Organic Syntheses via Transition Metal Complexes. 80. Allenylidene

Pedro Ram rez-L pez, Mar G mez-Gallego, Mar a Jos Manche o, and Miguel A. Sierra, Montse Bilurbina and Susagna Ricart. The Journal of Organic Chemistr...
0 downloads 0 Views 577KB Size
Organometallics 1995, 14,3173-3177

3173

Organic Syntheses via Transition Metal Complexes. 802 Allenylidene Complexes from [(2=Aminoethenyl)carbene]chromiu1n Complexes Rudolf Aumann," Beate Jasper, and Roland Frohlich Organisch-Chemisches Institut der Universitat Miinster, Orlbans-Ring 23, 0-48149Miinster, Germany Received February 22, 1995@

Allenylidene complexes (C0)5Cr=C=C=C(NRR1)Ph (5a-d) (NRR1 = NMe2, NMePh, NEtPh, indolinyl) are formed on reaction of (2-aminoalkeny1)carbene complexes (CO)aCr=C(OEt)-CH=C(NR')Ph (4a-d) with aluminum chloride in carbon disulfide/dichloromethane in 53-73% isolated yield. The X-ray structure of complex 5d [NRR' = NMePh; monoclinic space group P21/c (No. 14), a = 12.989(1) A, b = 13.520(2) A, c = 12.546(1) A, 2 = 4, R = 0.044, R,2 = 0.1431 indicates that a polarized iminium-alkynyl structure (CO)&---C=CC(=N+MePh)Ph gives a more adequate description of the bond distances than the allenylidene structure. Aminolysis of Alkynylcarbene Complexes

Alkynylcarbene complexes (C0)5M=C(X)C=CR (M = Cr, W; X = OR, NRd2 have gained much attention recently as building blocks for organic s y n t h e ~ i s . ~ - ~ Among various reactions studied so far are cycloadditions, ene-type reactions, and addition/eliminations.1° The aminolysis of alkynylcarbene complex 1 was investigated as early as 1972,2 but it was shown only re~ent1yll-l~ that altogether three competing reaction Abstract published in Advance ACS Abstracts, J u n e 1, 1995. (1)Part 79: Aumann, R.; Jasper, B.; Frohlich, R. Organometallics 1996,14,3167. (2)( a ) Fischer, E. 0.;Kreissl, F. R. J . Organomet. Chem. 1972,35, C47-C51. (b) Fischer, E. 0.;Kalder, H. J . Organomet. Chem. 1977, 131,57-64. (3)Bao, J.;Wulff, W. D.; Dragisich, V.; Wenglowski, S.; Ball, R. G. J. Am. Chem. SOC.1994,116,7616-7630. (4)(a)Duetsch, M.; Stein, F.; Funke, F.; Pohl, E.; Herbst-Irmer, R.; de Meijere, A. Chem. Ber. 1993,126, 2535-2541. (b) Duetsch, M.; Vidoni, S.; Stein, F.; Funke, F.; Pohl, E.; Noltemeyer, M.; de Meijere, A. J. Chem. Soc., Chem. Commun. 1994,1679-1680. (5)(a)Christoffers, J.; Dotz, K.-H. J . Chem. SOC.,Chem. Commun. 1993,1811-1812. (b) Christoffers, J.;Dotz, K.-H. Chem. Ber. 1996, 128,157-161.(c) Christoffers, J.; Dotz, K.-H. Organometallics 1994, 13,4189-4193. (6)Fischer, H.; Meisner, T.; Hofmann, J. Chem. Ber. 1990,123, 1799-1804. (7)Camps, F.; Moreto, J. M.; Ricart, S.; Viiias, J. M. Angew. Chem. 1991,103,1540-1542; Angew. Chem., Int. Ed. Engl. 1991,30,14701472. (8)(a)Aumann, R.; Jasper, B.; Frohlich R. Organometallics 1996, 14,231-237.(b) Aumann, R.; Hinterding, P.; Kriiger, C.; Goddard, R. J . Organomet. Chem. 1993,459,145-149. (c)Aumann, R. Chem. Ber. 1993,126,2325-2330. (d) Aumann, R.; Roths, K.; Lage, M.; Krebs, B. Synlett 1993,667-669. (e) Aumann, R.; Roths, K.; Lage, M.; Krebs, B. Synlett 1993,669-671. (f) Aumann, R.; Jasper, B.; Goddard, R.; Kriiger, C. Chem. Ber. 1994,127,717-724.(g) Aumann, R. Chem. Ber. 1994,127,725-729. (h)Aumann, R.; Hinterding, P. Chem. Ber. 1993, 126, 421-427. (i) Aumann, R.; Jasper, B.; Lage, M.; Krebs, B. Organometallics 1994,13,3502-3509. (i)Aumann, R.;Kossmeier, M.; Roths, K.; Frohlich, R. Synlett 1994,1041-1044. (9)Weng, W.; Bartik, T.; Gladysz, J. A. Angew. Chem. 1994,106, 2269-2271;Angew. Chem., Int. Ed. Engl. 1994,33,2199-2200. (10)Review: Wulff, W. D. I n Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 5B, pp 1065-1113 (see also references cited therein). (11)(a) Stein, F.; Duetsch, M.; Pohl, E.; Herbst-Inner, R.; de Meijere, A. Organometallics 1993,12,2556-2564. (b) Duetsch, M.; Stein, F.; Lackmann, R.; Pohl, E.; Herbst-Irmer, R.; de Meijere, A. Chem. Ber. 1992,125,2051-2065. (c) Duetsch, M.; Stein, F.; Lackmann, R.; de Meijere, A. Synlett 1992,324-326. (d) Stein, F.; Duetsch, M.; Noltemeyer, M.; de Meijere, A. Synlett 1993,486-488.


each). IR (hexane) [cm-l (%)I: i j = 2078.1 (2), 1939.1 (100) [v(C=O)], 1988.2 (80) [v(C=C=C)I. MS (70 eV) [mle(%)I: 349 (50) [M+], 321 (lo), 293 (201, 265 (40), 237 (50),209 (80) [M+ - 5C01, 166 (50), 127 (80), 93 (801, 86 (701, 77 (100). Anal. Calcd for C16HllCrN05(349.3): c, 55.02; H, 3.17; N, 4.01. Found: C, 54.87; H, 3.29; N, 4.17.

Pentacarbonyl[3-(methylphenylamino)-3-phenyl-l,2propadienylidenelchromium(5b). Pentacarbonyl[(2E)-lethoxy-3-(methylphenylamino)-3-phenylpropenylidene]chromium [(E)-4b](457 mg, 1.00 mmol) is reacted as described above with aluminum chloride. Data for 5b [247 mg, 60%,

violet crystals, Rr = 0.4 in dichloromethanelpentane (1:4), mp 112 "C, dec] are as follows. 'H NMR (C&): 6 7.05 and 6.55 (2:3 H, m each, 3-Ph), 6.40 and 6.10 (3:2 H, m each, NPh), 3.25 (3 H, 9, NCH3). 13CNMR (CsD6): 6 243.6 (Cr=C), 224.9 and 218.1 [1:4, trans- and cis-CO, Cr(CO)5], 150.2 [C(q),C31, 143.7 [C(q),i-C NPh], 135.0 [C(q),i-C 3-Ph]; 131.3, 130.3 and 129.5 (1:2:2, CH each, 3-Ph); 129.5 [C(q),C21; 128.1, 127.7 and 125.3 (1:2:2, CH each, NPh), 46.5 (NCH3). IR (hexane) [cm-l (%)I: i j = 2071.2 (2), 1942.5 (100) [ ~ ( C s o ) ]1978.0 , (60) [ V (C=C=C)]. MS (70 eV) [ m l e (%)I: 411 (30) [M+l, 383 (lo), 355 (20), 327 (40), 299 (50), 271 (80) [M+ - 5CO1, 219 (60), (30)Aumann, R. Chem. Ber. 1993, 126, 1867-1872.

Organometallics, Vol. 14, NO. 7, 1995 3177

Organic Syntheses via Transition Metal Complexes 179 (50), 127 (30), 77 (100). Anal. Calcd for C21H13CrN05 (411.3): C, 61.32; H, 3.19; N, 3.41. Found: C, 61.52; H, 3.25; N, 3.64. Pentacarbonyl[ 3-(ethylphenylamino)-3-pheny1-1,2-propadienylidene]chromium ( 5 ~ ) Pentacarbony1[(2E)-lethoxy. 34 ethylphenylamino)-3-phenylpropenylidene]chromium [(E)4c] (471 mg, 1.00 mmol) is reacted as described above with aluminum chloride. Data for 5c E225 mg, 53%, violet crystals, Rf = 0.4 in dichloromethane/pentane (1:4), mp 99 "C, decl are as follows. lH NMR (CsDs): d 7.10 and 6.55 (2:3 H, m each, 3-Ph), 6.40 and 6.15 (3:2 H, m each, NPh), 3.80 (2 H, q, NCHd, 1.00 (3 H, t, NCH3). 13CNMR (CsD6): d 240.0 (Cr=C), 225.6 and 218.9 [1:4, trans- and cis-CO, Cr(CO)51, 150.9 [C(q), c31, 142.8 [C(q),i-C NPhl, 135.7 [C(q),i-C 3-Phl; 131.9, 131.2 and 130.5 (1:2:2, CH each, 3-Ph); 129.3 [C(q),C21; 129.0,128.7 and 127.0 (1:2:2, CH each, NPh), 55.5 (NCH2), 12.5 (NCH3). IR (hexane) [cm-' (%)I: 5 = 2075.2 (21, 1943.2 (100) [ v ( C ~ O ) I , 1976.6 (60) [v(C=C=C)]. MS (70 eV) [ m l e (%)I: 425 (30) [M+l, 397 (IO), 369 (20), 341 (40), 313 (401, 285 (80) [M+ - 5CO1, 256 (30), 233 (20), 179 (30), 127 (30), 77 (100).Anal. Calcd for C22H15CrN05(425.3): C, 62.12; H, 3.55; N, 3.29. Found: C, 62.00; H, 3.56; N, 3.38. P e n t a c a r b o n y l [ 3 - (l-indolinyl)-3-phenyl-l,2-propadienylidenelchromium (5d). Pentacarbonyl[(2E)-l-ethoxy-3indolinyl-3-phenylpropenylidenelchromium[(E)-4dl(469mg, 1.00 mmol) is reacted as described above with aluminum chloride. Data for 5c [309 mg, 73%, violet crystals, Rf = 0.4 in dichloromethane/pentane (1:4), mp 132 "C, decl are as follows. The NMR spectra at 20 "C indicate a 2:3 isomer mixture. The chemical shifts of the minor product are given

in parentheses. lH NMR (CsDs): d 9.40 (6.05) [l H, d, J = 8.0 Hz, 7'-HI, 7.30 and 7.10 (6.80 and 6.60) [ l H each, dd each, J = 8.0 and 7.5 Hz each, 5'-H and 6'-Hl, 6.80 (6.65) [lH, d, J = 8.0 Hz, $-HI, 7.10 and 6.95 (7.14 and 6.90) [2:3 H, m each, 3-Ph], 3.00 (4.00)[2 H, t, NCHz], 2.00 (2.32) [2 H, t, NCH2CHzI. l3C NMR (CsDs): d 239.0 (243.0) [Cr=Cl, 224.9 and 217.9 (225.5 and 218.2) [1:4, trans- and cis-CO, Cr(CO)ril, 144.3 (143.9) [C(q), C3], 142.0 (140.4) [C(q), 7'a indoline], 137.1 (136.6)[C(q),3'a indoline], 135.3 (134.9) [C(q),i-C 3-Phl; 128.6, 126.1 and 125.4 (129.0,126,4and 125.9) [1:2:2, CH each, 3-Ph], 125.8 (125.1) [C(q),C2]; 126.4, 125.0, 122.6 and 116.0 (124.6, 124.3,123.6 and 115.0)[CH each, C4-C7 indoline], 52.1 (54.3) [NCHz], 24.8 (24.1) [ArCH2indolinel. IR (hexane) [cm-l (%)I: D = 2071.7 (2), 1940.1 (100) [v(C=O)I, 1973.8 (40) [v(C=C=C)I. MS (70 eV) [ m l e (%)I: 423 (30) [M+l, 395 (lo), 367 (20), 339 (40),311 (40), 283 (80) [M+ - 5COI,230 (30), 117 (60),89 (601, 63 (50), 52 (100). Anal. Cakd for CzzH13CrN05 (423.3): C, 62.42; H, 3.10; N, 3.31. Found: C, 62.12; H, 3.00; N, 3.30.

Acknowledgment. This work was supported by the Volkswagen-Stiftung and by the Fonds der Chemischen Industrie. Supporting I n f o r m a t i o n Available: Tables of crystal data and details of the structure solution, hydrogen positional and U parameters, anisotropic displacement parameters, and bond distances and angles (5 pages). Ordering information is given on any current masthead page. OM950142F