the end point. Larina et al. (52)analy7ed halogen compounds by closed flask combustion and titration of the resulting solution with electr enerated Ag+. Sienkowska-Zyskowskaet al. (52) ConstructeTa special absorber to determine halogens in the centigram range using the flash combustion technique. Ke (53) described a method to determine chlorine in airsensitive lanthanides that uses an automated electrolytic finsih. Xiang et al. (54) determined organic iodine in the presence of chlorine and bromine by closed flask combustion in combination with potentiometric titration with Ag' using a picrate ion-selective electrode as end point detector. For fluorine determination, several workers (55-58)recommended closed tlask combustion followed by titration with ion-selective electrodes (29). Covalently hound fluorine in organic compounds was decomposed by means of sodium biphenyl (59). Bem and Ryan (60) determined fluorine in organofluorine compounds by epithermal neutron activation analysis and reported that interference from chlorine is less than that found with thermal neutron activation.

E '

OTHER E L E M E N T S Xiang et aL (61) determined arsenic by closed flask com-

bustion; the sample was mixed with benzoyl peroxide prevent formation of platinum-arsenic alloy, and AsO." in

recipitation of the AsO," or PO,* with quinoline, followed y! measuring the unconsumed quinoline spectrophotometrically at 312 nm. Dong et al. (63)decom osed phosphorus compounds in the combustion flask and Betermined the resulting PO4" by potentiometric titration with CdCI, and cadmium ion selective electrode as end point detector. Kasler e t al. (64) employed Fourier transform nuclear magnetic resonance to determine hoaphorus or boron in organic compounds. Liu et al. (65)&composed organoboron compounde in a qua& flask and determined the resulting B033-with a BF; ion selective electrode using the single increment method. After H&04 digestion, Gurev et at. (66)used a BF; electrode to determine boron by two-phase potentiometric titration with crystal violet solution, nitrobenzene or chloroform being the nonaqueous phase. Campiglio (67) designed a Combustion flask which has a tubular extension to determine copper in organic compounds; after decomposition,Cu2+waa titrated with 0.01 N K.Fe(CN4 with use of a Cu selective electrode and a single-junction reference electrode. Li et al. (68) determined the metallic elements in organolanthanides by complexometric titration with EDTA. Abou-Taleb et al. (69)determined neodymium, praseodymium, samarium, or yttrium by using oxine as reagent to produce crystallinecomplexes which can be weighed or measured iodiometrically. Zhu (70)described a spectrophotometric method to determine rhodium. Lukashenkova e t al. (71) determined osmium by the distillation of 090,. Atomic absorption spectrometry was used to analyze organometallics containing germanium (72),indium (73),tin (741,and the transition elements (75). S I M U L T A N E O U S DETERMINATION OF S E V E R A L ELEMENTS Table I summarizes the papers which appeared during the %year period d d i with the methods for the determination of two or more major elements using one sample. Simultaneous determination of carbon, hydrogen, and nitrogen is not included in the table, because this subject has been discussed in a previous section. Perusal of the references cited reveals that in most methods well-established techniques (2) are used to decompose the sample, and the resulting products are determined with or without separation. Titrimetry s e e m to be favored as the mode of f h h ; hence the recently developed ion-selective electrodes (29)have found many applications. Osadchii et al. (82) described a method to determine phosphorus and halogens by heating the sample in three connected evacuated silica tubes maintained at 900,500, and IO00 OC, respectively; the first tube effects decomposition of the organic compounds; the second and third tubes contain aluminum powder which forms, respectively, aluminum phosphide and aluminum halides which are then dissolved ANALYTICAL CHEMISTRY. VOL. 56. NO. 5. APRIL 1984

89 R

ORGANIC ELEMENTAL ANALYSIS

in HNO, and HzO, and the A13+in the resulting solutions is determined com lexometrically. Hara et al. (93rused unweighed samples to determine the atomic ratios of the major elements. For carbon, hydrogen, oxygen, and nitrogen ratios, the sample is mixed with sulfur and pyrolyzed to produce CS2,H2S, COS, and N2 which are measured in a gas chromatograph. This method was tested with less than 150 pg of organic compounds and was found applicable to the analysis of organometallics. When the sample also contains halogens (94), it is heated with sulfur and Na#. The above mentioned gaseous products are determined by gas chromatography. Halogens are converted to sodium halides which remain in the residue. After treatment of this residue with potassium biphthalate solution, the halides are determined by ion chromatography.

DETERMINATION OF TRACE ELEMENTS A tremendous amount of research work has been devoted to the determination of trace elements in organic materials in recent years. Owing to the complexity of the problems, however, there are few definitive answers. For instance, De Goeij et al. (97) examined the data obtained for Mn, Cu, Cr, and Co in an interlaboratory study of milk powder and found differences in performance and applicability of analytical techniques for all the cited elements. Reference materials certified by international committees require the cooperation of many laboratories and the use of several analytical methods. Thus one hair sample (98) was analyzed in 65 laboratories in 28 countries; of the 40 elements determined, statistical analysis gave certified levels for As, Au, Br, Ca, C1, Co, Cr, Cu, Fe, Hg, Mg, Mn, Na, Pb, S, Sb, Se, Sr, and Zn. The sulfur content of petroleum was determined by Wickbold combustion,bomb combustion, closed flask combustion, X-ray fluorescenceand inductively coupled plasma atomic emission spectrometry (99). The Community Bureau of Reference, Commission of the European Communities, has ublished a list of organometallic compounds for use as stan ards in environmental element analysis; it points out that adding a standard solution to the sample before decomposition ives no indication of the efficiency of the digestion proce ure (100). The matrix effect has drawn much attention because it reflects the validity and accuracy of the experimental data. De Ruig (101) studied the blank values in various methods for the determination of Pb in biological, food, or agricultural samples. May et al. (102) proposed a matrix modifier to eliminate matrix interferences in the analysis of fish tissue for P b by atomic absorption spectrometry. Saeed et al. (103) reported on the spectral interferences from phosphate matrices in the determination of As, Sb, Se, and Te in serum and whole blood. On the other hand, Hoenig et al. (104) evaluated the determination of Cd, Co, Cr, Ni, and P b in fish organs and found no significant interference from tissue matrices. Karyakin et al. (105) performed direct dc arc spectrographic determination of Co, Ni, Mo, Ti, Al, Fe, Mg, Cu, and Mn in blood plasma and found that the presence of 2 to 5% of albumin in the samples had no effect on the intensity of analytical lines recorded photographically. Correct preparation of the analytical sample is the first requirement in order to obtain useful data of trace element analysis. Pietre et al. (106) studied the sources of sample contamination and precautions to avoid loss of elements in working with biological materials. Preer et al. (107) studied sample preparation in the determination of P b in garden vegetables by flame atomic absorption spectrometry;care must be taken to avoid contamination, but clean-room facilities are not essential. Meranger et al. (108) studied the effects of storage times, temperatures (-70 to +22 "C), and container types on the determination of Cd, Cu, Hg, Pb, and Zn in heparinized blood and found that the levels of the cited elements changed significantly aftep 1week in all containers at all temperatures; however, these workers later reported (109) that in polycarbonate vessels, the Cd and Pb values remained stable for 60 days at -10 "C. In the determination of Cr content of human hair, Kumpulainen et al. (110) found that 1% Triton X-100 solution removed 48% of the original Cr, hexane-ethanol(1:l) and 1% sodium dodecyl sulfate solution both removed 70% in two washes, while acetone removed gradually up to 59% in successive washes. Clanet et al. (111) studied the effects of cosmetics on Cu and Zn concentrations in scalp hair. Evaluating the elemental contents of human

B

d

90R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

Table 11. Determination of Trace Nonmetals element antimony arsenic

bismuth boron bromine carbon chlorine fluorine hydrogen iodine nitrogen oxygen phosphorus selenium

silicon sulfur

material analyzed biological plant biological marine petroleum plant biological marine bi 010 gical plant biological biological marine soil biological petroleum plant biological plant polymer plant biological plant biological plant petroleum plant biological food plant biological food marine plant biological biological petroleum plant solvent

mode of finisha aas aas, col aas, aes, asv naa aas aas, isd aas, asv aas naa aes, col xre, xrf rad rad tit ise, rad cou naa ise, lam ise naa rad col, csv, naa naa col, ms, naa nls aSV

ms aas, col aas col aas, flu, gc, isd, naa, rad, tlc aas, naa aas csv, naa aes CSV

csv, cou, ir, mas, pes, xrf col col

ref 132 133,134 135-137 138 139 140,141 142,143 144 145 146,147 148,149 150 151 152 153,154 155 156 157-160 161 162 163 164-166 167 168-170 171 172 173 174,175 176 171

178-184 185,186 187,188 189,190 191 192 193-198 199 200

Abbreviations: aas, atomic absorption spectrometry; aes, atomic emission spectrometry; afs, atomic fluorescence spectrometry; asv, anodic stripping voltammetry; csv, cathodic stripping voltammetry; col, colorimetry (spectrophotometry at the visual region); con, conductivity; cou, coulometry; enz, enzymatic method; epm, electron probe microanalysis;fep, flame emission photometry; flu, fluorimetry; gc, gas chromatography; ic, ion chromatography; ir, infrared absorption; isd, isotopic dilution; ise, ion-selective electrode; lam, laser microprobe mass analysis; IC, high-performance liquid chromatography; lum, luminescence; mas, molecular absorption spectrometry; ms, mass spectrometry; naa, neutron activation analysis; paa, photon activation analysis; pes, photoelectron spectrometry; pir, proton irradiation; pol, polarography; rad, radioactivity; tit, titrimetry; tlc, thinlayer chromatography; tur, turbidimetry; xre, X-ray emission; wf, X-ray fluorescence. a

nails reported by different laboratories, Bank et al. (112) concluded that the discrepencies are due to the washing procedures used. Mosulishvili et al. (113)described a new method to prepare biological materials for serial neutron activation analysis; it involves freeze-drying the sample and pressing it in a titanium mold to form a tablet of 4 mm diameter and 2 mm height, weighing about 20 mg. Enrichment methods for trace metals by electrodialysis (114), and for determination by high-performance liquid chromatography (115) were reported. Numerous studies were made to adapt the various decomposition techniques (2)to trace element analysis. Loss of the elements during decomposition of the organic material is a matter of concern. Elements such as As, Fe, Hg, I, Ru, S, Sb,

ORGANIC ELEMENTAL ANALYSIS

Table 111. Determination of Trace Metals material analyzed mode of finisha element biological food plant americium biological beryllium plant agricultural cadmium biological food marine biological calcium petroleum cerium paint biological cesium chromium biological plant biological cobalt paint biological copper food petroleum plant gallium biological germanium bioloeical gold biological iron biological food solvent lead biological cosmetics food paint petroleum plant lithium biological magnesium biological

aluminum

a

aas, aes, pol col flu rad aas asv aas, asv, naa avs aas aas, aes, col, isd, ise, lum aas aes xre aas, aes, col IC

naa col aas, col, isd naa aas naa, pol, tit aas rad aas, naa, pol aas, col, cou, rad col col aas, afs, asv, pol, rad col, pol, aas aas, asv aas aas aas, col aas, fep aas, col

ref 201-103 204 205 206 207 208 209-211 212 213 214-219 220 221 2 22 2 23-22 5 226 227 2 28 229 -2 3 1 232 2 33 234-236 237 2 38 239-241 2 42 -24 5 246 2 47 248-252 253 254,255 256 257, 258 259,260 261,262 263,264

element

material analyzed

mode of finisha

biological aas, naa petroleum aas mercury biological aas, csv, enz, naa aas, tit drug aas food marine aas petroleum aas aas, nas plant molybdenum biological naa col food plant ses, col, pol nickel biological aas, gc, rad col, ir food plant col, aas palladium biological naa platinum biological aas, naa plutonium biological rad biological isd, ise potassium biological rad radium rad food sodium biological col, fep, ise strontium fep, rad plant techniciuni rad plant tin biological aas marine aas petroleum aas, aes titanium biological col uranium biological rad col food biological aas, col, naa vanadium col food naa marine pe trole urn col, gc zinc biological aas, col, enz, isd, naa naa food zirconium biological naa manganese

ref 265,266 2 67 268-271 272,273 274 275 27 6 277,278 279 280 281-283 284-286 287 288 289 290,291 292 293,294 295 296 297-299 300, 301 302 30 3 304 305 30 6 307 308 309-311 312 b13 314, 315 31 6-320 321 322

See footnote of Table I1 for abbreviations.

and Se might volatilize in the decomposition process, particularly when carried out in an open system (116). When plant materials were oven-dried, Grudon et al. (117) found that loss of volatile sulfur-containing compounds might reach 97%. Ivanetich et al. (118) reported that the sodium fusion technique was inapplicable to volatile fluorinated metabolites in biological specimens. Strittmatter et al. (119) studied the decomposition of samples with use of a gas burner, a hot-air oven, or a muffle furnace; when 2 ppm of As was added to bismuth subgallate, As could be detected only if the gas burner was used for ashing. On the other hand, nonvolatile elements might be lost upon dry ashing by being bound to porcelain or glass vessels, as reported by Blanusa et al. (120). Knapp et al. (121) described an apparatus for combustion of organic materials in a stream of oxygen, claiming that loss of trace elements and danger of contamination were minimized. Sakla et al. (122)decomposed blood and serum directly by closed flask combustion. Weber et al. (123) digested tobacco, foods, and plastics in a vessel filled with oxygen under pressure. Uhrberg (124) constructed an acid-digestion bomb for biological samples. Raptis et al. (125) decomposed fats and oils in a stream of oxygen and collected the combustion products in a cold fiiger which is immersed in liquid nitrogen. For lead determination in food, Thornbur (126) recommended dry ashing with either HzS04or Kz 0,; new Pyrex beakers can be used but once only. Swaminathan et al. (127) decomposed plant leaves for determination of N, P, K, Ca, and Mg by digestion with a mixture containing wet starch, CrOs and H2S04. Comparing several ashing techniques involving use of acids and of bases to decom ose bovine liver for determination of Fe, Cu, Zn, and Mn, &egg et al. (128) reported that HN03 was the most effective reagent. For the determination of Se in biological materials, Neve et al. (129) favored HN03-HC1O4-HzSO4mixture over FINO3alone. Contrastingly, Bajo et al. (130) observed that wet ashing with HN03-HC104 was

8

unsuitable for the determination of Sb, owing to the formation of insoluble Sb compounds. Knight (131) recommended dry ashing of plant materials for multielement analysis including As, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, and Zn, while acid digestion is useful for certain individual elements such as Cd, Pb, and Zn. During the 2-year period, more than half of the elements on the periodic table were investigated with respect to the methods of determination a t the trace level in organic materials. Table I1 shows the nonmetals while Table I11 lists the metallic elements. The reference given for each element indicates that an example of the method of analysis can be found therein; it is not, however, the only article published concerning the analysis of that element by the cited method. As a matter of act, only a small fraction of the recent research publications on trace element analysis is quoted as references in this review. Among the nonmetals, selenium is the element which has received most attention, followed by sulfur. Among the metals, toxic elements such as lead, mercury, and cadmium predominate. Like in previous years, a vast majority of the samples analyzed were biological specimens. The determination of trace elements in human scalp hair has become an important subject because of its biomedical significance (417). Presently most laboratories are quipped with the atomic absorption spectrometer; hence this instrument has been extensively used to determine individual elements, as can be seen in Tables I1 and 111. It should be noted, however, atomic absorption spectrometry is not a panacea; there are occasions when another technique is much superior in determining certain elements. Research in the area of multielement analysis has been very active. A summary is given in Table IV. Selected examples are cited in the references. Among hundreds of published reports, atomic absorption spectrometry is most frequently employed for determination; next comes neutron activation. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

91 R

ORGANIC ELEMENTAL ANALYSIS

Table IV. Methods for Multielement Analysis

method amper ometr y anodic stripping atomic absorption

atomic emission

colorimetry dc arc flame photometry gas chromatography ion Chromatography ion-selective electrodes mass spectrometry neutron activation

material analyzed food biological food biological coal feed food petroleum plant biological marine petroleum plant biological plant plant biological plant biological biological biological biological plant biological €0od petroleum plant

polymer solvent photon activation biological polarography food plant potentiometric stripping biological plan5 radioactivity biological food thin-layer chromatography food titrimetry drug polymer X-ray emission biological plant X-ray fluorescence biological food petroleum plant

elements determined Pb, Hg, Cd, T1 Pb, Cd, Sn, Cu Sn, Pb Pb, Cd, TI, Zn, Cu, Co, Se, Ru, Ce, Mn, Fe, Ca, Cr, As, Sb, Al, Au,Mg, Na Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, V, Zn Hg. As. Se. Cd. Pb Cd; Pb; Cu, Fe; Zn, Mn, Ni, As, Se, Hg V, Ni, Cu, Fe, Mo, Co Mg, Ca, K, Na, Zn, Mn, Cu, Cd, As, Al, Fe 4,Fa, Cd, CO,Cr, Cu, Fe, Mg, Mn, Ni, Pb, V, W, Zn, Be, Hg, T1, Mo, Ti, Li, Sr, Mg, Na As, Se 21 elements Al, Fe, As, Sb, Bi V, Co, Mg, P, Fe, Ca Hg, Cd, Pb Cu, Co, Mo K, Na Ca, K Zn, Cd, Cu, Ni, Hg, Pb, Co S, C1, Br Na, K Cu, Cr, Mn, Ag, T1, Zn, Pb 1 3 elements C1, Br, Ca, Mg, Mn, Na, V, Cu, K,Ag, Al, Co, Cr, Cs, Fe, P, Sb, SC,Se, Zn, Hg, Mo, As, F, Au, Cd, Rb Hg, V , Cr, As, Se, Cu, Mn, Mo, Zn 30 elements Mg, AI, si, C1, K,La, Sb, Sc, Cr, Fe, Co, Mo, Hf, Ts, W, Mn, Na, P, Rh, Pd, Os, Ir, Pt, Ru Sb, C1, As, Au, Br, Co, Mn, Sb, W , Zn 26 elements Ca, C1, Co, Cs, Hg, I, K, Mg, Mn, Ni, Pb, Rb, Sb, Zn Cr, Cu, Pb, Cd Mo, Zn, Cu, Pb Cd, Pb, Cu, Zn Cd, Zn, Pb Sr, I, Pm, Ce, Pu, Am, Cm I, Ce, Ba Zn, Pb Zn, Pb P, C1, Br, S K, Ca, Fe, Cu, Zn, Rb, 73, Cr, Ni, Sr, Br, Ni, Y, 19 elements K, Ca, Mg, S, P, Cl, Cr, Mn, Fe, Ni, Ni, CU, Zn, Br, Rb, Sr C1, K , Ca, Fe, Cu, Zn, Se, Br, Rb, Sr, Pb, Ni, As Sn, Cd, Ag, As, Pb, T1, Zn, Cu, Ni, Cr, Mg, P, S, C1, K Sn, Pb, Mo, Ni, Ti, Mn, Fe, Cu, Cr, S, C1, K, Ca, V Mn, Fe, Ni, Cu, Zn, Pb

After the cieveiopment of the inductively coupled plasma (ICP)technique, attention has been turned to atomic emission spectrometry (AES). A number of papers have appeared concerning the appiication of ICP AES to the determination of many elements simultaneousiy in a variety of organic materids. Schramel et al. (418)studied the efficiency of ICP AES for analyzing bioiogical and environmental samples and proposed an apparatus suitable for direct anaiysis of serum or urine (419). Aziz et al. (420) described the evaporation of biological samples in a graphite furnace for ICP AES. Black et al. (421) determined trace metals in liver after direct chelation in sealed ampuies. ICP AES has been utilized to determine Ca, P, Mg, Fe, Zn, Cu, Mn, Na, and K in infant food (422) or Cu, Fe, Zn, P, Ca, and Mg in pharmaceutical formulations (423). Kuennen et al. (424) ciescribed pressure dissolution and real sampie matrix caiibration for multielement ICP AES analysis of agriculture crops. Camerlynck et al. (425) described preconcentration and elimination of alkaline-earth metal interferences in the determination of Mo, Pb, Cd, Co, Ni, and Cr in planr materials. When reference standards are employed in analyzing biological samples, Braetter et al. (426) recommended using muhielement standards which closely match the sample composition and identical digestion conditions ior samples and standards. Comparing ICP AES and neutron activation analysis for biological materials, Braetter et al. (427) conciuaed that the 92R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

ref 32 3 324, 325 326 327-336 337 338 339-344 345 346-349 350-353 354 355 356,357 358-360 361 362 363 364 3 65 366 367 368, 369 370 371-378 379, 380 381 382-386 387, 388 389 390 391, 392 393 39 4 39 5 396, 397 39 8 399 400 401 402-405 406,407 408 -4 10 411-413 414,415 41 6

neutron activation technique is more sensitive, but ICP AES is useful for determining such elements as P, S, B, Be, and Te for which neutron activation analysis is unsuitable. LITERATURE CITED

(1) Ma, T. 8.; Wang, C. Y.; Gutterson, M. Anal. Chem. 1982, 54, 87R. (2) Ma, T. S.;Rlttner, R. C. “Modern Organic Elemental Analysis”; Dekker: New York, 1979. (3)Griepink, B.; Harners, L.; Le Duigou, Y. Comm. Eur. Communities, (Rep) EUR 1981, 7352; 1982, 7813. (4) Ma, T. S.; Lang, R. E. “Quantitative Analysis of Organic Mixtures”; Wiley: New York, 1979:Chapter 1. (5) Wang, Y. 0.; Xlang, L. J. Chhese J . Org. Chem. 1981, 433. (6) Farag, A. B.; Attia, M. E.; Hassan, H. N. A. Microchem. J. 1981, 26, 22. (7) Skorobogatova, V. I.; Balashenko, L. V.; Marnaseva, T. V. Zh. Anal. Khlm. 1981, 3 6 , 584. (6) Lapteva, A. S.;Bondarevskaya, E. A,; Polygalova, E. V. Zavod. Lab. 1983, 49, 20. (9) Lu, Y. 2. Chinese J. Anal. Chem. 1982, l o s 174. (10) Binkowskl, J.; Glzinski, S. Microchim. Acta 1980, 11, 387. (11) Wei, T.; Huang, D. Q.; Chen, Y. 2 . Chem. J. Chinese Unlversities 1981, 2 , 321. (12) Miroshlna, V. P.; Platonova, T. V.; Ryzhkov, B. D.; Repetyuk, T. M.; Egorenkova, I. A.; Egorova, T. I.; Cheraenkova, 1. V. Khirn. Prom-sti.,

Ser.: Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti. 1981,

(9,

46. (13) Wang, Y. 8.;Shae, S.Chinese J. Org. Chem. 1981, 374. (14) Namiesnik, J.; Kozlowski, E. Chern. Anal. (Warsaw) 1981, 2 6 , 553. (15) Kopycki, W.; Binkowski, J. Chem. Anal. (Warsaw) 1981, 2 6 , 679. (18) Dirscherl, A. Mikrochim. Acta 1982, 11, 253.

ORGANIC ELEMENTAL ANALYSIS (17) Fadeava, V. P.; Moryakina, 1. M. I z v . Sib. OM.Akad. Nauk SSSR, Ser. Khlm. Nauk 1081, (6),113. (16) Mazzeo, P.; Mazzeo-Farina, A. Microchem. J. 1983, 28, 137. (19) Pietrogrande, A.; Dalla Fini, 0. Farmaco, Ed. Prat. 1081, 36, 329. (20) Ono, K.; Takahashi, T.; Tamaru. M.; Oochi, S.; Takahashi, N.; Yamamuro, M. Sankyo Kenkyusho Nempo 1081, 33, 73. (21) Aliain, A.; Le Francois, T. Mikrochim. Acta 1082, I , 97. (22) Otsuki, A.; Ino, Y.; FUJI, T fnt. J . Mass Spectrom. Ion Phys. 1083, 48,343. (23) Kristhnamurthy, R. V.; DeNlro, M. J. Anal. Chem. 1082, 5 4 , 153. (24) Knauer, R.; Thiei, 0.; Uebach, J.; Woehrmann, H. GIT Fachz. Lab. 1081, 25, 389. (25) Munsinger, R. A.; McKinney, R. Int. Lab. 1082, 72 (7), 36. (26) Ugrinovits, M. Int. Lab. 1082, 74 (3). 33. (27) Jurecek, M.; Bulusek, J.; Safarova, M.; Prokes, B. Mlkrochlm. Acta 1983, I , 43, 207. (28) Nomura, A.; Morita, Y.; Kogure, Y. Jpn. Analyst 1081, 30, 290. (29) Ma, T. S.; Hassan, S. S. M. “Organic Analysis Using Ion-Selective Electrodes”; Academic: London, 1982; Voi. 2. (30) Boy, V. M.; Guijosa, M. J . Assoc. Off. Anal. Chem. 1081, 64, 1096. (31) Krelsner, M. DTW, Dfsch. Tleraerztl. Wochenschr. 1081, 88, 235. (32) Garcia-Barroso, C.; Hidalgo de Cisneros, J. L. H.; Perez-Pustamentede Monasterio, J. A. Aflnidad 1983, 40, 41. (33) Nkonge. C.; Bailance, G. M. J . Agrlc. Food Chem. 1982, 30, 416. (34) Fosdick, L. E.; Pike, R. K. J. Assoc. Off. Anal. Chem. 1082, 65, 178. (35) Zlakowska, W. Acta Pol. Pharm. 1981, 38, 433. (36) Kirillova, T. V.; Fedotov, N. S.; Bondarevskaya, E. A.; Buyanova; E. V. Zh. Anal. Khim. 1081, 36, 1145. (37) Hernandez, A. Int. Lab. 1081, 7 7 (6), 54. (38) Barteimus, G.; Heusser, W. Fresenius’ Z . Anal. Chem. 1082, 372. 221. (39) Colombo, 6.; Giazzi, G. Am. Lab. 1082, 74, (7), 36. (40) Suhre, F. B.; Corrao, P. A.; Glover, A.; Maianoskl, A. J. J . Assoc. Off. Anal. Chem. 1082, 65, 1339. (41) Wall, L. L.; Gehrke, C. W. J . Assoc. Off. Anal. Chem. 1081, 64, 1092. (42) Yoshimori, T.; Shiegeta, Y.; Nakanishi, H. Mlkrochlm. Acta 1082, I , 297 (43) Wang, C. Y. J. Natural Scl. Yunnan Unlv. 1082, (2), 76. (44) Uhdeova. J.; Rezi. V. Anal. Chem. 1081, 53. 164. (45) Wan, G. M.; Shen, Q.; Wang, Y. 6.; Shao, S.; Gao, I . J. Chinese J . Org. Chem. 1081, 353. (46) Xiang. L. J.; Yang, 2. L.; Chen, M. Q.; Gao, I. J. Chinese J . Org. Chem. 1082, 193. (47) Kirohara, T.; Yoshida, T. Osaka-furitsu Kogyo G#itsu Kenkyusho Hokoku 1082, (EO), 54. (46) Saitch, H.; Oikawa, K. Jpn. Analyst 1082, 37,E375. (49) Chumachenko, M. N.; Zulfugarov, E. A.; Gusein-Zade, S. M. Zh. Anal. Khim. 1081, 36,321. (50) Koziowski, E.; Maciak, G. M. Microchem. J . 1081. 26, 236. (51) Larina, N. 1.f Gelman, N. E. Zh. Anal. Khlm. 1081, 36, 795. (52) Sienkowska-Zyskowska, E.; Kozlowski, E. Chem. Anal. (Warsaw) 1081, 26, 249. (53) Ke, Y. W. ChineseJ. Org. Chem. 1981, 212. (54) Xiang, L. J.; Liu, C. L. Chinese Commun. IS€ 1082, 28 48. (55) Campbell, A. D.; Dawson, P. A. Mlkrochlm. Acta 1983, I , 489. (56) Wang, C. Y. Mlcrochem. J . 1082, 27,455. (57) Xiang, L. J.; Liu, C. L.; Hu, 2. Y. ChineseJ. Anal. Chem. 1081, 9 . 696. (56) Zhang, Y. H.; Chen, Z. H. Chinese J. Pharm. Anal. 1081, 7, 25. (59) Venkateswariu, P. Anal. Chem. 1082, 54, 1132. (60) Bem, H.; Ryan, D. E. J . Radioanal. Chem. 1081, 63, 405. (61) Xiang, I.J.; Hou, X. M.; Hu, 2. Y. ChlneseJ. Anal. Chem. 1082, 70, 243. (62) Hassan, S. S. M.; Eldesouki, M. H. Mlkrochim. Acta 1081 11, 261. (63) Dong, J. C.; Wang, C. Y. Chinese Commun. IS€ 1082, 2 , 51. (64) Kasier, F.; Tierney, M. Mikrochim. Acta 1081, 11, 301. (65) Liu, C. I.; Xiang, L. J.; Hu, 2. Y. Chinese Commun. IS€ 1081, 7 , 33. (66) Gurev, I. A.; Korenman, I. M.; Kutsovskaya, V. V.; Safonova, M. K. Zh. Anal. Khim. 1082, 37, 1264. (67) Campigiio, A. Mlkrochlm. Acta 1083, I , 443. (68) Li, Y. C.; Lu, H. 2. ChineseJ. Org. Chem. 1081, 210. (69) Abou-Taleb, S. A.; Zayed. M. A.; El-Roudi, A. M. Mlcrochem. J . 1082, 27,406. (70) Zhu, S. Y. Chemistty (China) 1082, (3), 15. (71) Lukashenkova, N. V.; Balenkova, N. N.; Ershova, N. I. Zavod. Lab. 1982, 48 (7), 15. (72) Burns, D. T.; Dadgar, D. Analyst (London) 1082, 707, 452. (73) Mashireva, L. G.; Ryabtsev, N. G.; Legasova, M. M.; Kuznetsova, N. V.; Orlov, A. S.; Bir, T. 2. Zavod. Lab. 1081, 47,39. (74) Marr, I . L.; Anwar, J. Analyst (London) 1082, 707, 260. (75) Chai, Q. X.; Zhu, S. S.; Xue, C. F. Chinese J. Org. Chem. 1082, 276. (76) Safarova. V. I.; Geiman, N. E.; Simonov, V. D.; Pllyugin, V. S. Zh. Anal. Khim. 1082, 37, 1263. (77) Burna, D. T.; Maitin, B. K. Anal. Proc. (London) 1082, 79, 324. (78) Toistykh, T. L.; Tishchenko, A. M.; Mikhailova, N. N. Zavod. Lab. 1082, 48(8), 19. (79) El-Akli, A. M.; Farag, A. B. Frensenius’ Z . Anal. Chem. 1981, 309, 126. (80) Dai, 2. Q. J . Natural Sci. Yunnan Univ. 1082, (3), 68. (81) Pietrogrande, A.; Dalla Fini, G.; Guerrato, A. Mikrochlm. Acta 1083, I . 325. (82) Osadchii, V. D.; Makiakova, A. V. Ukr. Khlm. Zh. 1081, 47,668. (83) Ehrenberger, F. Fresenius’ Z . Anal. Chem. 1081, 305, 181. (84) Rishara, S. W.; El-Samman, F. M. Mlcrochem. J. 1082, 27, 44. (85) Gacs, I.; Dbis, E.; Payer, K. J . Radioanal. Chem. 1082, 68, 83. (86) Wang, L. 6.; Mao, Z. L. Chlnese J. Anal. Chem. 1081, 9 , 627.

(67) Kozlowski, E.; Slenkowska-Zyskowska, E. Chem. Anal. (Warsaw) 1081, 26,45. (86) Farag, A. 6.; Attla, M. E.; Hassan, H. N. A. Indian J. Chem., Sect. B 1081, 20, 693. (69) Anisimova, G. F.; Klimova, V. A. Zh. Anal. Khim. 1082, 37, 1100. (90) Anisimova, 0. F.; Kiimova, V. A. Zh. Anal. Khim. 1081, 36, 1137. (91) Rezi, V.; Buresova, A. Mlkrochim. Acta 1982, 11, 95, 107. (92) Campigilo. A. Mlkrochlm. Acta 1082, 11, 347. (93) Hara, T.; Okui, F.; Fujinaga, K. Pull. Chem. SOC.Jpn. 1082, 55,3450, 3800. (94) Hara, T.; Fujinaga, K.; Okui, F. Bull. Chem. SOC.Jpn. 1081, 54,2956. (95) Skorobogatova, V. 1.; Baiashenko, L. V. Zh. Anal. Khim. 1082, 37, 307. (96) Yonemori, S.; Noshiro, M. AsahlGarasu Kenkyu Hokoku 1981. 37, 17. (97) De Goeij. J. J. M.; Kosta, L.; Byrne, A. R.; Kucera, J. Anal. Chim. Acta 1083, 746, 161. (96) M’Baku, S. B.; Parr, R. M. J. Radioanal. Chem. 1082, 69, 171. (99) Lindsey, A. S.; Coiinet, E.; Wagstaffe; P. J.; Haemers, I.Comm. Eur. Communites, (Rep .) FUR 7875 1082. (100) Griepink, B. Fresenius’ Z . Anal. Chem. 1082, 373,563. (101) De Ruig, W. G. Mikrochlm. Acta 1081, 11, 199. (102) May, T. W.; Brumbaugh, W. G. Anal. Chem. 1982, 54, 1032. (103) Saeed, K.; Thomassen, Y. Anal. Chim. Acta 1081, 730, 281. (104) Hoenig, M.; Lima, C.; Duplre, S. Analusis 1082, 70 (3), 132. (105) Karyakin. A. V.; Starshinova, N. P. Zh. Anal. Khim. 1081, 3 6 , 1696. (106) Pietra, R.; Sabbioni, E.; Springer, A.; Ubertaiii, L. J. Radioanal. Chem. 1982, 69, 365. (107) Preer, J. R.; Stephens, B. R.; Bland, C. W. J. Assoc. Off. Anal. Chem. 1982, 65, 1010. (108) Meranger, J. C.; Hollebone, B. R.; Bianchetter, G. A. J. Anal. Toxlcol. 1081, 5, 33. (109) Subramanian, K. S.; Merganer, J. C.; Connor, J. J . Anal. Toxicol. 1083. 7. 15. (110) Kumpulainen, J.; Salmeia, S.; Vuori, E.; Lehto, J. Anal. Chim. Acta 1082. 736.361. (11 1) Clanet, P.; DeAntonio, S. M.; Katz, S. A,; Schelner, D. M. Clin. Chem. 1882, 28, 2450. (112) Bank, H. L.; Robson, J.; Bigelow, J. 8.; Morrison, J.; Spell, L. H.; Kantor, R. Clln. Chlm. Acta 1981, 776, 179. (1 13) Mosuilshviii, L. M.; Kharabadze, N. E.; Efremova, E. Y.; Beiokobyiskii, A. I.; Ginturi, E. N.; Gudushauri, A. S. Soobsch. Akad. Nauk Gruz. SSR 1081. 707, 133. (114) Cox, J. A.; Carison, R. Anal. Chim. Acta 1081, 730, 313. (115) Cassidy, R. M9; Elchuk, S. J . Chromatogr. Scl. 1081, 79, 503. (116) Dorner, W. G. GITFachz. Lab. 1082, 26, 750. (117) Grundon, N. J.; Asher, C. J. Commun. Son. Scl. Plant Anal. 1081, 72, 1181. (118) Ivantich, K. M.; Bradshaw, J. J.; Brlttain, T. Anesth. Anag. 1982, 67, 786. (119) Strittmatter, T.; Stock, W. Pharm. Ztg. 1081, 726, 547. (120) Planusa, M.; Breseki, D. Talanta 1081, 28, 681. (121) Knapp, G.; Raptis, S. E.; Kalser, G.; Toeig, G.; Schramei, P.; Schreiber, B. Fresenlus’ Z . Anal. Chem. 1081, 308, 97. (122) Sakla. A. 6.; Badran, A. H.; Shaiaby, A. M. Mlkrochlm. Acta 1082, I , 483. (123) Weber, 0.; Bell, E. Dtsch. Lebensm. Rundsch. 1081, 77,361. (124) Uhrberg, R. Anal. Chem. 1982, 5 4 , 1906. (125) Raptis, S. E.; Kaiser, G.; Toeig, G. Anal. Chim. Acta 1982, 738,93. (126) Thornburg, W. J . Assoc. Off. Anal. Chem. 1082, 65,992. (127) Swaminathan, K.; Sud. K. C.; Verma, B. C. Commun. Soil Sci. Plant Anal. 1081, 72, 373. (128) Ciegg, M. S.; Keen, C. L.; Leonnerdai, 6.; Jurley, L. S. Biol. Trace Flem. Res. 1981, 3 , 107. (129) Neve, J.; Hanocq, M.; Moiie, L.; Lefebvre, G. Analyst(London) 1082, 707,934. (130) Bajo, S.; Suter, U. Anal. Chem. 1082, 54, 49. (131) Knight, M. J. Argonne Natl. Lab. (Rep.)ANLILRP-TM-78 1080. (132) Bencze, K. Aerztl. Lab. 1081, 27,347. (133) Kuennen, R.’W.; Hohn, M. H.; Fricke, F. L.; Wolnik, K. A. J . Assoc. Off. Anal. Chem. 1982, 65, 1146. (134) Aub-Hlial, A. H.;’Riley, J. P. Anal. Chim. Acta 1081, 737, 175. (135) Uthus, E. 09; Coiiings, M. E.; Cornatzer, W. E.; Nieisen, F. H. Anal. Chem. 1981, 53. 2221. (136) Pickford, C. Analyst (London) 1081, 706. 464. (137) Franke, J. P.; DeZeeuw, R. A. Pharm. Wekbl. Sci. Ed. 1081, 3 , 166. (138) Comparetfo, G. M9; Jester, W. A.; Skinner. W. F. J. Radloanal. Chem. 1082, 72,479. (139) Fabec, J. L. Anal. Chem. 1082, 54, 2170. (140) Pyles, R. A.; Woolson, E. A. J . Agric. Food Chem. 1082, 30, 866. (141) Maruyama, Y.; Nagaoka, Y. J. Radioanal. Chem. 1083, 76,81. (142) Berthoif, R. L.; Renoe, B. W. Anal. Chim. Acta 1082, 739, 287. (143) Akuffmann, J. M.; Patriarche, G. J.; Christian, G. D.Anal. Left. Parts 1081, 14, 1209. (144) Lee, D. S. Anal. Chem. 1082, 5 4 , 1682. (145) Kobayashi, T.; Kanada, K. Nucl. Instrum. Merhods Phys. Res. 1083, 204, 525. (146) Gestring, W. D.; Soitanpour, P. N. Commun. Soil Sci. P/ant Anal. 1081, 72, 743. (147) Lohse, 0. Commun. Soil Scl. Plant Anal. 1082, 73, 127. (148) Roelandts, I.; Robaye, G.; Weber, G.; Delbrouck-Habaru, J. M.; Bartsch, P.; Coilignon, A.; Yujie, J. Radiochem. Radioanal. Left. 1982, 50, 319. (149) Rapaport, M. S.; Mantel, M.; Shenberg, C. Med. Phys. 1982, 9 , 194. (150) Huskisson, N. S.; Ward, P. F. V. J. Appl. Radiat. Isot. 1082, 33, 241. (151) Hlggins, H. W. Anal. Biochem. 1082, 727, 121. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

93R

ORGANIC ELEMENTAL ANALYSIS (152) Tiessen, H.; Bettaty, J. R.; Stewart, J. W. B. Commun. SollSci. Plant Anal. 1981, 12,211. (153) Xue, X. X. Chlnese J . fhys. Test. Chem. Anal. 1983, 19,32. (154) Joseph, S.; Kramer, G. H. At. Energy Can. LM. (Rep.) AECL-7512 1982. (155) Zhou, P. S.; Yuan, S. Y.; Zhang, J. R. Chlnese J . Anal. Chem. 1982, 10,428. (156) Jenkins, R. W., R.; Newman, R. H.; Lester, G. F.; Frisch, A. F.; Willlamson, T. 0. Beitr. Tabakforsch. Int. 1982, 11, 195. (157) Esla, S.; Vuori, E.; Nllnlsto, L. Mikrochlm. Acta 1983, I , 155. (158) Wu, B. C.; Bai, Y. H.; Zhang, S. Y. Chlnese Commun. IS€ 1982, 2, 76. (159) Ma, X. L. Chlnese Commun. ISE 1982, 2,87. (160) Gabrlel, E.; Kato, Y.; Rech. P. J. Fresenius' 2. Anal. Chem. 1981, 308, 234. (161) Qin, Y.; Yang, N.; Wang, C. Y. Chinese Commun. IS€ 1982, 2,86. (162) Johson, F. A. J . Radloanal. Chem. 1982, 74,39. (163) Strack, S.; Koenlg, L. A. Kernforschungszent. Karlsruhe (Rep.) KFK 3249 1981. (164) Hellstern, P.; Keller, H. E.; Weinheimer, B. J. Mol. M e d . 1980, 4, 241. (165) Song, H. 2.; Wang, N. X. Chinese J . Anal. Chem. 1982, 10,489. (166) Alfassl, 2. B.; Lavi, N. Radiochem. Radloanal. Lett. 1982, 53, 173. (167) Yamato, A.; Kataglrl, H. Radlolsotopes 1981, 30. 159. (168) Mizobuchi, M.; Ohmae, H.; Umoto, F.; Tanaka, T.; Ichlmura, K.; Ueda, E.; Itano, T. Clln. Chem. 1983, 29,408. (169) Read, W. W. C.; Harrison, R. A.; Halliday, D. Anal. Blochem. 1982, 723,249. (170) Chettle, D. R.; Fletcher. J. G.; Downey, S. P. M. J.; Scott, M. C.; James, H. M.; Hlggins, C, S. J . Radioanal. Chem. 1982, 71,533. (171) Buresh, R. J.; Austin, E. R.; Craswell, F. T. Fert. Res. 1982, 3. 37. (172) Chirkov, Y. A.; Loshkarev, 0. L.; Strizhov, N. K.; Tutyan, Y. I. Neftepromysl. Del0 1981, (5). 34. (173) Brennlnkmeijer, C. A. M.; Mook, W. G. I n t . J . Appl. Radlat. Isot. 1981, 32, 137. (174) Langmyhr, F. J.; Dahl, I . M. Anal. Chlm. Acta 1981, 131,303. (175) Grobler, S. R.; Reddy, J.; Van Wyk, C. W. J . Dent. Assoc. S.Afr. 1980, 35,625. (176) El-Shaarawy, M. I. Ind. Aliment. (flneroio, Italy) 1980, 19, 477. (177) Dlck, W. A.; Tabatabai, M. A. Agron. J . 1982, 74,59. (178) Lloyd, B.; Hok, P.; Delves, H. T. Analyst (Loridon) 1982, 707,927. (179) Janghornani, M.; Ting, B. T. G.; Nahapetian, A.; Young, V. R. Anal. Chem. 1982, 54, 1188. (180) McCarthy, T. P.; Brodie, B.; Mllner, J. A,; Bevii, R. F. J . Chromatogr. 1981, 225,9. (181) Reamer, D. C.; Velllon, C. Anal. Chem. 1981, 53,2166. (182) Nlcolaou, G. E.;Matthews, I.P.. Stephens-Newsham, L. G.; Spyrou, N. M. J . Radloanal. Chem. 1982, 71,519. (183) Ting, B. T. 0.; Nahapetlan, A.; Young, V. R.; Janghorbanl; M. Analyst (London) 1982, 107, 1495. (184) Stahe, H. M.; Klnker, J.; Nicholson, D.; Hyde, W. J . Llq. Chromatogr. 19828 5, 1191. (185) Hofsommer, H. J.; Bieilng, H. J. 2.Lebensm.-Unters. Forsch. 1981, 173,213. (186) Noda, K.; Hirai, S.; Danbara, H. Elyo to Shokuryo 1980, 33, 93. (187) May, T. W. J . Assoc. Off. Anal. Chem. 1982, 65, 1140. (188) Maher, W. A. Talanta 1982, 29, 1117. (189) Paul, J.; Daniel, R. C. Mift. Geb. Lebensmiftelunters. Hyg. 1981, 72, 78. (190) Suzuki, S.; Hlral, S.; Noda, K. Jpn. Analyst 1982, 31,67. (191) Mlnola, C.; Pozolll, L.; Angeleri, S.; Tempini, G.; Candura, F. At. Spectrosc. 1982, 3,70. (192) Song, H. 2.; Wang, N. X. Chlnese J . Anal. Chem. 1982, 10, 170. (193) Relm, R. E.; Hawn, D. D. Anal. Chem. 1981, 53, 1088. (194) Zhang, J. R.; Lu, Y. X.; Zhang, L. Y.; Qln, W. Y.; Zhou, P. S. Chinese J . Anal. Chem. 1981, 9 ,601. (195) Thuerauf, W.; Assenmacher, H. Fresenius' 2. Anal. Chem. 1981, 307,265. (196) Ruschak, M. I.; Syty, A. Anal. Chem. 1982, 5 4 , 1637. (197) Ruiz, J. M.; Carden, 8. M.; Lena, L. J.; Vincent, E. J.; Escaiier, J. C. Anal. Chem. 1982, 54. 688. (198) Bauer, H. M.; Corbyn, P. T.; Green, D. Analyst (London) 1983, 108, 335. (199) Tabatabai, M. A.; Chao, Y. M. Agron. J . 1982, 74,404. (200) Kissa, E. Anal. Chem. 1982, 54, 1450. (201) Kostyniak, P. J. J . Anal. Tocloi. 1983. 7 ,20. (202) Caroii, S.; Delle Femmine, P.; Allmonti, A,; Petrucci, F.; Vioiante, N. Spectrosc. Lett. 1982. 15,303. (203) Burnel, D.; Hutln, M.F.; Netter, P.; Kessler, M.; Huriet, C.; Gaucher, A. Pathol. Blol. 1982, 30,27. (204) Liu, D. X. Chinese J . Anal. Chem. 1981, 9 , 750. (205) Gabrieis, R.; Van Keirsbulck, W.; Engels, H. Lab. fract. 1981, 3 0 , 122. (206) Guilmette, R. A.; Bay, A. S. Anal. Chem. 1981, 53, 2351. (207) Schramel, P.; Xu, L. Q. Anal. Chem. 1982, 5 4 , 1333. (208) Satzger, R. D.; Clow, C. S.; Bonnin, E.; Fricke, F. L. J . Assoc. Off. Anal. Chem. 1982, 65,987. (209) Proszkowska, E.; Carnick. G. R.; Slavln, W. Clln. Chem. 1983, 29, 477. (210) AB, F. Fresenius' 2.Anal. Chem. 1981, 308, 137. (211) McNelll, K. G.; McLellan, J. S.; Amin. A. K. M.; Vohre, K.; Mernagh, J. R. J . Radioanal. Chem. 1982, 71,573. (212) Capar, S. G.; Gajan, R. J.; Madzsar, E.; Albert, R. H.; Sanders, M.; Zyren, J. J . Assoc. Off. Anal. Chem. 1982, 65, 978. (213) Sperllng, K. R. Vom Wasser 1980, 54, 99. (214) Tew, P.; Mails, C. D.; Walker, W. G. Anal. Blochem. 1981, 112, 346.

94R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

(215) Tsunoda, K.; Nojirl, T.; Nojlri, Y.; Haraguchi, H.; Fuwa, K. Nippon Kagaku Kalshl 1982, 145. (216) Nishlda, H.; Tazaki, M.; Takagi, M.; Ueno, K. Mikrochlm. Acta 1981, I , 281. (217) Yuzawa, M.; Suzukl, N. J . Radioanal. Chem. 1981, 62,115. (218) Xue, X. X. Chlnese J . Anal. Chem. 1983, 1 1 , 51. (219) Johns, A. J . fharmacol. Methods 1981. 6 , 45. (220) Dits, J. S. Anal. Chlm. Acta 1981, 130,395. (221) Wong, K. L. Anal. Chem. 1981, 52,2148. (222) McKee, J. S. C.; Lapointe, C.; Birchall, J.; Pinsky, C.; Bose, R. J . Enrvlron. Sci. Health, f a r t A . 1981, 16,465. (223) Velllon, C.; Patterson, K. Y.; Bryden, N. A. Anal. Chim. Acta 1982, 136,233. (224) Zhuang, M. 2.; Barnes, R. M. Spectrochim. Acta, Part 8 1983, 38, 259. (225) Bryson, W. G.; Goodaii, C. M. Anal. Chim. Acta 1981, 124, 391. (226) Willett, J. D.; Knight, M. M. J . Chromatogr. 1982, 237,99. (227) Navarrette, M.; Cabrera, L.; Ley, A. Radiochem. Radloanal. Left, 1981, 49,341. (228) Garcia-Sanchez, F.; Navas, A.; Laserna, J. J.; Arbaizar, A. Analyst (London) 1982, 107,35. (229) Krivan, V.; Lang, M. Fresenius' 2. Ana. Chem. 1982, 312, 324. (230) Makino. T.: Itoh. J. Clin. Chim. Acta 1981. 1 1 1 . 1. (231) Buckley, W. T.; Huck, S. N.; Budac, J. J.; Eigendorf, G. K. Anal. Chem. 1982. 54. 504. (232) Jiranek, V.; Bludovsky, R. Prum. Potravin 1982, 33,237. (233) Tarui, T.; Nakatani, S.; Tokairin, H. Jpn. Analyst 1982, 3 1 , T29. (234) Khan, S. 2.; Turel, 2. R.; Haldar, B. C. Radiochem. Radioanal. Lett. 1981, 48, 109. (235) Dai, Q. Y. Chinese J . Enrlvon. Sci. 1981, 2, 12. (238) Kennedy, J. T.; Svehla, G. Fresenlus' 2. Anal. Chem. 1982, 371, 218. (237) Caroll, S.; Alimonti, A.; Deiie Femmlne, P.; Shukla, S. K. Anal. Chlm. Acta 1982, 136,225. (238) Chwistek, M.; Chmlelowskl, J.; Danch, A.; Klapcinska, B. Chem. Anal. (Warsaw) 1981, 26, 141. (239) Turkall, R. M.; Blanchine, J. R. Analyst (London) 1981, 106, 1098. (240) Sykes, T. R.; Stephens-Newsham, I. 0.; Apps, M. J.; Noujaim, A. A. J . Radloanal. Chem. 1982, 69,441. (241) Hutln, M. F.; Netter, P.; Burnei, D.; Gaucher, A. Rhumatolooie - .(Paris). 1982, 12, 199. (242) Aidrighetti, F.; Carelli, G.; Ceriati, F.; Cremona, G.; Pomponi, M. At. Spectrosc. 1981, 2 , 71. (243) Vinogradov, S . N.; Kosinski, T. F.; Zak, B. Anal. Biochem. 1982, 120, 111. (244) Liappis. N. Klin. faedlat. 1982, 194,60. (245) Seamonds, B.; Anderson, K. M. Clln. Chem. 1981, 27, 1946. (246) Tsal, T. Y. Chinese J . Food Ferment. 1981, 47. (247) Muelier, H.; Brauer, H. 2.Chem. 1982, 22,390. (248) Glrl, S. K.; Shields, C. K.; Littlejohn, D.; Ottaway, J. M. Analyst (London) 1983, 108,244. (249) Sthapit, P. R.; Ottaway, J. M.; Fell, G. S. Analyst (London) 1983, 108, 235. (250) Lee, S. W.; Meranger, J. C. Am. J . Med. Technol. 1980, 46,853. (251) Sun, L. L.; Wang, B. Y. Chinese J . Anal. Chem. 1981, 9 , 679. (252) Watts, M. T.; Pouisen, B. J.; Szabo, L. L.; Kenny, M. A,; Lee, W. Y. J . Anal. Toxicol. 1981, 5,231. (253) Maslowska, J.; Legedz, B. Rocz. fanstw. Zakl. H@. 1981, 32,327. (254) Elkins, E. R. J . Assoc. Off. Anal. Chem. 1982, 65, 965. (255) Aldlnl, R.; Leoni, C.; Znotti, A. Ind. Conserve 1981, 56, 18. (256) Hausknecht, K. A.; Ryan, E. A.; Leonard, L. P. At. Spectrosc. 1982, 3 ,53. (257) Liang, H. W.; Yu, A. Y.; Duan, L. L. Chinese J . Anal. Chem. 1982, 10,99. (258) Jin, J. G.; Ll, Li, F. Y. Chinese J . Anal. Chem. 1982, 10,487. (259) Jackson, K. W.; Ebdon, L.; Webb, D. C.; Cox, A. G. Anal. Chim. Acta 1981, 128,67. (260) Anderson, R. G.; Brown, B. C. Talanta 1981, 28,365. (261) Rocks, B. F.; Sherwood, R. A.; Riley, C. Clln. Chem. 1982, 28, 440. (262) Pickett, E. E.; Hawkins, J. L. Anal. Biochem. 1981, 112,213. (263) Spelch, M.f Bousquet, B.; Nlcolas, G. Clln. Chem. 1981, 27, 246. (264) Baginski, E. S.; Marie, S. S.; Karcher, R. E.; Zak, B. Microchem. J . 1982, 27, 141. (285) Wei, F. S.; Qu, W. Q.; Yin, F. Anal. Lett. 1982, 15 Pari B, 721. (266) Kocsis, E.; Kovats, M.; Moinar, M. Period. foiytech. Chem. Eng. 1981, 25, 133. (267) De la Guardia, M.; Sanchez, M. J. At. Spectrosc. 1982, 3 , 36. (268) Robinson. J. W.; Skelly, E. M. Spectrosc. Lett. 1983, 16, 117. (269) Jagner, D.; Aren, K. Anal. Chim. Acta 1982, 141, 157. (270) Rava, R.; Brunetti, A.; Spinosi, G. Boll. SOC.Ita/. Bid. Sper. 1981, 57, 1702. (271) Lo, J. M.; Wei, J. C.; Yang, M. H.; Yeh, S. J. J . Radioanal. Chem. 1982, 72,571. (272) Kovar, K. A,; Jarre, G. Arch. Pharm. (Weinhelm, Ger.) 1982, 315, 662. (273) Gaai, F. F.; Abramovic, B. F. Mikrochim. Acta 1982, I , 465. (274) Narasaki, H. Anal. Chim. Acta 1981, 125, 187. Zelyukova, Y. V.; Poluektov, N. S. Zh. (275) Vitkun, R. A.; Dldorenko, T. 0.; Anal. Khim. 1982, 37,833. (276) Tarui, T.; Tokalrin, H. Jpn. Analyst 1981, 30, T76. (277) Dehairs, F.; Decadt, G.; Baeyens, W. Analusis 1982, 10,373. (278) Lin, H. H. Radiochem. Radioanal. Lett. 1981, 48, 271. (279) Cornelis, R.; Versieck, J.; Desmet, A.; Mees, L.; Vanballenberghe, L. Bull. SOC. Chim. Be@. 1981, 90,289. (280) Hainberger, I.; De Oliveira Andrade, W. Mikrochim. Acta 1982, I I , 1.

ORGANIC ELEMENTAL ANALYSIS

(281) Lyons, D. J.; Roofayel, R. L. Analyst (London) 1982, 707.331. (282) Ehrazi, F.; Sims, J. L.; Crutchfield, J. Commun. Soil Sci. Pknt Anal. 1982, 73,135. (283) Chatelet-Cuzin, A. M9f Ecrement, F.; Durand, G. Analusis 1981, 9, 433. (264) Brown, S.S.;Nomoto, S.; Stoeppler, M.; Sunderman. F. W., Jr. Clin. Blochem. (Orrewe) 1981. 74, 295. (285) Szathmary, S.C.; Daldrup, T. Fresenlus’ 2.Anal. Chem. 1982, 373, 48. (286) Kramer, 0. H. At. Energy Can. Ltd. (Rep.) AECI 1981, 7248. (287) Weber, 0.; Schwedt, 0.Anal. Chim. Acta 1982, 134,81. (288) Haenni, E.; Daniel, R. C. Mitt. Geb. Lebensmittelunters. Hyg. 1982, 73,94. (289) Byrne, A. R. Mlkrochim. Acta 1981, I , 323. (290) Cano, J. P.; Cataiin, J.; Bues-Charbit, M. J . Appl. Toxicol. 1982, 2, 33. (291) Zelsler, R.; Greenberg, R. R. J . Radioanal. Chem. 1982, 75,27. (292) Kressin, I.K. Anal. Chem. 1981, 53, 1270. (293) Gramllch, J. W.; Machlan, L. A.; Brietic, K. A.; Kelly, W. R. Clln. Chem. 1982, 28, 1309. (294) Wu, G. L.; Xue, X. X.; Lu, C. M.; Gao, S. W.; Chen, J. P.; Chen, S. L. Chinese Commun. IS€ 1982, 2, 48. (295) Pavlovskaya, N. A.; Maltseva, M. M.; Perett, 0. Y.; Zeltser, M. R.; Petushkov, A. A. Radlokhimlya 1981, 23,598. (296) Barana, E. J.; Lumsden. E. M. J . Assoc. Off. Anal. Chem. 1982, 65, 1424. (297)Takagi, M.; Nakamura, H.; Sanui, Y.; Ueno, K. Anal. Chlm. Acta 1981, 726,185. (298) Mizulke, A.; Iino, A. Anal. Chlm. Acta 1981, 724,427. (299) Wu, G. L.; Xue, X. X.; Lu, C. M.; Gao, S. W.; Zhang, J. C. Chlnese Commum. IS€ 1982, 2,53. (300) Meinlk. S.; Bartha, S.f Dobias, M. Chem. Zvesti 1982, 36, 369. (301) Borus-Boszormenyl, N.; Kovacs, J. J . Radloanal. Chem. 1982, 68, 23. (302) Kaye, J. H.; Merrili, J. A.; Klnnison, R. R.; Rapids, M. S.; Ballou, N. E. Anal. Chem. 1982, 54, 1158. (303) Dogan, S.; Haerdl, W. Int. J . Envlron. Anal. Chem. 1980, 8, 249. (304) Maher, W. Anal. Chim. Acta 1982, 738. 365. (305) Sommer, D.; Ohis. K. GIT Fachz. Lab. 1982, 26, 1015. (306) Klriyama, T.; Kuroda, R. Fresenlus’ 2.Anal. Chem. 1982, 373,328. (307)Gavlni, M. 8.; Rocco, F. G.; Kim, S. M. J. Radioanal. Chem. 1981, 67, 437. (308) Tong, M. X.; Lin, S. D. Chlnese J. Anal. Chem. 1982, 70, 761. (309) Stroop, S. D.; Helnek, G.; Green, H. L. Clln. Chem. 1982, 28, 79. (310) Paul, K. R.; Gupta, V. K. Am. Ind. Hyg. Assoc. J . 1982, 43,529. (311) Heydorn, K.; Damsgaard, E. J. Radloanal. Chem. 1982, 69, 131. (312) . . Bermeio Barrera, P. Bermelo Barrera, A.; Bermelo Martinez, F. An. Bromatol..1981. 33, 17. (313) La Touche, Y. D.; Bennet, C. W.: MIX, M. 0. Bull. Envlron. Contam. Toxlcol. 1981, 26,224. (314) Salinas, F.; Capitan-Vallvey, L. F.; Gazouez, D. Microchem. J . 1982. 27.

iaa.

(315)‘DIiIJS.; Patsalides, E. Anal. Chlm. Acta 1981, 728,109. (316) Palm, R.; Sjostrom, I?.; Hailmans, G. Clin. Chem. 1983, 29, 486. (317) Fuentes, J.; Miro, J.; Rlera, J. Andrologla 1982, 74. 322. (318) Donangelo, C. M.; Chang, 0. W. Clln. Chlm. Acta 1981, 773, 201. (319) Janghorbani, M.; Tlng, B. T. G.; Istfan, N. W.; Young, V. R. Am. J . Clln. Nutr. 1981, 34,581. (320) Janghorbanl, M.; Young, V. R.; Gramllch, J. W.; Machlan, L. A. Clln. Chim. Acfa 1981, 774, 163. (321) Shah, P. K.; Haldar, B. C. J . Radloanal. Chem. 1982, 72,549. (322) Osborn, T. W.; Broering, W. 6.; Davls, T. L. Anal. Chlm. Acta 1981, 728,213. (323) Hsieh, S. A. K.; Chong, Y. S.; Tan, J. F.; Ma, T. S. Mlkrochim. Acta 1982, I I , 337. (324) Simon, J.; Llese, T. Fresenlus’ 2.Anal. Chem. 1981, 309,383. (325) Dogan, S.; Nembrlnl, G.; Haerdi, W. Anal. Chlm. Acta 1981, 730, 385. (326) Debacker, P.; Vandenbalck. J. L.; Patriarche, G. J.; Christian, G. D. Mlcrochem. J. 1981, 26, 192. (327) Simon, J.; Llese, T. Fresenlus’ 2.Anal. Chem. 1983, 374,483. (328) Alt, F.; Berndt, H.; Messerschnldt, J. Aerztl. Lab. 1982, 28,243. (329) Krlvan, V.; Geiger, H.; Franz, H. E. Fresenlus, 2.Anal. Chem. 1981, 305,399. (330) Goldberg. W. J.; Alien, N. Clin. Chem. 1981, 27, 562. (331) Peters, H. J.; Koehler, H. Zenfrabl. fharm. fharmakother Lab. 1982, 727,129. (332) Subramanian, K. S.;Meranger, J. C. Analyst (London) 1982, 707, 157. (333) Smith, B. M.; Grlffiths, M. B. Analyst (London) 1882, 707,253. (334) Alder, J. F.; Batoreu, M. C. C. Anal. Chlm. Acta 1982. 735,229. (335) Johnsen. A. C.; Wlbetoe, G.; Langmyhr, F. J.; Aaseth, J. Anal. Chim. Acta 1982, 735,243. (336) Kojima. I.; Iida, C. Anal. Lett. 1982. 75 Part B, 543. (337) Kamata, E.; Nakashima, R.; Goto, K.; Shibata, S. Jpn. Analyst 1982, 37,551. (338) Blakemore, W. M.; Billedeau, S. M. J. Assoc. Off. Anal. Chem. 1981, 64. 1284. (339) Pan, D.; Ling, J. Y. Chinese J . Anal. Chem. 1982, 70, 190. (340) Suzukl, M.; Ohta, K.; Katsuno, T. Mikrochlm. Acta 1982, I I , 225. (341) Arpadzhyan, S.;Nakova, D. Nahrung 1981, 25,359. (342) Plhlaja, H. Fette, Seifen, Anstrichm. 1981, 83,294. (343) Tam, G. K. H.; Lacroix, G. J . ASSOC. Off. Anal. Chem. 1982, 65, 647. (344) Mueller, H. 0.E.; Siepe, V. Dtsch. Lebensm.-Rundsch. 1981, 77, 392.

(345) Menz, D.; Conradi, G. Erdoel, Kohle, Erdgas fetrochem. 1982. 35, 33. (346) Hansen, R. W.; Schweinsberg; D. P.;Noakes, R. J. Lab. fract. 1982, 37, 1097. (347) Zhang, C. L.; Liang, W. Chinese J. Anal. Chem. 1982, 70, 382. (348) Brzozowska, B.; Zawadzka, T. Rocz. Panstw. Zakl. Hig. 1981, 32,9. (349) Arafat, N. M.; Glooschenko, W. Analyst (London) 1981, 706, 1174. (350) Frank, A.; Peterson, L. R. Spectrochim. Acta, Part B 1983, 38, 207. (351) Barnes, R. M.; Fodor, P.; Inagaki, K.; Fodor, M. Spectrochim. Acta Part B 1983, 38, 245. (352) Matuslewlcz, H. Anal. Chlm. Acta 1982, 736,215. (353) Schramel, P.; Klose, B. J. Fresenlus’ 2.Anal. Chem. 1981, 307. 26. (354) Goulden, P. D.; Anthony, D. H. J.; Austen, K. D. Anal. Chem. 1981, 53,2027. (355) Brown, R. J. Spectrochim. Acta, Part B 1983, 38, 283. (356)Zagatto, E. A. G.; Jaclntho, A. 0.; Pessenda, L. C. R.; Kurg, F. J.; Reis, B. F.; Bergamin Fllho, H. Anal. Chlm. Acta 1981, 725,37. (357) Pahlavanpour, B.; Thompson, M.; Thorne, L. Analyst (London) 1981, 706,467. (358) Kirlyama, T.; Kuroda, R. Analyst (London) 1982, 707,505. (359) Vurek, 0. G. Anal. Lett. f a r t A 1981, 74, 261. (360) Pawlik, J.; Erdman, F. Blul. Cent. SfacJi Oceny fasz 1980. 7 7 , 25. (361)Nabrzyski, M.; Gajewska, R. Rocz. Panstw. Zakl. Hig. 1982, 33,121. (362) Savinova, E. M.; Korobova, E. M.; Shumskaya, T. V. Zh. Anal. Khim. 1981, 36, 1267. (363) Kofoed, S.A. Clin. Chem. 1981, 27,343. Jr.; Varga, E. Dtsch. Lebensm.-Rundsch. 1982, 78, 319. (364) Sarudi, I., Kauert, G. Fresenius’ 2. Anal. Chem. (365) Drasch., G.; Von Meyer, I.; 1982, 377. 571. (366) Saitoh, H.; Oikawa, K. Jpn. Analyst 1982, 31, E 375. (367) Burr, R. G. Clin. Chem. 1982, 28, 1710. (386) Schulten, H. R.; Bohl, B.; Bahr, U.; Mueller, R.; Palavlnskas. R. Int. J . Mass Spectrum. I o n fhys. 1981, 38,281. (369) Frederickson, C. J.; Manton, W. I.; Frederickson, M. H.; Howell, G. A.; Maliory, M. A. Brain Res. 1982, 246,338. (370) Verbueken, A.; Michiels, E.; Van Grieken, R. Fresenius’ 2. Anal. Chem. 1981, 309,300. (371) McKlnney, J. D.; Abusamra, A.; Reed, J. H. Anal. Chem. 1983, 55, 91. (372) Bem, H.; Ryan, D. E. Anal. Chlm. Acta 1982, 735,129. (373) Wokiez, J. R. W.; Das, H. A. J . Radioanal. Chem. 1982, 68, 67. (374) Ehmann, W. D.; Markesbery, W. R.; Hossain, T. I. M., Alauddln, M.; Goodin, D. T. J. Radloanal. Chem. 1982, 70,57. (375)Deschamps, N.; Vernols, V.; Calza, F. J . Radloanal. Chem. 1982, 70, 109. (376) Byrne, A. R. Radiochem. Radioanal. Lett. 1982, 52,99. (377) Chindhade, V. K.; Gogte, V. D.f Joglekar, A. G.; Bhoraskar, V. N. Radiochem. Radloanal. Lett. 1982, 52. 141. (378) Joerstad, K.; Salbu, B.; Pappas, A. Anal. Chem. 1981, 53, 1398. (379) Orvlni, E.; Gailorinl, M. J . Radioanal. Chem. 1982, 77,75. (380) Dang, H. S.;Jalswal. D. D.; DaCosta, H.; Somasundaram, S. J . Radioanal. Chem. 1982, 70,163. (381) Filby, R. H. Anal. Chem. 1983, 55,74. (362) Mumba, N. K.; Csikai, J.; Peto, G. Radiochem. Radioanal. Lett. 1982, 52,373. (383) Pung, T. S.;Chou, C. C.; Tsal, H. T.; Wu, S. C. J . Radloanal. Chem. 1981, 63,253. (384) Haas, H. F.; Krlvan, V. Fresenlus’ 2. Anal. Chem. 1983,314, 539. (385)Patil, M. R.; Tejam, B. M. Radiochem. Radioanal. Lett. 1981, 48, 149. (386) Vaiente, I. M.; Minskl, M. J.; Peterson, P. J. Radioanal. Chem. 1982, 77,115. (387) Biid, R. W. J. Radloanal. Chem. 1982, 72,23. (388) Salnt-Pierre, J.; Zikovsky, L. J . Radloanal. Chem. 1982, 77,19. (389) Jacobs, F. S.;Ekambaram, V.; Filby, R. H. Anal. Chem. 1982, 54, 1240. (390) Galatanu, V.; Engelmann, C. J . Radioanal. Chern. 1982, 74, 181. (391) Branca, P.; Costa, G. Boll. Chlm. Unlone Ifal. Lab. Prov. Parte Scl. 1982, 33, 179. (392) Flach-Wiiken, B.; Kross, W. Wehrmed. Monafsschr. 1981, 25, 16. (393) Lapltskaya, S.K.; Svlrldenko, V. G. Zh. Anal. Khim. 1982, 37,2007. (394) Danielsseon, L. G.; Jagner, D.; Josefson, M.; Westerlund, S. Anal. Chim. Acta 1981, 727,147. (395) Lopez Fonseca, J. M.; Sanz Pedrero, P.;Otero, S. An. Ouim. Part A 1981, 77,171. (396) Kramer, G. H.; Davies, J. M. Anal. Chem. 1982, 54, 1428. (397) Ballada, J.; Daburon. M. L.; Verry, M.; Jeanmaire, L. Fr. Commls. Energ. At. (Rep.) CEA-R-5103 1981.

(398)Shuman, Frederick G. D.; Easterly, D. G.; Baratta, E. J. J . Assoc. Off. Anal. Chem. 1982, 65. 1039. (399) S. E. Gig. Sanlt. 7982,(5).60. (400) Rohdewald. P.; Vlachos, A. fharm. Zfg. 1982, 727,171, (401) Dokuzovlc, L.; Machherndl, L. Textl/veredlung 1981, 76, 253. (402) Bartsch, Pp.; Colllgnon, A.; Weber, G.; Robaye, G.; Delbrouck, J. M.; Roelandts, I.; Yujle, J. Arch. Environ. HeaM 1982, 37, 11 1. (403) Heck, D. Kernforschungszenf Karlsruhe (Rep .) KFK-3399 1982. (404) Campbell, J. L.; Faig, S. Gibson, R. S.; Russell, S. B.; Schulte, C. W. Anal. Chem. 1981, 53, 1249. (405) Maenhaut, W.; De Reu, L.; Tomza. U.; Versieck, J. Anal. Chim. Acta 1982, 136,301. (406)Grote, M.; Fromme, H. 2.Lebensm.-Unters. Forsch. 1982, 775,195. (407) Navarrete-Dominguez, V. R.; Yoshihara, K.; Tanaka, N. Radiochem. Radloanal. Lett. 1982, 53,231. (408) Robberecht, H.; Van Grieken. R.: Shani. J.: Barak, S. Anal. Chlm. Acta 1982, 736,285. (409) Vos, L.; Robberecht, H.; Van Dyck, P. M.: Van Grieken, R. E. Anal. Chlm. Acta 1981, 330, 167. ANALYTICAL CHEMISTRY, VOL.

56, NO. 5, APRIL 1984 95R

Anal. Chem. 1984, 56, 96R-112R (410) Sky-Peck, H. H.; Joseph, B. J. Clin. Biochem. (Ottawa) 1981, 74, 126. (411) Rethfeld, H. Fresenlus‘ 2.Anal. Chem. lB82,370, 127. (412) Scheubeck, E.; Joerrens, C. Siemens Forsch.-Entwlcklungsber. 1981, 70, 29. (413) Zee, J. A.; Szoghy, I. M.; Slmard, R. E.; Desmarais, M. Am. J . Enol. Vitic. 1981, 3 2 , 93. (414) Searle, E.; Thompson, C. M. Analyst (London) 1983, 708, 254. (415) Christensen, L. H.; Agerbo, A. Anal. Chem. 1981, 5 3 , 1786. (416) Bumbalova, A.; Havranek, E.; Harangozo, M. Radiochem. Radioanal. Lett. 1982. 5 4 . 367. (417) Wiesener, ‘W.; Schaefer, U. Zenffalbl. fhafm. Pharmakothef Lab. 1982, 727, 459. (418) Schramel, P.; Klose, 8. J.; Hasse, s. FfeSdUS’ 2. Anal. Chem. 1882, 370, 209.

(419) Schramel, P. Spectrochim. Acta, Parts 1983, 3 8 , 199. (420) Azlz, A.; Broekaert, J. A. C.; Leis, F. Spectrochim.Acta, Part E 1982, 3 7 , 369. (421) Black, M. S.; Thomas, M. 6.; Browner, R. F. Anal. Chem. 1981, 5 3 , 2224. (422) Tanner, J. T. J . Assoc. Off. Anal. Chem. 1982, 6 5 , 1488. (423) Long, S. E.; Snook, R. D. At. Spectrosc. 1982, 3 , 171. (424) Kuennen, R. W.; Wolnlk, K. A.; Frlcke, F. L.; Caruso, J. A. Anal. Chem. 1982, 5 4 , 2146. (425) Camerlynck, R.; Martens, R.; Verloo, M. Bull. SOC.Chim. Belg. 1982, 91. 677. (426) ‘Braetter, P.; Berthold, K. P.; Gardiner, P. E. Spectrochim. Acta, Part E 1983, 3 8 , 221. (427) Braetter, P.; Berthold, K. P.; Gardiner, P. E.; Gawllk, D.; Behne, D. J . Radioanal. Chem. 1982, 69, 159.

Kinetic Determinations and Some Kinetic Aspects of Analytical Chemistry Horacio A. Mottola

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078

Harry B. Mark, Jr.*

Department of Chemistry, University ofCincinnati, Cincinnati, Ohio 45221

This review retains, basically, the organizational structure of previous reviews ( I ) . The papers reviewed here have been selected from those that appeared since November 1981 and were received for the authors’ consideration through approximately November 15, 1983. Previous trends are paralleled in this review, with the determination of catalysts and methods based on catalytic reactions (other than enzymecatalyzed reactions) being the subject of the largest number of references included in this report. An event with international reverberationsneeds to be singled out here. Through September 27 to September 30,1983, in one of the oldest and most pjcturesque cities of Spain, the city of C6rdoba in Adalucia, over 150 participants from 17 different nations attended the First International Symposium on Kinetics in Analytical Chemistry. As active participants in this event, the authors of this review can testify to the success of this gathering, which indicates the maturity that kinetic methods and kinetic considerations have reached in the realm of analytical chemistry. Twenty three lectures (five of them plenary) and 53 poster presentations covered in a broad spectrum the main determinative approaches based on kinetics as well as many innovative and nontraditional aspects within the subject of the Symposium. The plenary lectures of this event will appear in the journal Quimica Analitica, the official publication of the Spanish Society of Analytical Chemistry.

for the design of experiments and analysis of kinetic data in analytical chemistry. Of equal interest are two chapters in Vol. 24 of the “ComprehensiveChemical Kinetics” series. The first of these chapters, authored by McDermid (4),discusses the study of fluorescence decay and in the other Come gives an excellent account of the use of computers in the analysis and simulation of reactions (5). A review, in Russian, on kinetic methods in analytical chemistry has been published by Dolmanova (6). Also in Russian, is a book on kinetic methods for the analysis of natural waters (7). A detailed review on the kinetics and mechanism of formation and reduction of heteropoly compounds in solution has been presented by Alimarin et al. (8).The review includes kinetic methods of analysis using heteropoly compounds. A brief account on reaction rate methods in Japanese with some emphasis on sensitivity and selectivity has been authored by Tanaka (9). Also in Japanese, Yonehara and Kawashima (10) reviewed kinetic methods based on spectrometric monitoring. The determination of nonmetals by kinetic procedures has been reviewed in the Russian literature by Ushakova and Dolmanova (11). Muller is the author of a review on catalytic methods other than those based on enzymes (12). This review updates previous reviews on the topic and focuses on the fundamentals of the approach, its sensitivity, selectivity, and applications. Kiss has reviewed the foundations, instrumentation, and applications of thermometric titrations with catalytic endpoint indication (13). Comparisons with other catalytic end-point indications, with noncatalytic end-point indication, and with direct catalytic determinations have been also considered in this review. A review of selected electrochemical methods based on catalytic waves and described in the literature in the People’s Republic of China has been included in an article by Wang. This rather special type of journal article overviews the state of the art of trace analysis in continental China (14). A useful and timely review on the determination of organic species by utilization of catalytic-based methods has been authored by Milovanovic (15).Special attention is given to the classification of the different effects that have been exploited for such determinations.

BOOKS AND REVIEWS A concise, excellently organized, and up-to-date monograph on kinetic methods in chemical analysis is part of volume XVIII in Wilson and Wilson’s “Comprehensive Analytical Chemistry” (2). The authors, Kopanica and Star&,have in 250 pages condensed in a clear and useful manner the information contained in 845 references. The proceedings of a satellite symposium on Design and Analysis of Enzymes and PharmacokineticExperiments [XIth International Congress of Biochemistry, July 14, 1979, Toronto, Canada] have been published in book form (3). This book contains useful information on kinetic data analysis (e.g., principles, properties, and methods of nonlinear regression, robust parameter estimation). Although the coverage is by no means exhaustive and applications are limited to biochemistry and pharmacology, the topics are of general interest 96 R

0003-2700/84/0356-96R$06.5OlO

0

1984 American Chemical Society