Organic Marine Geochemistry - American Chemical Society

For Georgia salt marsh estuaries, the initial view was that most of the organic carbon present in the suspended material (seston) in the water column,...
0 downloads 0 Views 1MB Size
4 Phenolic and Lignin Pyrolysis Products of Plants, Seston, and Sediment in a Georgia Estuary 1

1

2

Jean K. Whelan , Martha E. Tarafa , and Evelyn B. Sherr 1

Chemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 University of Georgia Marine Institute, Sapelo Island, GA 31327

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

2

Phenolic and lignin pyrolysis products measured i n plants, seston, and sediment i n a Georgia estuary together with isotopic data suggest that vascular plant material is present i n estuarine organic matter pools. The pyrolysis products together with isotopic patterns of this plant material do not resemble those obtained from Spartina. The pyrolysis-GC-MS data also gave indications of changes i n distribution of methoxy phenolic compounds i n going from plant materials to soils and seston, which could be due to either degradation processes or to a change in source in seston and sediments. These phenolic and methoxyphenolic pyrolysis products have generally not been detected to date i n either surface or sub-surface deep ocean sediments from several areas of the world. The combination of isotopic data, together with lignin and higher plant pyrolysis products, appears to provide a useful method of determining plant sources of organic matter i n estuaries. Determining the plant origins of organic matter i n coastal waters and sediments is of interest to geochemists and to écologiste i n answering specific questions regarding the sources and fates of carbon in these systems. For Georgia salt marsh estuaries, the i n i t i a l view was that most of the organic carbon present in the suspended material (seston) i n the water column, as well as i n the marsh soils and estuarine sediment, and which supported the estuarine food web, was derived from production of the marsh cordgrass, Spartina alterniflora (1-2). This concept has had to be modified based on stable carbon isotope analysis (3-5). Although the d i s tinctive isotopic signature of Spartina Γ = -12 to -13 ° / ) is present in the salt marsh soils and marsh animals, there is l i t t l e isotopic evidence for significant amounts of Spartina-derived organic matter i n the seston and sediment of the open estuary. Instead, there appears to be a large background of 00

0097-6156/ 86/ 0305-0062S06.00/ 0 © 1986 American Chemical Society

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

4.

W H ELAN ET AL.

63

Phenolic and Lignin Pyrolysis Products 1 J

o r g a n i c carbon w i t h an i s o t o p i c c o m p o s i t i o n ( δ C o f -18 t o -24°/ ) depleted in compared to that of Spartina. S t a b l e carbon i s o t o p e a n a l y s i s a l o n e , however, cannot be used t o determine whether t h i s m a t e r i a l o r i g i n a t e s p r i m a r i l y from i n s i t u * phytoplankton production ( 6 C o f -20 t o -26°/ ) o r r e p r e s e n t s a m i x t u r e o f a l g a l carbon and S p a r t i n a d e t r i t u s w i t h t e r r e s t r i a l organic m a t t e r ( Ζ

Ο Ο

WHELAN ET AL.

Phenolic and Lignin Pyrolysis Products

3 -

1

1 DSS



10 30 10

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

10 -

si

4 Η 30

-

RS

S-13 S--M

3

10 -

•I

I

:l

10 10



S-12 S--I5 MCH

1 5 3

SS

5!

BR Sedg

1 3

1

10

1



1 "3

I

Η

WR

1

Spar I

CL

θ

C

D

Ε

F

6

H

I

J

F i g u r e 2. L e v e l s o f v a n i l l y l d e r i v a t i v e s i n p y r o l y s i s p r o d u c t s of G e o r g i a e s t u a r y samples. Sample code: R i v e r s e s t o n (>52 Pm) ( R S ) ; Doboy Sound s e s t o n ( >52 μπι) (DSS); sediment from open creekbed ( S - 1 3 ) ; sediment from t i d a l c r e e k (marsh c r e e k b a n k ) ( S - l l ) ; sediment from t i d a l c r e e k (marsh c r e e k bed) ( S - 1 2 ) ; sediment from open e s t u a r y (Doboy m u d f l a t ) ( S - 1 5 ) ; mixed c y p r e s s and hard-wood (MCH); swamp s o i l ( S S ) ; b l a c k r u s h (BR); sedge ( s e d g ) ; w i l d r i c e (WR); and S p a r t i n a ( S p a r ) . See F i g u r e 1 f o r compound i d e n t i f i c a t i o n .

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

ORGANIC MARINE

GEOCHEMISTRY

RS

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

^

0:

I

50H

DSS

10

10H

L

1010S-15 10-

ζ:

10-

BLANK MCH

1030

"

ss"

F i g u r e 3. L e v e l s o f s y r i n g y l derivatives among pyrolysis p r o d u c t s from a G e o r g i a e s t u a r y . Same sample and compound codes as f o r F i g u r e s 1 and 2.

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

4.

WHELAN ET AL.

69

Phenolic and Lignin Pyrolysis Products

RS

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

DSS -

-

S-13 S- AA S--I2 S-i5

e

M C H ! :

F i g u r e 4. Levels p y r o l y s i s products F i g u r e s 1 and 2.

miscellaneous phenolic Same sample and compound

and methoxy codes as i n

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

70

ORGANIC MARINE GEOCHEMISTRY

the carbon s k e l e t o n s o f methoxy-phenolic p y r o l y s i s products are n o t d r a s t i c a l l y d i f f e r e n t from t h o s e found i n t h e p a r e n t l i g n i n (15-16, 18-19) and t h a t s t r u c t u r e s o f l i g n i n p y r o l y s i s p r o d u c t s r e p o r t e d h e r e a r e p r o b a b l y t h e same as t h o s e p r e v i o u s l y r e p o r t e d (11, 14). I n a d d i t i o n , two o f the samples a n a l y z e d i n t h i s work a r e a l s o b e i n g a n a l y z e d by p y r o l y s i s GCMS i n t h e l a b o r a t o r y o f Dr. Jap Boon i n the N e t h e r l a n d s w h i c h w i l l a l l o w comparison o f our mass s p e c t r a w i t h those of a u t h e n t i c standards. Because the bonded phase c a p i l l a r y GC columns b e i n g used i n b o t h l a b o r a t o r i e s have the same l i q u i d phase ( J . Boon, p r i v a t e communication), i t was asumed i n t h e p r e s e n t work t h a t t h e r e l a t i v e o r d e r o f GC e l u t i o n o f i s o m e r i c p y r o l y s i s p r o d u c t s was t h e same as i n R e f . (11) and i n o t h e r work o f S a i z - J i m e n e z and de Leeuw ( u n p u b l i s h e d m a n u s c r i p t ) . The v a n i l l y l and s y r i n g y l p y r o l y s i s p r o d u c t s shown i n F i g u r e 1 a r e p r o b a b l y c o r r e c t , a l t h o u g h t h e s e s t r u c t u r e s w i l l have t o be checked by comparison t o a u t h e n t i c s t a n d a r d s i n f u t u r e work. The mass s p e c t a l computer gave v e r y h i g h c o n f i d e n c e r a t i n g s ( g r e a t e r t h a n 900 out o f a p o s s i b l e 1000 on F i t , R f i t , and p u r i t y parameters on the I n c o s d a t a system) t o the s t r u c t u r e s shown i n F i g u r e 1 f o r compounds A-C, F, G, I , and M. The mass s p e c t r a f o r a l l o f t h e s e compounds a r e f a i r l y u n i q u e , as shown i n T a b l e I I . The computer i d e n t i f i e d compounds D, £ and H ( w h i c h p o s s e s s e d almost i d e n t i c a l mass s p e c t r a ) as p r o p e n y l v a n i l l y l compounds. The proposed s t r u c ­ t u r e s shown i n F i g u r e 1 a r e based on the f a c t t h a t the p a r e n t l i g n i n c o n t a i n s o n l y s t r a i g h t ( r a t h e r than branched) C3 c h a i n s bonded t o t h e p h e n y l groups (18-19) and on t h e e x p e c t e d GC e l u t i o n o r d e r based on Réf. ( 1 1 ) . A f o u r t h compound, J i n F i g u r e 1, was a l s o i d e n t i f i e d by the computer as p r o p e n y l benzene. I t i s p r o ­ posed t h a t t h i s compound c o n t a i n s a h y d r o x y l o r a l k o x y l group ( o r some o t h e r e a s i l y e l i m i n a t e d group) bonded t o a s t r a i g h t C3 s i d e c h a i n w h i c h i s e l i m i n a t e d d u r i n g e l e c t r o n impact f r a g m e n t a t i o n t o produce a mass spectrum v e r y s i m i l a r t o t h a t o f t h e c o r r e s p o n d i n g o l e f i n (20). S i m i l a r arguments a p p l y t o the p r o p e n y l s y r i n g y l compounds Κ and L. Compounds Τ and V were i d e n t i f i e d by the mass s p e c t a l com­ p u t e r as 3, 4-dimethoxyphenol and t r i m e t h o x y p h e n o l , r e s p e c t i v e l y . However, l i b r a r y s p e c t r a do n o t always c o n t a i n t h e c o r r e c t r e f e r ­ ence isomers ( 1 1 ) . I n a d d i t i o n , because p y r o l y s i s p r o d u c t s t r u c ­ t u r e s Τ and V i n F i g u r e 1 have been i d e n t i f i e d as abundant s y r i n g y l l i g n i n p y r o l y s i s p r o d u c t s ( 1 1 ) , and because i s o m e r s o f t e n g i v e v e r y s i m i l a r mass s p e c t r a ( 2 0 ) , we propose t h a t compounds Τ and V a r e actually the u n s u b s t i t u t e d and methyl syringyl derivatives, respectively. A number o f o t h e r p y r o l y s i s p r o d u c t s b e l i e v e d t o be e i t h e r phenols o r methoxyphenols d e r i v e d from h i g h e r p l a n t s were a l s o i d e n t i f i e d i n the sample s e t . I d e n t i f i c a t i o n o f t h e s e , i n c l u d i n g Ν t h r o u g h Ρ and S i n F i g u r e 4, a r e l e s s c e r t a i n t h a n t h o s e d i s ­ cussed above so t h a t s t r u c t u r e s a r e n o t proposed. Compounds Q l , Q2, and U, w h i c h produce v e r y s i m i l a r mass s p e c t r a and, t h e r e f o r e , a r e proposed t o be i s o m e r i c ( 2 0 ) , were i d e n t i f i e d w i t h a h i g h degree o f c o n f i d e n c e by t h e mass spec computer as t h e d i p h e n o l i c s t r u c t u r e shown i n F i g u r e 1. Compounds R l and R2, w h i c h a l s o appear t o be i s o m e r i c , gave mass s p e c t r a v e r y s i m i l a r ( b u t not

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

4.

WHELAN ET AL.

Phenolic and Lignin Pyrolysis Products

71

i d e n t i c a l ) t o thymol shown i n F i g u r e 1. T h e r e f o r e , we propose t h a t t h e s e two compounds, w h i c h o c c u r r e d w i d e l y i n t h e sample s e t , a r e terpene d e r i v a t i v e s r e l a t e d t o thymol. Computerized GCMS d a t a o f o t h e r samples o b t a i n e d from more marine sediments have a l s o been examined f o r the p o s s i b l e presence o f l i g n i n - d e r i v e d p y r o l y s i s p r o d u c t s (Whelan, u n p u b l i s h e d d a t a ) . Three marine g o r g o n i a n ( c o r a l ) samples showed o n l y t r a c e s o f com­ pound w h i c h might be G and o f a d i a l k y l p h e n o l . M a r i n e copepods, two sediment samples from a sub-bottom d e p t h o f 788 m n e a r the Canary I s l a n d s , a sediment sample from a sub-bottom d e p t h o f 564 m i n the Japan Trench, and two s u r f a c e sediment samples from t h e P e r u u p w e l l i n g r e g i o n a l l showed no t r a c e s o f t h e p y r o l y s i s p r o d u c t s shown i n F i g u r e s 1-4 (determined by c a r e f u l s e a r c h e s o f mass chromatograms o f t h e masses shown i n T a b l e 1) w i t h t h e p o s s i b l e e x c e p t i o n of compound U. The f a c t t h a t t h e s e marine samples g e n e r a l l y do not produce t h e s e p h e n o l i c and methoxy p h e n o l i c compounds s u p p o r t s the source o f t h e s e p y r o l y s i s p r o d u c t s as b e i n g non-marine, most p r o b a b l y from h i g h e r p l a n t s and/or l i g n i n . As shown i n F i g u r e 1, t h r e e g e n e r a l groups o f p h e n o l i c p y r o l y ­ s i s p r o d u c t s were found i n t h e samples a n a l y s e d : v a n i l l y l p h e n o l s , s y r i n g y l p h e n o l s , and m i s c e l l a n e o u s p h e n o l i c and methoxy compounds. The r e l a t i v e p r o p o r t i o n s o f t h e i n d i v i d u a l p r o d u c t s i n t h e v a r i o u s samples i n each o f the t h r e e groups a r e p r e s e n t e d r e s p e c t i v e l y i n F i g u r e s 2-4. The v a n i l l y l type o f p h e n o l i c s t r u c t u r e i s produced i n the l i g n i n o f a l l v a s c u l a r p l a n t s (18-19). L e v e l s o f v a n i l l y l p h e n o l i c p y r o l y s i s p r o d u c t s were h i g h i n the p l a n t s , swamp s o i l , and i n s e s t o n i n the Altamaha R i v e r and i n Doboy Sounds ( F i g u r e 2 ) . In t h r e e of the e s t u a r i n e sediment samples, however, t h e s e compounds were e i t h e r u n d e t e c t e d o r found i n o n l y t r a c e amounts ( F i g u r e 2 ) . The a c e t y l d e r i v a t i v e , A, was c o n c e n t r a t e d i n swamp s o i l , i n r i v e r and e s t u a r i n e s e s t o n , and i n t h e S p a r t i n a creekbank sediment (S-ll). We p o s t u l a t e t h a t the s e s t o n and sediment have a s i g n i f i ­ cant c o n t r i b u t i o n from swamp s o i l , o r more l i k e l y a l l o f t h e s e o r g a n i c p o o l s have a s i m i l a r p l a n t - d e r i v e d component w h i c h produces a h i g h e r p r o p o r t i o n o f t h e a c e t y l s t r u c t u r e upon p y r o l y s i s . The l a t t e r h y p o t h e s i s i s s u p p o r t e d by the presence o f the v a n i l l y l compound J i n s i g n i f i c a n t amounts o n l y i n S p a r t i n a and i n t h e S p a r t i n a marsh creekbank sediment ( S - l l ) . The low o r n o n - e x i s t e n t l e v e l s o f t h i s compound i n t h e o t h e r samples s u g g e s t s t h a t S p a r t i n a i s the major c o n t r i b u t o r o f h i g h e r p l a n t c a r b o n t o marsh creekbank sediment. However, i f t h i s h y p o t h e s i s i s c o r r e c t , i t i s d i f f i c u l t t o see why the s y r i n g l p r o d u c t s (K-M i n , F i g u r e 3) s h o u l d be p r e s e n t i n S p a r t i n a but m i s s i n g i n Sediment S - l l . F i v e s y r i n g y l d e r i v a t i v e s (compounds K-M, T, and V, F i g u r e 1) were d e t e c t e d among t h e p y r o l y s i s p r o d u c t s ( F i g u r e s 2-4). S y r i n g y l phenols a r e a l s o c h a r a c t e r i s t i c o f l l g n i n s , but o c c u r i n q u a n t i t y o n l y i n angiosperm p l a n t s C7; 18-19). S m a l l amounts o f t h r e e d i f f e r e n t a c e t y l and p r o p e n y l s y r i n g y l p y r o l y s i s p r o d u c t s were produced by w i l d r i c e and sedge ( F i g u r e 3 ) , w h i l e o n l y two o f t h e s e s t r u c t u r e s were o b t a i n e d from S p a r t i n a and the mixed c y p r e s s and hardwood t r e e l e a v e s . A much l a r g e r p r o p o r t i o n o f the a c e t y l d e r i v a t i v e , compound M, was found i n swamp s o i l and Doboy Sound

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

72

ORGANIC MARINE GEOCHEMISTRY

s e s t o n , s u g g e s t i n g a common o r g a n i c source f o r t h e s e two p o o l s o f organic matter. Somewhat e l e v a t e d l e v e l s o f t h e s e t h r e e s y r i n g y l compounds o c c u r r e d i n r i v e r s e s t o n . The l o w e r p r o p o r t i o n o f com­ pound M t o L a s compared t o t h e Doboy Sound s e s t o n may I n d i c a t e a l e s s degraded o r a d i f f e r e n t p l a n t s o u r c e c o n t r i b u t i n g t o s e s t o n i n the r i v e r . The open e s t u a r y sediment samples, S-13 and S-15, had s y r i n g y l s t r u c t u r e s w h i c h p r o b a b l y came from p l a n t d e b r i s . I n c o n t r a s t , t h e creekbank s e d i m e n t , w h i c h had abundant v a n i l l y l s t r u c t u r e s , showed o n l y t h e u n s u b s t i t u t e d s y r i n g y l compound, T. The absence o f o t h e r s y r i n g y l s t r u c t u r e s i n sediment S - l l i s some­ what s u r p r i s i n g i f S p a r t i n a i s t h e main source o f p l a n t m a t e r i a l t o t h i s s e d i m e n t , s i n c e two a d d i t i o n a l s y r i n g y l s t r u c t u r e s ( L and M) were found among t h e S p a r t i n a p y r o l y s i s p r o d u c t s . F i g u r e 4 shows l e v e l s o f o t h e r phenoxy and methoxy p y r o l y s i s p r o d u c t s (N t h r o u g h S and U, some o f w h i c h a r e shown i n F i g u r e 1 ) w h i c h might be d e r i v e d from l i g n i n and/or o t h e r h i g h e r p l a n t material. The s p e c i f i c i t y o f t h e s e p y r o l y s i s p r o d u c t s a s markers o f h i g h e r p l a n t m a t e r i a l w i l l have t o be i n v e s t i g a t e d i n f u t u r e work. Q l and Q2 appear t o be a c e t y l d i p h e n o l i c s t r u c t u r e s , w h i l e b o t h R l and R2 were i d e n t i f i e d by t h e computer a s r e l a t e d t o t h y m o l (see F i g u r e 1 ) . B o t h t y p e s o f s t r u c t u r e s may be t y p i c a l o f h i g h e r p l a n t s , but a r e n o t n e c e s s a r i l y d e r i v e d from l i g n i n . Thymol ( R l and R2) i s a monoterpene w h i c h o c c u r s w i d e l y i n h i g h e r p l a n t s ( 2 1 ) . F o r t h e G e o r g i a e s t u a r y samples, t h e p l a n t s , swamp s o i l , s e s t o n , and sediment S - l l from t h e t i d a l creekbank a l l showed s i m i l a r d i s t r i b u t i o n s o f compounds Q2 and R l . Compound 0 a l s o o c c u r r e d as a p y r o l y s i s p r o d u c t i n t h e s e samples, w i t h t h e amount b e i n g more e n r i c h e d i n sedge t h a n i n t h e o t h e r p l a n t s . These com­ pounds a r e e i t h e r a b s e n t o r p r e s e n t i n l o w e r l e v e l s i n t h e s p e c t r a o f p y r o l y s i s p r o d u c t s from t h e o t h e r sediment samples: S-13, S-12 and S-15. The r e s u l t s a r e c o n s i s t e n t w i t h t h e v a n i l l y l product d i s t r i b u t i o n ( F i g u r e 2) and suggest t h a t t h e s e p y r o l y s i s p r o d u c t s a l s o a r i s e from v a s c u l a r p l a n t s and t h a t t h e r e i s a s i g n i f i c a n t v a s c u l a r p l a n t c o n t r i b u t i o n t o t h e s e s t o n and creekbank sediment. The s m a l l e r amounts o f compounds 0, Q2, and R l i n t h e open e s t u a r y sediments i n d i c a t e e i t h e r a l e s s e r i n f l u e n c e o r a more d i a g e n e t i c a l l y a l t e r e d higher p l a n t carbon. P y r o l y s i s p r o d u c t s N, R2, P, S, U, and V, shown i n F i g u r e 4, were more s p e c i f i c t h a n t h o s e d i s c u s s e d above. Compound V was produced o n l y by sedge, b l a c k r u s h , mixed c y p r e s s and hardwood l e a v e s , and i n s m a l l e r amounts, by swamp s o i l . The presence o f t h i s compound i n sediment S-15, b u t n o t i n o t h e r s e s t o n o r sediment samples, s u g g e s t s t h e c o n t r i b u t i o n o f s p e c i f i c h i g h e r p l a n t s t o t h i s sediment sample. The o c c u r r e n c e o f compound P, i n sediment S-15 and Doboy Sound s e s t o n , b u t n o t i n t h e h i g h e r p l a n t s a n a l y z e d o r i n swamp s o i l may i n d i c a t e a f a i r l y s p e c i f i c marine p r e c u r s o r f o r t h i s p a r t i c u l a r p y r o l y s i s product. I n a d d i t i o n t o t h e a n a l y s e s o f l i g n i n p r o d u c t s by PGCMS a s d i s c u s s e d h e r e , one sample o f e s t u a r i n e s e d i m e n t , comparable t o sample S-15, was a n a l y z e d f o r l i g n i n o x i d a t i o n p r o d u c t s by t h e CuO o x i d a t i o n method ( 2 2 ) . The d i s t r i b u t i o n o f v a r i o u s t y p e s o f p h e n o l i c compounds i n t h e sediment I s compared t o t h a t o f S p a r t i n a

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

4.

WHELANETAL.

Phenolic and Lignin Pyrolysis Products

73

a l t e m i f l o r a and o t h e r t y p e s o f p l a n t s p r e v i o u s l y a n a l y z e d w i t h the CuO method (7) i n T a b l e I I I .

T a b l e I I I . Comparison o f t h r e e l i g n i n parameters d e t e r m i n e d f o r an e s t u a r i n e sediment sample w i t h t h o s e o f S p a r t i n a a l t e m i f l o r a and o t h e r v a s c u l a r p l a n t s . S/V wt. r a t i o o f s y r i n g y l t o v a n i l l y l p h e n o l s ; C/V wt. r a t i o o f c i n n a m y l t o v a n i l l y l p h e n o l s ; Co/Fe wt. r a t i o o f the c i n n a m y l p h e n o l s p-coumaric a c i d and f e r u l i c a c i d . m

s

β

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

Sample E s t u a r i n e sediment *Spartina a l t e m i f l o r a Other nonwoody angiosperm t i s s u e Angiosperm woods Gymnosperm nonwoody t i s s u e Gymnosperm woods

S/V

C/V

1.24 1.1 1.5 2.5 0.02 0

0.46 1.0 0.71 0 0.49 0

* p l a n t d a t a from Ref.

Co/Fe 2.89 0.84 2.5 0 5.0 0

7.

The l i g n i n s i g n a t u r e i n t h i s sediment sample most c l o s e l y resembles t h a t o f nonwoody angiosperm t i s s u e , but i t does n o t f i t w e l l w i t h the s p e c i f i c d i s t r i b u t i o n o f l i g n i n phenols o b t a i n e d f o r S p a r t i n a . T h i s r e s u l t i s c o n s i s t e n t w i t h t h o s e o b t a i n e d by PGCMS, even though the s p e c i f i c r e l a t i o n between o x i d a t i v e and p y r o l y t i c l i g n i n d e g r a ­ d a t i o n p r o d u c t s has n o t y e t been d e t e r m i n e d . Thus, sediment S-15 does not show the same p y r o l y s i s p r o d u c t s as S p a r t i n a i n F i g u r e s 2-4. The s t r o n g e s t p h e n o l i c p y r o l y s i s s i g n a l i n S-15 i s most l i k e t h o s e o f swamp s o i l and Doboy Sound s e s t o n as shown i n F i g u r e 3 and c o n s i s t s o f a r e l a t i v e l y s t r o n g s y r i n g y l component i n c o m p a r i ­ son t o o t h e r sediment samples. S e v e r a l sediment samples from the M i s s i s s i p p i Fan i n the G u l f o f Mexico d i d show t r a c e s o f compound U. These sediments s h o u l d have been h e a v i l y i n f l u e n c e d by t e r r i g e n o u s o r g a n i c m a t t e r . How­ e v e r , i t i s not c u r r e n t l y known t o what depths l i g n i n s s u r v i v e i n deep sea sediments ( 6 ) . I t has r e c e n t l y been shown t h a t v a n i l l y l and p-hydroxy l i g n i n a r e p a r t i a l l y p r e s e r v e d i n some b u r i e d woods f o r p e r i o d s o f up t o 2500 y e a r s ( 2 3 ) . We p l a n t o r e a n a l y z e DSDP M i s s i s s i p p i Fan samples, a l o n g w i t h more h e m i p e l a g i c types of marine s e d i m e n t s , i n f u t u r e work t o l o o k i n d e t a i l f o r the com­ pounds i n F i g u r e 1. Summary D e t e r m i n i n g the r e l a t i v e c o n t r i b u t i o n s o f marine and t e r r e s t r i a l p l a n t o r g a n i c carbon t o t h e p o o l s o f o r g a n i c m a t t e r i n c o a s t a l systems i s o f t e n d i f f i c u l t . I n G e o r g i a s a l t marsh e s t u a r i e s , the major s o u r c e s o f o r g a n i c m a t t e r a r e i n s i t u p h y t o p l a n k t o n produc-

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

ORGANIC MARINE GEOCHEMISTRY

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

74

t i o n , d e t r i t u s from t h e marsh g r a s s S p a r t i n a a l t e m i f l o r a , and t e r r e s t r i a l p l a n t m a t e r i a l i n t r o d u c e d by r i v e r f l o w . S t a b l e carbon i s o t o p e s t u d i e s i n d i c a t e t h a t , a l t h o u g h S p a r t i n a carbon i s p r e s e n t i n s a l t marsh sediment and t o some e x t e n t i n sediment i n t h e open e s t u a r y , t h e r e i s a l a r g e background of ^C-depleted organic m a t t e r i n sediment and i n suspended p a r t i c u l a t e m a t e r i a l w h i c h c o u l d come e i t h e r from p h y t o p l a n k t o n o r from t e r r e s t r i a l m a t e r i a l . I n o r d e r t o c l a r i f y t h e s o u r c e o f t h i s m a t e r i a l , samples o f e s t u a ­ r i n e v a s c u l a r p l a n t s , s e s t o n , and sediment were a n a l y s e d f o r con­ t e n t and c o m p o s i t i o n o f p h e n o l i c and methoxy p h e n o l i c p y r o l y s i s p r o d u c t s by p y r o l y s i s and subsequent gas chromatography and mass s p e c t r o m e t r y . Some o r a l l o f t h e s e p r o d u c t s ( p a r t i c u l a r l y t h e methoxy p h e n o l s ) a r e proposed t o be d i a g n o s t i c l i g n i n p y r o l y s i s products. These p r o d u c t s , w h i c h a r e n o t produced by more marine samples, appear t o be d i a g n o s t i c o f t e r r i g e n o u s p l a n t s . Based on t h e s e a n a l y s e s , S p a r t i n a has a unique s i g n a t u r e w h i c h a l s o appeared i n a sample o f s u r f a c e mud from t h e bank o f a t i d a l c r e e k d r a i n i n g a S p a r t i n a marsh. Sediment from t h e t i d a l c r e e k bed and from two open e s t u a r i n e s i t e s showed v e r y l i t t l e o f t h e s e p y r o l y s i s p r o ­ d u c t s , and t h e c o m p o s i t i o n d i d n o t match t h a t o f S p a r t i n a . Suspen­ ded m a t e r i a l i n t h e e s t u a r y had a s t r o n g e r s i g n a l w h i c h resembled t h a t o f t r e e l e a v e s and s o i l i n c o a s t a l f r e s h w a t e r swamps. S e s t o n and some sediment i n t h e open e s t u a r y a l s o c o n t a i n e d p h e n o l i c ( p r o b a b l y n o n - l i g n i n ) p y r o l y s i s p r o d u c t s w h i c h were n o t p r e s e n t i n the p l a n t s and w h i c h were p r o b a b l y o f marine o r i g i n . One e s t u a r i n e sediment sample was i n d e p e n d e n t l y a n a l y s e d f o r l i g n i n CuO o x i d a t i o n p r o d u c t s v i a gas chromatography. The c o m p o s i t i o n o f t h e l i g n i n p r e s e n t i n t h i s sample resembled t h a t o f some non-woody angiosperm t i s s u e s from t h e swamp, b u t d i d n o t c l o s e l y match t h e l i g n i n p r o d u c t s found f o r S p a r t i n a . I t appears t h a t o r g a n i c carbon d e r i v e d from v a s c u l a r p l a n t s i s p r e s e n t i n e s t u a r i n e s e s t o n and sediment, b u t S p a r t i n a may n o t be t h e p r i m a r y s o u r c e f o r t h i s material. Acknowledgments T h i s work was s u p p o r t e d by g r a n t s from t h e Sapelo I s l a n d R e s e a r c h F o u n d a t i o n t o E. S h e r r and by N a t i o n a l S c i e n c e F o u n d a t i o n Grant OCE83-00485 t o J . K. Whelan and J . M. Hunt. We a r e g r a t e f u l t o Dr. John Hedges f o r l i g n i n o x i d a t i o n p r o d u c t a n a l y s i s o f one o f our sediment samples, and t o D r s . J i m A l b e r t s , Chuck Hopkinson, John E r t e l and John Hedges f o r t h e i r comments on t h e m a n u s c r i p t . Thanks a l s o go t o Dr. N e l s o n Frew f o r mass s p e c t r a and t o C h r i s t i n e B u r t o n and R i c h a r d Sawdo f o r t e c h n i c a l a s s i s t a n c e . C o n t r i b u t i o n No. 6055 o f t h e Woods Hole Océanographie I n s t i t u t i o n and No. 546 of t h e U n i v e r s i t y o f G e o r g i a M a r i n e I n s t i t u t e .

Literature Cited 1. 2.

Teal, J . M . , Ecology 1962, 43, 614-624. Odum, E. P.; De La Cruz, A. A. In "Estuaries"; Lauff, G. H . , Ed.; AMER. ASSOC. ADV. SCIENCE: Washington, D.C., 1967; pp. 383-388.

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

4. WHELAN ET AL. Phenolic and Lignin Pyrolysis Products

3. 4. 5. 6. 7. 8. 9. 10.

Downloaded by FUDAN UNIV on February 21, 2017 | http://pubs.acs.org Publication Date: April 21, 1986 | doi: 10.1021/bk-1986-0305.ch004

11. 12. 13. 14. 15. 16. 17. 18 19. 20. 21. 22. 23.

Haines, Ε. B. Oikos, 1977, 19, 254-260. Haines, Ε. B . ; Montague, C. L. Ecology 1979, 60, 48-56. Sherr, Ε. B. Geochim. Cosmochim. Acta 1982, 46, 1227-1232. Hedges, J. I.; Mann, D.C. Geochim. Cosmochim. Acta 1979, 43, 1809-1818. Hedges, J. I.; Mann, D.C. Geochim. Cosmochim. Acta 1979, 43, 1803-1807. Hedges, J. I.; Parker, P.L. Geochim. Cosmochim. Acta 1976, 40, 1019-1029. Hedges, J. I.; Turin, H. J.; Ertel, J. R. Limnol. Oceanogr. 1984, 29, 35-45. Ertel, J. R.; Hedges, H. I. Geochim. Cosmochim. Acta 1984, 48, 2065-2074. Saiz-Jimenez, C.; de Leeuw, J. W. Org. Geochem. 1984, 6, 417-422. Bracewell, J. M.; Robertson, G. W.; Williams, B. L. J. Anal. Appl. Pyr. 1980, 2, 53-62. Sigleo, A. C.; Hoering, T.C.; Helz, G. R. Geochim. Cosmochim. Acta 1982, 46, 1619-1626. Van de Meent, D.; DeLeeuw, J.W.; Schenek, P.A. J. Anal. Appl. Pyr. 1980, 2, 249-263. Obst, J. R. J. Wood Chem. Technol. 1983, 3, pp. 377-397. Martin, F . ; Saiz-Jimenez, C.; Gonsalez-Vila, F. J. Holzforschung 1979, 33, 210-212. Whelan, J. K . ; Fitzgerald, M. G.; Tarafa, M. Environ. S c i . Tech. 1983, 17, 292-298. Sarkanen, Κ. V. In "The Chemistry of Wood"; Browning, B. L., Ed.; R. E. Krieger Publishing Co.: Florida, 1963 (reprinted 1981); pp. 249-311. Sarkanen, Κ. V . ; Ludwig, C. H. "Lignins"; Wiley-Interscience: New York, 1981. Biemann, K. "Mass Spectrometry"; McGraw Hill: N.Y. 1962; pp. 87-95. Buchanan, M.A. In "The Chemistry of Wood", Browning, B. L., ed.; R. E. Krieger Publishing Co.: Florida, 1963; pp. 324-325. Hedges, J. I.; E r t e l , J. R. Anal. Chem. 1982, 54, 174-178. Hedges, J. I.; Cowie, G. L.; E r t e l , J. R.; Barbour, R. J.; Hatcher, P.G. Geochim. Cosmchim. Acta 1985, 49, 701-711.

RECEIVED October 31, 1985

Sohn; Organic Marine Geochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

75