11
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Organometallic Derivatives of Sucrose as Pesticides
R. C. POLLER and A. PARKIN Chemistry Department, Queen Elizabeth College, University of London, Campden Hill Rd., London W8 7AH, England
Organotin p e s t i c i d e s , u s u a l l y containing three t i n c a r b o n bonds ( R S n X ) , a r e u n i q u e i n t h a t b i o l o g i c a l a c t i v i t y d i s a p p e a r s when t h e o r g a n i c g r o u p s a r e removed from t h e m e t a l . T h i s p r o c e s s o c c u r s on e x p o s u r e t o l i g h t and m i c r o o r g a n i s m s (1,2) and t h e s e p e s t i c i d e s , t h e r e f o r e , p r e s e n t no t h r e a t t o t h e e n v i r o n m e n t . Their major d i s a d v a n t a g e s a r e h i g h c o s t and l a c k o f s p e c i f i c i t y s o t h a t p r e y a s w e l l a s p r e d a t o r , may b e a t t a c k e d . The a i m o f t h e p r e s e n t w o r k w a s t o e x a m i n e t h e e f f e c t on b i o l o g i c a l a c t i v i t y o f m a k i n g a major change i n t h e s o l u b i l i t y o f R S n X compounds by i n t r o d u c i n g a sucrose residue i n t o the X group. T h i s method o f i n c r e a s i n g s o l u b i l i t y seemed a t t r a c t i v e s i n c e g l y c o s i d e f o r m a t i o n commonly i s u s e d i n n a t u r e t o e f f e c t t r a n s port i n tissue c e l l s of otherwise insoluble materials. Because o f the nature o f the f u n c t i o n a l groups p r e s e n t i n c a r b o h y d r a t e s , few o f t h e i r o r g a n o m e t a l l i c d e r i v a t i v e s have been r e p o r t e d . Organotin groups have been l i n k e d t o c e l l u l o s e by a v a r i e t y o f methods (3,4). I n a few i n s t a n c e s h y d r o g e n atoms o f h y d r o x y l groups i n sugars have been r e p l a c e d by o r g a n o t i n groups (5-7) b u t t h e s e a l k o x y d e r i v a t i v e s u s u a l l y a r e s e n s i tive to water. M o r e r e c e n t l y , we h a v e d e s c r i b e d some more s t a b l e compounds i n w h i c h an o r g a n o m e t a l l i c g r o u p i s j o i n e d t o a sugar by a s u l p h u r atom (8). None o f t h e s e m e t h o d s seemed a p p r o p r i a t e t o o u r p u r p o s e a n d we d e c i d e d t o p r e p a r e o r g a n o t i n c o m p o u n d s from s u c r o s e hydrogen p h t h a l a t e and s u c r o s e hydrogen s u c c i n a t e , s i n c e t h e s e c o u l d be o b t a i n e d by d i r e c t r e a c t i o n s between s u c r o s e and p h t h a l i c o r s u c c i n i c a n h y d r i d e s , as shown i n F i g u r e 1. The m a l e a t e was d i f f i c u l t t o i s o l a t e so t h a t l a t e r w o r k was c o n f i n e d t o the p h t h a l a t e and s u c c i n a t e . 3
3
145
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
146
SUCROCHEMISTRY
sucroseOH + X
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
N
X
^COOsucrose COOH
+
CO
R M OH
CH -
I
J->
2
2
CH 2
HC-
• I
HC-
X
COOsucrose ÖDOH COOsucrose
NrcoMRg
M=Ge,Sn,Pb
Figure 1
We w e r e i n t e r e s t e d i n c o m m e r c i a l e x p l o i t a t i o n a n d c h o s e t o use f r e e s u c r o s e and a c c e p t t h a t , i n a d d i t i o n to v a r i a t i o n s i n the e x t e n t of s u b s t i t u t i o n , there w o u l d be c o m p l i c a t i o n s due t o r e g i o i s o m e r i s m . A l l of the b i o l o g i c a l t e s t s were c a r r i e d out w i t h the crude p r o d u c t s o b t a i n e d from the above r e a c t i o n s . Before g i v i n g d e t a i l s of the r e s u l t s of these t e s t s , r e f e r e n c e w i l l be made t o some a s p e c t s o f t h e w o r k we h a v e d o n e on c h e m i c a l c h a r a c t e r i s a t i o n o f t h e s u c r o s e e s t e r s . W i t h r e g a r d t o t h e d e g r e e o f s u b s t i t u t i o n , two approaches have been u s e d , i . e . s e p a r a t i o n o f s i l y l a t e d d e r i v a t i v e s by gas c h r o m a t o g r a p h y ( g l c ) w i t h mass s p e c t r o g r a p h s e x a m i n a t i o n o f t h e p e a k s and s e p a r a t i o n o f a c e t y l d e r i v a t i v e s by column c h r o m a t o g r a p h y . A typic a l g l c t r a c e i s shown i n F i g u r e 2. From r i g h t t o l e f t , t h e f i r s t p e a k i s due t o s o l - v e n t , t h e n e x t s h a r p peak i s o c t a ( t r i m e t h y l s i l y l ) s u c r o s e and t h e s i l y l a t e d s u c r o s e s u c c i n a t e s t h e n appear as a p o o r l y r e s o l v e d , composite peak. H e n c e , a l t h o u g h we c a n a c u r a t e l y e s t i m a t e t h e a m o u n t o f u n s u b s t i t u t e d s u c r o s e , we a r e l e s s c e r t a i n o f t h e r e l a t i v e a m o u n t s o f mono- a n d d i ester. The s e c o n d t e c h n i q u e , w h e r e b y s u c r o s e o c t a a c e t a t e and t h e v a r i o u s a c e t y l a t e d s u c r o s e e s t e r s a r e s e p a r a t e d by c o l u m n c h r o m a t o g r a p h y , y i e l d s more r e l i a ble information. I n T a b l e s I a n d I I t h e two m e t h o d s a r e c o m p a r e d a n d we s e e t h a t a g r e e m e n t i s g o o d i n t h e c a s e o f t h e p h t h a l a t e e s t e r , l e s s so f o r t h e s u c c i n a t e and t h a t b o t h p r o d u c t s c o n t a i n s u b s t a n t i a l amounts o f free sucrose.
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
11.
POLLER
AND PARKIN
Organometallic Derivatives
147
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
!
Figure 2. GLC trace of "sucrose succinate" after trimethylsilylation
Table I C o m p o s i t i o n o f Sucrose
Phthalate Method
Free sucrose Monoester Diester Higher e s t e r s
Separation o f Acetates (%) 36 37 26 1
Separation o f Me Si derivs. (%) 35 42 24 0 3
American Chemical Society Library
w.
1155 16th St. N. Hickson; Sucrochemistry Washington, D. C. Chemical 200%Society: Washington, DC, 1977. ACS Symposium Series; American
148
SUCROCHEMISTRY
Table I I Composition
of Sucrose
Succinate
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Method Separation of Acetates (%) 22 43 34 1
Free sucrose Monoester Diester Higher e s t e r s
Separation of Me~Si d e r i v s . (%) 32
3
65 3
We a r e n o t i n a p o s i t i o n t o make a n y p r e c i s e s t a t e m e n t s a b o u t r e g i o i s o m e r i s m w i t h i n t h e mono- a n d d i e s t e r c l a s s i f i c a t i o n s b u t i n f o r m a t i o n c a n be g l e a n e d f r o m a somewhat s p e c u l a t i v e i n t e r p r e t a t i o n o f t h e l ^ C nmr ( n u c l e a r m a g n e t i c r e s o n a n c e ) s p e c t r a o f t h e s e p r o ducts. Work i n t h i s a r e a s t i l l i s i n p r o g r e s s a n d , f o r example, our t e n t a t i v e c o n c l u s i o n r e g a r d i n g sucrose p h t h a l a t e i s t h a t s u b s t i t u t i o n has o c c u r r e d a t the 6,6' a n d 4 p o s i t i o n s i n s u c r o s e . I t was o f i n t e r e s t t o i n c l u d e i n o u r b i o l o g i c a l t e s t s a compound i n w h i c h t h e s u c r o s e r e s i d u e was i n c o r p o r a t e d i n t o a n R g r o u p o f a n R^SnX c o m p o u n d . To t h i s e n d we u t i l i s e d t h e s e r i e s o f r e a c t i o n s shown i n F i g u r e 3, b e g i n n i n g w i t h t h e s o d i u m s a l t o f t h e c r u d e sucrose phthalate. Given the complexity of the s t a r t i n g m a t e r i a l , t h e f i n a l bromo compound, o f c o u r s e , i s a m i x t u r e b u t i t s a n a l y s i s , i n f r a r e d ( i r ) a n d nmr s p e c t r a c o r r e s p o n d t o t h e f o r m u l a shown. Cœsucrose ^SnCH CH CH Br
-f-
2
2
2
— ^
COONa
^.COOsucrose ^\:OOC
^COOsucrose
H £ H C H SnPh 2
2
3
^ ^ C O O C H
2
C H CH SnPh Br 2
2
2
Figure 3
T u r n i n g now t o t h e b i o l o g i c a l a c t i v i t y o f t h e s e compounds t h e r e s u l t s o f t e s t s a g a i n s t v a r i o u s o r g a n isms a r e summarized i n T a b l e s I I I - V I .
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
11.
POLLER
Organometallic Derivatives
AND PARKIN
Table I I I
Activities
149
against paint-destroying No. o f f u n g i s h o w i n g of spore germination
Compound
inhibition (max 16) 1
i
Bu SnOCOC H COOsucrose
16
16
6
P h - SnOCOC^H„COO s u c r o s e 3 6 4
16
14
4
0
0
3
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
10 ppm
100 ppm
fungi
6
(C H 6
1 ; L
4
) SnOCOC H COOsucrose 3
6
4
3
Bu SnOCOCH CH COOsucrose
16
16
10
Ph SnOCOCH CH COOsucrose
16
15
9
SucroseOCOC^H-COO(CH ) SnPh Br
16
7
0
(Bu Sn) 0
13
13
12
3
2
3
2
2
2
0
6
4
2
3
9
3
2
Table IV A c t i v i t i e s a g a i n s t E n t e r o m o r p h a : compounds t e s t e d against Enteromorpha i n seawater modified w i t h algal nutrients.
Concentration Compound
1 ppm
Bu^SnOCOC^H ..COOsucrose 3 6 4 Ph^SnOCOC^H.COOsucrose 3 6 4
0.1 ppm
+
+
+
+
Bu SnOCOCH CH COOsucrose
+
+
Ph SnOCOCH CH COOsucrose
+
+
C
H
^ 6 11^3 3
S
n
O
C
2
3
O
C
H
6 4
C
O
O
s
u
c
r
O
S
e
2
2
2
SucroseOCOC^H.COO(CH )~SnPh Br 9
b
q
z
J
2
+=effective
+
+
-=not e f f e c t i v e
M i n i mmm u m cconcG oncentration
a t which
(Bu Sn) 0 i s effective 3
2
0.3 ppm
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
150
SUCROCHEMISTRY
Table
V.
Antibacterial
properties of organotin Escherichia coli
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Compound
31
P h - SnOCOC ^ H„COO s u c r o s e 3 6 4
Cone (ppm)
Inhib
84
100
7%T
Bu SnOCOC H COOsucrose 3
6
4
SucroseOCOC^H-COO(CHJ SnPh Br 6
2
4
2
compounds Micrococcus denitrificans
1 1
11
Cone (ppm)
Inhib (%)
0.25
100
1
100
1
100
1 1
3
23
83
Table VI Molluscicidal
Activity
Compounds t e s t e d a g a i n s t a d u l t B i o m p h a l a r i a c f l a b r a t a . The L C 5 0 a s s e s s e d a f t e r a 120 h r e c o v e r y p e r i o d . Compound T r i p h e n y l l e a d Sucrose P h t h a l a t e T r i p h e n y l t i n Sucrose P h t h a l a t e T r i p h e n y l l e a d Sucrose Succinate T r i c y c l o h e x y l t i n Sucrose P h t h a l a t e T r i b u t y l t i n Sucrose P h t h a l a t e T r i p h e n y l t i n Sucrose Succinate T r i b u t y l t i n Sucrose Succinate
L C
50 Tppm) 0.1-0.2 0.2 0.1-0.2 0.05 0.1 >0.2 0.075-0.1
T h e s e r e s u l t s show t h a t t h e t r i b u t y l t i n a n d t r i phenyltin d e r i v a t i v e s o f sucrose are a t l e a s t equal i n b i o l o g i c a l a c t i v i t y t o t h e commercially used t r i b u t y l t i n o x i d e and f l u o r i d e and a r e s u p e r i o r w i t h r e g a r d t o a l g i c i d a l and f u n g i c i d a l p r o p e r t i e s (9/ 1 0 ) . This i s e v e n more r e m a r k a b l e when we c o m p a r e t h e t i n c o n t e n t s , see Table V I I . Except i n t h e case o f m o l l u s c i c i d a l a c t i v i t y t h e t r i c y c l o h e x y l t i n compounds a r e l e s s e f f e c t i v e a n d , i n most t e s t s , t h e l e s s a c c e s s i b l e compound w i t h t h e s u c r o s e r e s i d u e i n t h e R g r o u p s is inferior. T e s t s o n t h e o r g a n o l e a d compounds so f a r have b e e n c o n f i n e d t o m o l l u s c i c i d a l a c t i v i t y .
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
11.
P O L L E R A N D PARKIN
Organometallic Derivatives
151
Table V I I
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Tin content
of biocidal organotin
Compound
% Sn
T r i b u t y l t i n oxide Tributyltin fluoride Bu3SnOCOC5H4COO s u c r o s e Ph3SnOCOC5H4COO s u c r o s e
39.8 38.4 15.2 14.1
compounds
T r i b u t y l t i n sucrose p h t h a l a t e and s u c c i n a t e have been f o r m u l a t e d i n t o p a i n t s and s u b j e c t e d t o l a r g e r scale tests. The f u n g i c i d a l a c t i v i t y i s r e t a i n e d and t h e compounds a p p e a r t o g i v e e n h a n c e d p r o t e c t i o n t o w e a t h e r e d f i l m s o f e m u l s i o n p a i n t when c o m p a r e d w i t h t r i b u t y l t i n oxide. I n t h e t r i a l k y l a n d t r i p h e n y l compounds d e s c r i b e d above t h e sucrose group i s j o i n e d t o t i n v i a an f
-Sn-OCO-Ç- g r o u p . A l t h o u g h t h e b i o l o g i c a l t e s t s and o t h e r measurements i n d i c a t e t h a t t h i s g r o u p i s much m o r e r e s i s t a n t t o h y d r o l y s i s than might be expected, i t , n e v e r t h e l e s s , r e p r e s e n t s a p o i n t o f s t r u c t u r a l weakness i n t h e molecule. We t h e r e f o r e , h a v e b e e n e x a m i n i n g o t h e r m e t h o d s of j o i n i n g o r g a n o t i n groups t o sucrose, again c o n f i n i n g ourselves t o processes o f p o t e n t i a l commercial interest. The m o s t e f f e c t i v e o f t h e s e i s a s f o l l o w s : R S n S C H C O O M e + s u c r o s e O H - > R S n S C H C O O s u c r o s e + MeOH 3
2
3
2
As b e f o r e , t h e p r o d u c t l i k e l y i s t o be a m i x t u r e a n d we a s y e t d o n o t h a v e d e t a i l s o f i t s c o m p l e x i t y . The f u n g i c i d a l p r o p e r t i e s o f t h i s t y p e o f compound a r e being evaluated. Preliminary results indicate that t h e y a r e somewhat l e s s a c t i v e t h a n t h e p h t h a l a t e s a n d s u c c i n a t e s , b u t b e t t e r t h a n t r i b u t y l t i n o x i d e , on a weight f o r weight b a s i s . Acknowledgements We t h a n k t h e I n t e r n a t i o n a l S u g a r R e s e a r c h F o u n d a t i o n , I n c . , f o r s u p p o r t i n g t h i s work. We a r e g r a t e f u l to t h e P a i n t Research A s s o c i a t i o n f o r c a r r y i n g o u t t h e t e s t s a g a i n s t f u n g i a n d E n t e r o m o r p h a , t o D r . P. N o r r i s ( M i c r o b i o l o g y D e p a r t m e n t , Queen E l i z a b e t h C o l l e g e ) f o r c a r r y i n g o u t t h e t e s t s a g a i n s t b a c t e r i a and t o Dr. J Duncan ( C e n t r e f o r O v e r s e a s P e s t R e s e a r c h ) f o r t h e molluscicidal screening.
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
152
SUCROCHEMISTRY
Abstract Methods for attaching organotin groups to sucrose are discussed. Treatment of sucrose with phthalic (or succinic) anhydride gave a mixture of sucrose hydrogen phthalates (succinates) which reacted with organotin hydroxides, (RSnOH R=alkyl or aryl), to give organostannyl sucrose phthalates (succinates). The corresponding organolead and organogermanium compounds were prepared by similar methods. The biocidal activities of the organotin derivatives of sucrose were found to be much higher than would be expected from the tin content.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
3
Literature Cited 1.
Barnes, R.D., Bull, A. T., Poller, R.C., Pestic. S c i . , 1973, 4, 305. 2. Chapman, A. H., Price, J . W., Int. Pest Control, 1972, 14, 11. 3. Shostakovskii, M. F . , Polyakov, A. I . , Sinagin, V. V., Mirskov, R. G., Zh. P r i k l . Khim., 1968, 41, 2796. 4. Arcemova, Yu V . , Vinnik, A. D., Zemlyanskii, N.W., Rogevin, Z. A . , Cellulose Chem. Technol., 1971, 5, 319; (Chem. Abs., 1972, 76, 155815.) 5. David, S., and Thieffry, A . , C.R. Hebd. Seances, Acad. Sci. Ser. C., 1974, 279, 1045. 6. Wagner, D., Verheyden, J . P. H., and Moffatt, J.G. J . Org. Chem., 1974, 39, 24. 7. Crowe, A. J., and Smith, P. J., J . Organomet. Chem. 1976, 110, C59. 8. Husain, A. F., and Poller, R. C., J . Organomet. Chem., 1976, 118, C11. 9. Parkin, A., and Poller, R.C., British Patent Application No. 12168/76. 10. Parkin, A . , and Poller, R.C., Pesticide Science, in press. Biographic Notes Robert C. Poller, Ph.D., Reader in Chem. Educated at Univ. of Southampton. Chemist in the food industry; post-doctoral work at Birkbeck C o l l . ; organometallic chemistry and polymer stabilization. The Chemistry Department, Queen Elizabeth C o l l . , Univ. of London, Atkins Building, Campden H i l l Road, London W.8, England.
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Discussion
Question: Mr. K o s a k a , y o u r s u g a r e s t e r s w e r e duced u s i n g a s o l v e n t . What s o l v e n t d i d y o u u s e ? DMF?
pro-
Mr. K o s a k a : R y o t o d o e s n o t u s e DMF, b u t I do n o t d e n y t h a t t h e c o m p a n y i s u s i n g some k i n d o f s o l v e n t i n the process. Question: toxic?
I s i t an
edible solvent,
Mr. K o s a k a : I t i s one o f t h e s a f e s t however, the p r o d u c t s are s o l v e n t - f r e e .
and
i s i t non-
solvents,
Question: Dr. P a r k e r , have you done any e x p e r i ments i n m a k i n g y o u r s u g a r e s t e r by the s o l v e n t l e s s process u s i n g impure sugar r a t h e r than pure sucrose? I f so, what r e s u l t s d i d you g e t ? Dr. P a r k e r : We h a v e u s e d i m p u r e s u g a r b u t n o t m o l a s s e s , w h i c h h a s t o o h i g h an a s h c o n t e n t . The m a i n r e a s o n f o r not d o i n g so i s t h a t t h e s u g a r r e p r e s e n t s a r e l a t i v e l y m i n o r c o s t c o n s t i t u e n t , and traditionally we h a v e u s e d r e f i n e d s u g a r . We do n o t h a v e t o , b u t t h e r e i s no p a r t i c u l a r a d v a n t a g e i n n o t d o i n g s o . Question: M o n s i e u r B o b i c h o n , c o u l d you d i v u l g e some g e n e r a l way how y o u m a n a g e d t o r e d u c e t h e d i m e t h y l f o r m a m i d e t o 5 ppm?
in
Mr. B o b i c h o n : I c a n n o t a n s w e r t h a t i n t o o much d e t a i l - j u s t by t a k i n g p a i n s i n t h e p r o c e s s , being very c a r e f u l . I do n o t t h i n k t h a t t h e d i m e t h y l f o r m a m i d e i s r e a l l y s u c h a bad m a t e r i a l , and I a g r e e w i t h what Dr.Hass s a i d t h i s m o r n i n g about the i n a p p r o p r i a t e 153
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
154
SUCROCHEMISTRY
ness of
zero
tolerance for toxic materials.
Question;
What i s m e a n t b y
a half-day
diarrhea?
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Mr. B o b i c h o n : We m e a s u r e t h e d i a r r h e a o f t h e a n i m a l s t w i c e a day by v i s u a l e v a l u a t i o n , and r e c o r d t h e t o t a l number o f o b s e r v a t i o n s and t h e number o f d e f i n i t e diarrhea. Question;
Is that after
84
Mr. B o b i c h o n ; A f t e r 84 d a y s 168 e v a l u a t i o n s . As a n e x a m p l e , positive diarrhea observations. 14 a s t h e n u m b e r f o r t h e h a l f - d a y
days of
feeding?
o f f e e d i n g , we h a v e we c o u l d h a v e 14 T h e n we w o u l d r e c o r d diarrhea.
Question; How d o t h e e c o n o m i c s o f t h e t h r e e f a c t a n t s compare w i t h t h e p e t r o c h e m i c a l l y - d e r i v e d d u c t s , on a c o s t / p e r f o r m a n c e b a s i s ?
surpro-
Dr. P a r k e r ; I t i s v e r y d i f f i c u l t t o answer f o r other processes. Our own w o r k was b a s e d on t h e f a c t t h a t we w i s h e d t o o b t a i n a s u c r o s e - d e r i v e d s u r f a c t a n t w h i c h was i n d e e d c o m p e t i t i v e w i t h l i n e a r alkylbenzene sulfonate-types of surfactants. Our p r o d u c t , a s p r o d u c e d a t t h e moment, i s somewhat c h e a p e r . We a l s o have a r a n g e o f more h i g h l y p u r i f i e d p r o d u c t s w h i c h a r e m o r e e x p e n s i v e , b u t a r e i n t e n d e d t o be c o m p e t i t i v e w i t h n o n - i o n i c s u r f a c t a n t s of the s o r b i t a n e s t e r - t y p e . I t h i n k p r o c e s s e s u s i n g s o l v e n t s i n e v i t a b l y m u s t be somewhat more e x p e n s i v e , b e c a u s e o f t h e n e e d t o r e d u c e s o l v e n t r e s i d u e s t o a minimum. We w e r e n o t a b l e t o s e e how we c o u l d do t h i s , b u t m a y b e , M o n s i e u r B o b i c h o n , could give h i s p o i n t of view. Mr. B o b i c h o n ; I t i s d i f f i c u l t for a surfactant to be c o m p e t i t i v e p r i m a r i l y b e c a u s e o f t h e pH s t a b i l i t y . We t r i e d many t i m e s t o f i n d a p p l i c a t i o n s i n s u r f a c t a n t s f o r o u r s u c r o g l y c e r i d e , b u t we f a i l e d b e c a u s e o f t h e i n s t a b i l i t y a t a l k a l i n e pH. Question; please?
Dr.
Parker, w i l l
you
comment on
that,
Dr. P a r k e r ; We f o u n d t h a t t h e s u c r o g l y c e r i d e s a r e s t a b l e o v e r a pH r a n g e f r o m 6 t o 1 2 . Obviously, they are not s t a b l e under a c i d i c c o n d i t i o n s , a n d t h i s c o n s t i tutes a limitation. B u t , t h e number o f a p p l i c a t i o n s r e q u i r i n g a c i d - s t a b l e s u r f a c t a n t s are r e l a t i v e l y few. We a r e n o t w o r r i e d b y t h i s , a l t h o u g h we w o u l d l i k e t o
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
155
DISCUSSION
h a v e one
f o r these p a r t i c u l a r
applications.
Question: Mr. K o s a k a , w o u l d y o u l i k e t h i n g about the economics of your product?
t o say
any-
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
Mr. K o s a k a : The r e c o v e r y o f s o l v e n t i n t h e R y o t o p r o c e s s i s g r e a t e r t h a n 99%. Thus, the c o s t of s o l v e n t i s n e g l i g i b l e , and o u r p r o d u c t s a r e s o l v e n t - f r e e . Question: Mr. K o s a k a , w o u l d you e l a b o r a t e on bakery uses of sucrose e s t e r s i n Japan?
the
Mr. K o s a k a : The u s e i n c a k e s i s m o s t p o p u l a r . J a p a n e s e b a k e r s a r e u s i n g a m i x t u r e o f s u g a r e s t e r and monoglyceride i n bread. Question: For high protein breads, or just l a r wheat bread? Mr.
Kosaka:
Question: agent? Mr.
Kosaka:
Just regular
bread.
I s t h a t a p p l i c a t i o n as an
Y e s , as an a n t i - s t a l i n g
Q u e s t i o n : How d i f f i c u l t i s s i d u a l methanol content,and the anol? I f t h e r e i s any p r o b l e m , use o f t h e e t h y l e s t e r s f o r the
regu-
anti-staling
agent,mostly.
i t to c o n t r o l the r e t o x i c i t y o f t h i s methhave you thought o f the transesterification?
Mr. K o s a k a : We t h o u g h t a b o u t u s i n g e t h y l e s t e r , but i t s cost i s higher than that of methyl ester. We cannot f i n d methanol i n our products. Dr. Hass: Minute t r a c e s o f methanol are not t o x i c . The p e c t i n s w h i c h a r e u s e d f o r m a k i n g j e l l i e s h a v e c a r bomethoxy groups w h i c h a r e s p l i t o f f i n t h e d i g e s t i v e s y s t e m t o f o r m t r a c e s o f m e t h a n o l , a n d t h e y do n o t h u r t anybody. Dr. H i c k s o n : W i t h r e g a r d t o t h e e t h a n o l - m e t h a n o l question,do not forget that ethanol b o i l s at a s l i g h t l y h i g h e r t e m p e r a t u r e and r e q u i r e s a l i t t l e more h e a t t o take i t o f f . The r e a c t i o n c a l l s f o r t h e d i s t i l l a t i o n of methanol t o p r o v i d e the d r i v i n g force t o create the sugar e s t e r . T h a t i s a m a j o r r e a s o n why t h e m e t h y l e s t e r was c h o s e n . Question:
P r o f e s s o r S e i b , what i s t h e
potential
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
156
SUCROCHEMISTRY
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
t o t a l volume o f t h e s u r f a c t a n t market, i n b a k i n g , i n the u n i t e d S t a t e s , alone? Professor Seib: I t r i e d t o i n t i m a t e what t h e t o t a l m a r k e t m i g h t be by t a b u l a t i n g t h e poundage o f t h e v a r i o u s baked foods i n t h e United S t a t e s . I f 70% o f t h a t poundage i s b r e a d and r o l l s , one c o u l d estimate a b o u t 90,000 l b / d a y o f s u r f a c t a n t f o r t h a t p a r t o f t h e market. The n e x t l a r g e s t u s e p r o b a b l y w o u l d b e c a k e . I c a l c u l a t e d a n o t h e r 10,000 l b o f e s t e r / d a y i n t h a t market. T h a t i s b a s e d o n a t o t a l o f 1.4 b i l l i o n l b of cake a n n u a l l y , which c o n t a i n s 3 t o 6 % s u r f a c t a n t i n t h e e m u l s i f i e d s h o r t e n i n g s w h i c h a r e u s e d i n c a k e manufacturing. I think that, c e r t a i n l y , i s not the t o t a l , b u t y o u c a n s e e how q u i c k l y y o u d r o p o f f i n m a g n i t u d e f r o m 14 - 17 b i l l i o n l b o f b r e a d a n d r o l l s down t o 1.4 b i l l i o n l b o f cake p e r year. I think that a potential m a r k e t o f a 100,000 l b / d a y o f s u g a r e s t e r s i n t h e baki n g i n d u s t r y i s a f a i r l y good a p p r o x i m a t i o n . M r . B e a t t y , o f C o n t i n e n t a l B a k i n g , h a s j u s t m e n t i o n e d t h a t 450,000 t o n s o f b r e a d f l o u r / y e a r i s u s e d b y h i s company a l o n e . Question; Dr. van V e l t h u i j s e n , i s t h e p r i c e o f t h e s u g a r a l c o h o l s much h i g h e r t h a n t h e p r i c e o f s u g a r ? How d o e s t h i s a f f e c t t h e t o t a l e c o n o m i c s o f t h e f i n a l product? Dr. v a n V e l t h u i j s e n ; The p r i c e o f t h e s u g a r a l c o h o l s i s about double o r t r i p l e t h e p r i c e o f sugar. Of course, t h i s enters i n the costing of the product. Even s o , t h e p r i c e o f t h e crude r e a c t i o n m i x t u r e i s i n t h e same p r i c e l e v e l a s t h e s u r f a c t a n t s , s u c h a s t h e g l y c e r o l m o n o s t e a r a t e s a n d s t e a r o y l l a c t y l a t e s , now a v a i l a b l e i n t h e foods market. Question; D r . P o l l e r , a r e t h e r e a n y p l a n s t o go f o r w a r d w i t h f i e l d t e s t i n g o f any o f t h e p e s t i c i d e s you m e n t i o n e d ? Dr. P o l l e r ; A s I i n d i c a t e d i n my t a l k , t h i s h a s been done f o r a p p l i c a t i o n s i n p a i n t s . Large-scale t e s t s have been c a r r i e d o u t . F o r more g e n e r a l u s e s — f o r i n s t a n c e , i n a g r i c u l t u r e — we a r e a t p r e s e n t j u s t coming t o t h e end o f s y n t h e s i z i n g l a r g e - s c a l e batches for e x a c t l y t h i s purpose. Professor V l i t o s ; The s c r e e n i n g o f compounds o f t h i s type i s rather d i f f i c u l t . The s y n t h e s e s u s u a l l y a r e done i n a u n i v e r s i t y l a b o r a t o r y , u s u a l l y i n t h e c h e m i s t r y d e p a r t m e n t , and t h e s c r e e n i n g h a s t o be done
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
157
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
DISCUSSION
by b i o l o g i c a l g r o u p s . Very o f t e n they are busy doing t h e i r own t y p e s o f r e s e a r c h . I f t h e r e i s any weakness i n the approach o f the I n t e r n a t i o n a l Sugar Research F o u n d a t i o n i t i s t h a t i t has b e e n f o u n d t o be v e r y d i f f i c u l t t o s c r e e n t h e u s e f u l n e s s o f t h e compounds t h a t have been s y n t h e s i z e d i n t h e r e s e a r c h programs. T h e r e a r e many, many c o m p o u n d s , w h i c h may h a v e , who k n o w s how many a p p l i c a t i o n s . We j u s t h a v e n o t h a d a c h a n c e t o r e a l l y l o o k a t them a l l i n t h e r i g h t t e s t systems. I t h i n k Dr. P o l l e r ' s work i n d i c a t e s : f i r s t , h e r e i s some i n t e r e s t i n g c h e m i s t r y ; a n d s e c o n d , h i s compounds h a v e a u s e w h i c h a l r e a d y h a s b e e n d e m o n s t r a t ed. Now, i t i s up t o somebody t o s y n t h e s i z e t h e m a n d s e l l them. That i s another problem. Question: Dr. P o l l e r a r e these m a t e r i a l s s o l u b l e enough i n w a t e r t o use them, o r a r e t h e y c o m p l e t e l y solvent-soluble? Dr. P o l l e r : The s o l u b i l i t i e s o f t h e s t a n d a r d , o r g a n o t i n p e s t i c i d e s c u r r e n t l y i n use a r e low — some o f them v e r y l o w , i n d e e d — i n parts per m i l l i o n . By p u t t i n g o n t h e s u c r o s e g r o u p , t h e s o l u b i l i t y g o e s up a r o u n d a t h o u s a n d f o l d , a s a r o u g h e s t i m a t e , b u t we h a v e no p r e c i s e f i g u r e s . T h i s i s an i n t e r e s t i n g q u e s t i o n . Is t h i s simply a s o l u b i l i t y e f f e c t , or i s i t something e l s e ? I conclude i t i s not simply a s o l u b i l i t y e f f e c t because, a t l e v e l s where t h e t r i b u t y l t i n o x i d e i s s o l u b l e , t h e a c t i v i t i e s o f t h e s u c r o s e compounds a r e h i g h e r . In t h e b e s t t e s t s , t h e s u c r o s e compound i s t h r e e t i m e s more e f f e c t i v e w i t h a r o u n d a t h i r d t h e amount o f t i n i n it. Most o f t h e t e s t s were c a r r i e d o u t a t c o n c e n t r a t i o n s where b o t h t h e s u c r o s e compounds and t h e r e f e r ence o r g a n o t i n p e s t i c i d e s were c o m p l e t e l y d i s s o l v e d and s o t h e i n c r e a s e d a c t i v i t i e s c a n n o t s i m p l y be a t t r i buted t o s o l u b i l i t y e f f e c t s . Question: Would t h e h i g h s o l u b i l i t y culties i n formulation?
cause
diffi-
Dr. P o l l e r : Not n e c e s s a r i l y . The o r g a n o t i n e s t e r s c a n be h y d r o l y s e d and i t i s p o s s i b l e t h a t , a f t e r t r a n s p o r t i n l i v i n g t i s s u e as t h e o r g a n o t i n sucrose e s t e r , h y d r o l y s i s o c c u r s and t h e i n s o l u b l e o r g a n o t i n oxide i s then deposited.
these
Question: What k i n d o f b r e a k d o w n p r o d u c t s d o s u c r o s e t i n c o m p o u n d s h a v e o n biodégradation?
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
158
SUCROCHEMISTRY
Dr. P o l l e r : We do n o t know. The s u c r o s e t i n d e r i v a t i v e s a r e v e r y new,and t h e y s t i l l a r e b e i n g t e s t ed. H o w e v e r , we h a v e d o n e some w o r k o n biodégradat i o n of t r i p h e n y l t i n p e s t i c i d e s . T h i s was d o n e b y s y n t h e s i z i n g l C - l a b e l l e d p e s t i c i d e s , p u t t i n g them i n t o s o i l u n d e r v a r i o u s c o n d i t i o n s , and t h e n c o l l e c t i n g t h e r a d i o a c t i v e l y l a b e l l e d carbon dioxide. The organic g r o u p s come o f f i n a s t e p w i s e f a s h i o n a n d b r e a k down completely, to carbon dioxide. Only i n o r g a n i c t i n r e mains .
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0041.ch011
4
Question: I s i t d e f i n i t e l y i n o r g a n i c t i n , and some t i n - a l k y 1 d e r i v a t i v e s u c h a s a m e t h y l t i n compound?
not
Dr. P o l l e r : Yes. A l^C-labelled, radiochemicall y and c h e m i c a l l y p u r e compound i s a d d e d t o s o i l , and t h e r a d i o a c t i v i t y o f t h e 14co? e v o l v e d i s m e a s u r e d carefully. When a l l o f t h e 14c l a b e l a p p e a r s a s c a r b o n d i o x i d e t h e r e i s no d o u b t t h a t t h e c o m p o u n d i s b r o k e n down c o m p l e t e l y . T h i s i s t h e s o r t o f e v i d e n c e we have t h a t t h e t r i p h e n y l t i n compounds a r e c o n v e r t e d t o inorganic t i n . Question: A r e y o u c e r t a i n t h a t a n o r g a n o t i n comp o u n d c o u l d n o t f i n d i t s way i n t o t h e f o o d c h a i n some o t h e r way, p o s s i b l y t h r o u g h s o l u b i l i z a t i o n processes, t r a n s p o r t p r o c e s s e s , and so f o r t h ? Dr. P o l l e r : I t i s i m p o s s i b l e t o be c e r t a i n , b u t t h e e v i d e n c e we h a v e s u g g e s t s t h a t o r g a n o t i n p e s t i c i d e s a r e c o n v e r t e d t o i n o r g a n i c t i n on e x p o s u r e t o l i g h t and microorganisms. The w i d e u s e o f t i n - p l a t e d c a n s a s f o o d c o n t a i n e r s a n d much o t h e r e v i d e n c e i n d i c a t e s t h a t i n o r g a n i c t i n compounds a r e n o t t o x i c . Dr. Hass: I t was t h e i d e a o f one o f o u r librarians a t S u g a r R e s e a r c h F o u n d a t i o n t h a t t h e g e n e r a l app r o a c h o f c o m b i n i n g s u c r o s e w i t h p e s t i c i d e s m i g h t be effective. We f i r s t t r i e d i t i n a p r o j e c t a t B a t t e l l e f r o m w h i c h we n e v e r g o t a n y t h i n g t h a t was a s g o o d a s existing pesticides. I am d e l i g h t e d t h a t y o u a r e d o i n g i t , and t h a t we s i m p l y t r i e d t h e w r o n g c o m p o u n d s .
Hickson; Sucrochemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1977.