9 Oxyfluoride Photoelectrodes for the Photodecomposition of Water by Solar Energy A.
WOLD
and K .
DWIGHT
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
Department of Chemistry, B r o w n University, Providence, R I 02912
Several oxides—for
example,
TiO ,
SrTiO3,
2
SnO2, and
—have been used as anodes for the photoelectrolytic position
of water by solar energy.
made to conduct ever, oxygen the
chemical oxygen
method
substitution vacancies
stable electrodes
of oxygen
undoubtedly
instability
An alternative
All these oxides must
by the creation
deficiencies
long-term
of the
should toward
result oxygen
defects.
are
electrodes
of enhancing
of oxygen
WO3 decom-
responsible studied
conductivity
by fluorine. in the in
be
Howto
for date.
is to
use
The absence
formation
of
of
more
solution.
T n m o s t of the p r e v i o u s i n v e s t i g a t i o n s t h a t h a v e dealt w i t h n - t y p e o x i d e A
electrodes for t h e p h o t o e l e c t r o l y s i s of w a t e r , i n c r e a s e d c o n d u c t i v i t y
w a s a c h i e v e d b y t h e p r o d u c t i o n of o x y g e n deficiencies.
T h i s early w o r k
o n n - t y p e anodes s u c h as T i 0 - a > i n d i c a t e d t h a t t h e d e f e c t 2
were
stable.
H o w e v e r , recent
evidence
compounds
has s h o w n t h a t these
(1,2)
c o m p o u n d s d o not s h o w l o n g - t e r m s t a b i l i t y i n t h e p r e s e n c e of o x y g e n at t h e i r surfaces. A n a l t e r n a t i v e m e t h o d of p r o d u c i n g c o n d u c t i n g electrodes is to substitute fluorine f o r o x y g e n r a t h e r t h a n to create o x y g e n v a c a n c i e s . B o t h methods
r e s u l t i n the f o r m a t i o n of
3d
1
titanium, w h i c h w o u l d
account for the relatively h i g h conductivity obtained. I n a recent p u b l i c a t i o n D e r r i n g t o n et a l . (3) 3 x
r e p o r t e d o n t h e p h o t o e l e c t r o l y t i c b e h a v i o r of
Pure W 0 , prepared b y completely o x i d i z i n g tungsten foil,
W0 . F . x
3
c o u l d best b e i n d e x e d o n a t r i c l i n i c system s i m i l a r to t h e one r e p o r t e d b y R o t h a n d W a r i n g (14).
I t t r a n s f o r m s to a m o n o c l i n i c p h a s e u p o n t h e
r e m o v a l of s m a l l a m o u n t s of o x y g e n (15). (O ^
x ^
W h e r e a s the system W 0 . 3
1) is m o n o c l i n i c t h r o u g h o u t t h e e n t i r e r a n g e (5)
i
WO3.fl.F-p p r e p a r e d i n t h e s t u d y of
D e r r i n g t o n et a l . (3)
f
t h e system undergoes
p r o g r e s s i v e s t r u c t u r a l m o d i f i c a t i o n s , w h i c h are s u m m a r i z e d i n T a b l e I . 0-8412-0472-l/80/33-186-161$05.00/l © 1980 A m e r i c a n C h e m i c a l S o c i e t y
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
162
SOLID S T A T E
CHEMISTRY: A CONTEMPORARY OVERVIEW
Table I. Structural x
a (A)
b(A)
0 0.0079 ± 0.0005 0.0177 ± 0.001 0.0663 ± 0.005
7.306(1) 7.301(1) 7.311(1) 7.369(1)
7.527(1) 7.527(1) 7.545(1) 7.482(1)
T h e s t r u c t u r e r e m a i n s t r i c l i n i c f o r v e r y s m a l l (x = substituted stituted
fluorine
fluorine
i n t h e system W03. F . X
X
0.0079) a m o u n t s of
W h e n t h e a m o u n t of s u b
is 0.0177, t h e s t r u c t u r e has u n d e r g o n e t h e t r a n s i t i o n t o
the monoclinic phase, a n d w h e n x =
0.0663, t h e r e s u l t i n g p h a s e i s
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
orthorhombic. T h e resistivity of the pure W 0 cm.
3
samples w a s a p p r o x i m a t e l y 1 0 O • 6
T h e resistivities of t h e W O s . * samples r a n g e d b e t w e e n 1.2 X 1 0
a n d 7 X 10" fi • c m , a n d t h e resistivities of t h e W0 . F 1
3 x
4
samples r a n g e d
x
b e t w e e n 100 a n d 5 O • c m . A b s o r p t i o n m e a s u r e m e n t s i n d i c a t e d t h a t t h e b a n d g a p of W 0
3
a n d a l l W 0 . « F . samples w a s 2.65 ± 3
consistent w i t h p r e v i o u s i n v e s t i g a t i o n s ( 3 ,
0.10 e V . T h i s is
5-12).
T h e p h o t o c u r r e n t s versus a p p l i e d v o l t a g e are p l o t t e d i n F i g u r e 1 f o r several W 0 . 3
samples. M e a s u r e m e n t s w e r e m a d e w i t h t h e e l e c t r o l y t e i n
x
e q u i l i b r i u m w i t h a i r . A s c a n b e seen, t h e largest p h o t o c u r r e n t i s r e a c h e d for the W 0 . 3
s a m p l e h a v i n g t h e l o w e s t resistance, w i t h t h e p h o t o c u r
x
rents of t h e r e m a i n i n g samples d e c r e a s i n g as t h e resistance increases. T h e s e results are consistent, w i t h t h e o n l y effect b e i n g a c h a n g e i n t h e o v e r a l l c e l l resistance. T h e p h o t o c u r r e n t s f o r t w o t r i c l i n i c samples of WO . F s x
x
are shown
versus a p p l i e d bias i n F i g u r e 2, t h e m e a s u r e m e n t s b e i n g m a d e w i t h t h e electrolyte i n e q u i l i b r i u m w i t h a i r . A l t h o u g h p h o t o c u r r e n t s w e r e o b s e r v e d f o r a l l o f t h e t u n g s t e n oxyfluorides s t u d i e d , t h e m o n o c l i n i c a n d o r t h o r h o m b i c c o m p o s i t i o n s (x ^
0.0177) s h o w m o r e c o m p l e x b e h a v i o r .
T h e s p e c t r a l responses of t h e W O ^ F a . samples s h o w n i n F i g u r e 3 w e r e o b t a i n e d w i t h a n a p p l i e d bias of 0.5 V . T h e p h o t o c u r r e n t s p l o t t e d here were n o r m a l i z e d for clarity b y taking the ratio of the photocurrent at a g i v e n w a v e l e n g t h to t h e m a x i m u m p h o t o c u r r e n t o b t a i n e d ( t h a t i s , at 4 0 0 n m ) . T h e a c t u a l p h o t o c u r r e n t s at 400 n m are f o r x =
0.0079, I
— 16.06 fjA • ( c m ) " , a n d f o r x — 0.0083, I — 6.07 pA • ( c m ) " . T h e 2
1
2
1
colors of t h e m a t e r i a l s v a r i e d f r o m a l i g h t g r e e n f o r t h e x = 0.0079 s a m p l e to d a r k e r g r e e n f o r t h e x =
0.0083 s a m p l e .
T h e s t a b i l i t y of t h e W0 .
3 x
a n d W O ^ F a , samples w a s i n v e s t i g a t e d
b y three p r o c e d u r e s : s t a b i l i t y against r e o x i d a t i o n , s t a b i l i t y against h y d r o l ysis o r d i s s o l u t i o n , a n d s t a b i l i t y i n a w o r k i n g c e l l a r r a n g e m e n t . F i g u r e 4 shows t h e results o f t h e r e o x i d a t i o n e x p e r i m e n t s o n samples o f a b o u t 175 mg. While W 0 . 3
f
r e a d i l y o x i d i z e s at 2 5 0 ° - 3 0 0 ° C , t h e W O g ^ F * s a m p l e
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
9.
WOLD A N D DWIGHT
Oxyfluoride
163
Photoelectrodes
Properties of WO3-3F4. C
a
3.854(1) 3.856(1) 3.851(1) 3.848(1)
88°43' ± 2' 88°48'±2' 90° 90°
y
90°17' ± 2' 90° 17' ± 2 ' 90°51' 90°
90°39' ± 2' 90°35' ± 2' 90° 90°
is stable to 6 0 0 ° C , i m p l y i n g a n i n c r e a s e d s t a b i l i t y to r e o x i d a t i o n . A l s o , the t h e r m a l g r a v i m e t r i c d a t a s h o w n i n F i g u r e 4 i n d i c a t e s t h a t t h e c o m p o s i t i o n of t h e oxyfluoride samples p r e p a r e d i n this s t u d y c a n b e r e p r e sented b y t h e f o r m u l a W0 . F . I f t h e c o m p o s i t i o n of t h e samples h a d b e e n W0 . ¥ i n s t e a d of W 0 - * F « , t h e n there w o u l d h a v e b e e n a g a i n i n w e i g h t r e c o r d e d e q u i v a l e n t to t h e v a l u e x — y. F r o m F i g u r e 4 w e see t h a t t h e s e n s i t i v i t y of this m e t h o d is s u c h t h a t values of x (represent i n g a n o x y g e n d e f i c i e n c y ) i n the system W0 . can be determined, where values o f x are less t h a n 0.01. 3 x
3 x
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
/3
y
x
3
3 x
H y d r o l y s i s a n d d i s s o l u t i o n experiments w e r e m a d e b y p l a c i n g s a m p l e s of W O 3 - S a n d W0 . F i n 0 . 2 M H S 0 a n d l e a v i n g these at 9 0 ° C f o r 350 h r . N e i t h e r s a m p l e s h o w e d a n y h y d r o l y s i s o r d i s s o l u t i o n . 3 x
x
2
4
S t a b i l i t y i n a w o r k i n g c e l l , w i t h t h e electrolyte i n e q u i l i b r i u m w i t h air, w a s d e t e r m i n e d b y b i a s i n g t h e electrode at 0.5 V w i t h respect t o t h e
PHOTOCURRENT
UF WD
-+a
D.7
OHM-CM
+
16
OHM-CM
•
ISO
OHM—CM
•
520
OHM-CM
•
I EDO
OHM-CN
1
-a.s
I
0.S
B1R5 Figure I .
Photocurrent versus applied in 0.2M NaC H 0 2
s
2
l
1
l
•
I
1
3-X
»
i >
I
VQLTREE
Inorganic Chemistry
bias for several W 0 . (pH 7.8) (2) 5
x
samples
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
164
SOLID S T A T E C H E M I S T R Y : A C O N T E M P O R A R Y O V E R V I E W
PHDTDCURRENT
DF WD
F
J x x I . 1. . . . I I . . . I . . . . I•
5
H
D
X a
+
X n
0.0D73C2) 0083(2)
«
3
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
2 --
-4-0.5
0.5
I
1.5
BIH5 VDLTREE Inorganic Chemistry
Figure 2.
Photocurrent versus applied bias for several W0 _ F in 0.2M NaC H O (pH 7.8) (2) S
2
s
X
X
samples
g
p l a t i n u m c a t h o d e , i l l u m i n a t i n g t h e n w i t h t h e f u l l o u t p u t of a 1 5 0 - W x e n o n l a m p a n d m o n i t o r i n g the changes i n p h o t o c u r r e n t w i t h t i m e . W h i l e t h e s l i g h t l y r e d u c e d W 0 . , films g a v e stable p h o t o c u r r e n t s , t h e m o r e r e d u c e d samples w e r e less stable. T h e most r e d u c e d s a m p l e (x « 0.03) was very unstable, w i t h t h e photocurrent decreasing b y 3 0 % over a p e r i o d of 2 h r . T h i s is consistent w i t h t h e results f o u n d b y H a r d e e a n d B a r d ( I I ) . O n t h e other h a n d , t h e t r i c l i n i c samples o f W O a . ^ F ^ gave stable p h o t o c u r r e n t s o f 2 m A • ( c m ) " for p e r i o d s o f u p to 46 h r ( a b o u t 7 0 0 ° C ) . I n a d d i t i o n , there w a s n o v i s i b l e c h a n g e o n the surface o f the electrode. 3
2
1
A s a r e s u l t o f the w o r k o n the W0 _ ¥ system, i t w a s e x p e c t e d t h a t m e m b e r s o f t h e system T i 0 - . F also w o u l d s h o w i n c r e a s e d s t a b i l i t y over T i O o . , since a l l the a n i o n sites w o u l d b e o c c u p i e d . 3
2
a
x
x
a 7
x
S a m p l e s o f Ti0 . Fx w e r e p r e p a r e d b y t h e fluorination o f T i 0 w a f e r s ( c u t f r o m single crystals o b t a i n e d f r o m N a t i o n a l L e a d ) , u s i n g a fluorinating system s h o w n i n F i g u r e 5. H y d r o g e n fluoride w a s g e n e r a t e d by the thermal decomposition of potassium bifluoride at 260°C. T h e T i 0 wafer was positioned w i t h i n a sample tube a n d centered w i t h respect t o t h e h o t z o n e o f a f u r n a c e . F i g u r e 5 d e p i c t s the a r r a n g e m e n t of the furnaces a n d gas t r a i n u s e d f o r t h e p r e p a r a t i o n o f the T i 0 . . F samples. A gas m i x t u r e of 8 5 % a r g o n a n d 1 5 % h y d r o g e n w a s d r i e d b y p a s s i n g i t t h r o u g h a p h o s p h o r u s p e n t o x i d e d r y i n g t u b e , flowing i t o v e r 2 x
2
2
2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
a
a r
9.
WOLD A N D DWIGHT
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
I
Oxyfluoride
165
Photoelectrodes
5PECTRRL RESPONSE or WD F -a—i—i—i—i—i—J—i—i—i—|—i—i—i—i—|-
0 4—i—i—i—*—i—i—i—i—i—i—i—i—*—*• H00
HS0
500
550
WRVELENETH ( N M ) Inorganic Chemistry
Figure 3.
Normalized spectral reponse of W O _ x F in 0.2M Eg = optical band gap (2.7 eV) (2). s
x
NaC H 0 ; 2
s
2
the p o t a s s i u m b i f l u o r i d e ( w h i c h w a s k e p t at 2 6 0 ° C ) , p a s s i n g i t over t h e s a m p l e , a n d finally e x i t i n g i t t h r o u g h a s o d i u m h y d r o x i d e b u b b l e r . S a m p l e s w e r e fluorinated at t e m p e r a t u r e s b e t w e e n 575° a n d 7 0 0 ° C . A t t e m p t s to fluorinate a T i 0 w a f e r at 550° f a i l e d to y i e l d a h o m o g e n e o u s p r o d u c t . T h e p r o d u c t s p r e p a r e d i n this m a n n e r a p p e a r e d p a l e b l u e t o b l a c k i n color. T h e d a r k e r colors r e s u l t e d f r o m h i g h e r - t e m p e r a t u r e preparations. 2
S a m p l e s of T i 0 . F . w e r e p r e p a r e d f o r analysis b y g r i n d i n g a p i e c e of e a c h fluorinated w a f e r to g i v e a p p r o x i m a t e l y 100 m g of s a m p l e . T h e finely d i v i d e d p o w d e r w a s h e a t e d i n a n o x y g e n atmosphere f r o m r o o m t e m p e r a t u r e to 1000°C, a n d changes i n t h e w e i g h t w e r e r e c o r d e d u s i n g a C a h n electrobalance ( m o d e l R G ) a n d a c h a r t recorder. N o n e o f t h e samples i n t h e series s h o w e d a n y m e a s u r a b l e w e i g h t c h a n g e , w h i c h 2
a ?
a
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
166
SOLID S T A T E C H E M I S T R Y :
THERMRL
i . . . .
0.E • ID
hX ID Ld 2
0.S
-
A CONTEMPORARY
5TRBILITY
i . . . .
i • . . .
OVERVIEW
i
WD.
a.B7 run X
WD,
v
-
Ln
ui u
EC
£50
B00
E50
700
750
FLUOR INHTI ON TEMPERRTURE ( D E E C ) Inorganic Chemistry
Figure
6.
Variation
of resistivity with the fluorination TiO . F electrodes (13) s
X
temperature
of
X
T h i s r e s u l t e d i n a r e p r o d u c i b l e area 2.25 m m i n d i a m e t e r i r r a d i a t e d w i t h a p p r o x i m a t e l y 50 m W determined
for e a c h
(16-junction
of t o t a l p o w e r . curve
Coblentz-type).
by
T h e instantaneous
power
using a calibrated E p p l e y
Anodic
bias w a s
was
thermopile
applied via a
voltage
f o l l o w e r h a v i n g a n o u t p u t i m p e d a n c e less t h a n 0.1 O, a n d t h e r e s u l t i n g response w a s
measured
w i t h a current
amplifier, w h i c h
inserted
a
n e g l i g i b l e p o t e n t i a l d r o p (less t h a n 1 /xV) i n t h e e x t e r n a l c i r c u i t . T h e v a r i a t i o n of p h o t o c u r r e n t w i t h a n o d e p o t e n t i a l ( m e a s u r e d
against
S C E ) is s h o w n i n F i g u r e 7 for samples f l u o r i n a t e d at several temperatures (T ) F
b e t w e e n 575° a n d 7 0 0 ° C .
T h e indicated photocurrent
h a v e a l l b e e n n o r m a l i z e d to a t o t a l i r r a d i a t i o n of 12.5 m W corresponding
densities
• (mm )" , 2
1
to 50 m W i n c i d e n t o v e r the i l l u m i n a t e d area o f 4 m m . 2
I t is e v i d e n t t h a t the s a t u r a t i o n p h o t o c u r r e n t p o t e n t i a l of 0.6 V )
increases
(measured
significantly w i t h decreasing
at a n a n o d e fluorination
t e m p e r a t u r e o v e r this range. T h e essentially l i n e a r n a t u r e of this r e l a t i o n -
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
9.
WOLD A N D DWIGHT
Oxyfluoride
169
Photoelectrodes
RNDM: POTENT IRL
Y5
5CE
(VOLTS) Inorganic Chemistry
Figure 7. Dependence of photocurrent upon anode potential (SCE reference) for Ti0 - F electrodes fluorinated at various temperatures T for white xenon arc irradiation of 1.25 W • (cm )' (13) 2 x
x
F
2
s h i p c a n b e seen i n F i g u r e 8. (cm )" 2
1
T h e p e a k p h o t o c u r r e n t o f 17.9 m A •
o b t a i n e d here is a p p r o x i m a t e l y t w i c e t h e m a x i m u m [9.2 m A •
( c m ) " ] f o u n d w i t h u n f l u o r i n a t e d Ti0 2
1
1
under similar conditions ( 1 4 ) .
2 x
T h e l a t e r a l shift of t h e c u r v e s p r e s e n t e d i n F i g u r e 7 results f r o m a systematic v a r i a t i o n o f t h e
flat-band
p o t e n t i a l (Ufb).
Values for I7
fb
( m e a s u r e d against S C E ) w e r e o b t a i n e d f r o m t h e l i n e a r d e p e n d e n c e of the square root of t h e p h o t o c u r r e n t u p o n a n o d e p o t e n t i a l f o r s m a l l v a l u e s of t h e c u r r e n t ( v a l u e s less t h a n 0.5 m A • ( c m ) " 2
shown plotted against
fluorination
1
i n F i g u r e 7 ) . T h e y are
t e m p e r a t u r e i n F i g u r e 9. T h e o b s e r v e d
increase i n flat-band p o t e n t i a l corresponds t o a decrease i n its energy. T h i s decrease i n e n e r g y appears a n o m a l o u s f o r a n increase i n c a r r i e r concentration, w h i c h w o u l d be expected
t o raise t h e F e r m i l e v e l , b u t
s i m i l a r b e h a v i o r has b e e n r e p o r t e d elsewhere ( 8 ) . T h e d e t e r m i n i n g f a c t o r m a y w e l l b e a l o w e r i n g o f t h e v a l e n c e b a n d because o f t h e greater e l e c t r o n e g a t i v i t y of t h e s u b s t i t u t e d
fluorine
(10,15).
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
170
SOLID S T A T E
CHEMISTRY: A
T l D
2
20
N
Z
15
--
IB
-
CONTEMPORARY OVERVIEW
-x x F
\
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
rx z
EC Z3
•
— I • X 0_
-h 5512!
500
E5B
70B
75B
FLUOR INRTIDN TEMPERRTURE ( D E E C )
Inorganic Chemistry
Figure 8. Variation of saturation photocurrent, measured at an anode potential of 0.6 V, with the fluorination temperature of Ti0 _ F electrodes for white xenon arc irradiation of 1.25 W • (cm )' (13) 2
2
T h e s p e c t r a l p h o t o response of the
fluorinated
X
X
1
electrodes w a s s t u d i e d
b y i n s e r t i n g a n O r i e l m o n o c h r o m e t e r ( m o d e l 7240) i n p l a c e of the 5 - m m aperture.
T h e c u r v e s s h o w n i n F i g u r e 10 w e r e o b t a i n e d at a n
anode
p o t e n t i a l of 0.6 V w i t h a slit w i d t h of 0.5 m m , w h i c h g a v e a s p e c t r a l r e s o l u t i o n of 4 n m . T h e p h o t o c u r r e n t s h a v e b e e n n o r m a l i z e d so as to y i e l d i n t e g r a t e d outputs c o r r e s p o n d i n g to the v a l u e s g i v e n i n F i g u r e 8. T h e s e d a t a c a n also be expressed i n terms o f q u a n t u m efficiency trons p e r p h o t o n )
(elec
b y d i v i d i n g the o b s e r v e d p h o t o c u r r e n t (electrons p e r
s e c o n d ) b y the i n c i d e n t r a d i a t i o n ( p h o t o n s
per second).
The
curves
p r e s e n t e d i n F i g u r e 11 h a v e n o t b e e n c o r r e c t e d f o r a n y a b s o r p t i o n i n t h e e l e c t r o l y t e or c e l l w i n d o w , n o r f o r r e f l e c t i o n f r o m t h e s a m p l e surface. F r o m F i g u r e s 10 a n d 11 w e see that the increase i n o b s e r v e d current w i t h decreasing
fluorination
photo
t e m p e r a t u r e arises f r o m i n c r e a s e d
r e s p o n s i v i t y at the l o n g e r w a v e l e n g t h s .
These wavelengths
m o r e d e e p l y i n t o t h e electrodes, a n d t h e i r p h o t o - g e n e r a t e d
penetrate
electron-hole
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
9.
WOLD AND DWIGHT
Oxyfluoride
T
-0.3
1 I
in
• >
I
171
Photoelectrodes
l
I
W x
[
I
I
I
I
I
1 1
•0.35--
Ld in -H.M >
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
± -0.H5 +
u
n m -0.55 I -0.B
-f-
-h
550
£00
E50
700
750
FLUDRINRTDN TEMPERRTURE ( D E B c) Inorganic Chemistry
Figure
9.
Variation of flat-band potential fluorination temperature of Ti0 _jF 2
x
(SCE reference) with electrodes (13)
the
p a i r s w i l l b e c o m e s e p a r a t e d o n l y i f this p e n e t r a t i o n is less t h a n the w i d t h of the d e p l e t i o n l a y e r . T h u s t h e i m p r o v e d response o b s e r v e d at l o w T
F
m a y b e a t t r i b u t e d to the increase i n d e p l e t i o n l a y e r w i d t h r e s u l t i n g f r o m the increase i n r e s i s t i v i t y seen i n F i g u r e 6. T h e s p e c t r a l p h o t o response of a s a m p l e of T i 0 - a , r e d u c e d at 6 0 0 ° C 2
also has b e e n m e a s u r e d . i n t e g r a t e d o u t p u t (13)
T h e results, n o r m a l i z e d t o 9 . 2 - m A - ( c m ) "
1
2
i n F i g u r e 12. I t is e v i d e n t t h a t the a b l y greater response
2
are c o m p a r e d w i t h those o b t a i n e d for T i 0 . » F « fluorinated
m a t e r i a l gives a n a p p r e c i
at t h e l o n g e r w a v e l e n g t h s , w h i c h effect c a n
a t t r i b u t e d to a n absence of v a c a n c i e s i n t h e
fluorinated
samples.
be The
solar s p e c t r u m f a l l s off m u c h m o r e r a p i d l y b e l o w 400 n m t h a n t h e x e n o n arc s p e c t r u m . T h u s the d i s p a r i t y b e t w e e n the o u t p u t s of
fluorinated
and
r e d u c e d r u t i l e w o u l d b e g r e a t l y e n h a n c e d u n d e r solar i r r a d i a t i o n . T h e l o n g - t e r m s t a b i l i t y of electrodes p r e p a r e d f r o m these same t w o samples has b e e n d e t e r m i n e d u n d e r 12.5 m W • ( m m ) " 2
1
irradiation w i t h
a n a p p l i e d a n o d i c b i a s of 1.5 V . T h e r e s u l t i n g d e c a y of p h o t o c u r r e n t w i t h
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
172
SOLID S T A T E
5PECTRRL
CHEMISTRY:
A CONTEMPORARY
O F
RE5PDN5E
T I D
2
_
X
OVERVIEW
F
X
0.2S f
0.2
•
+
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
•
£
S7S
F
SBH
p
z:
S
T =
* T = +
T
=
BSD
•
0.1
x + x * * °
0.05
° +
-+250
300
350
H00
WBVELENGTH ( N M )
H50 Inorganic Chemistry
Figure 10. Spectral photo response of Ti0 .J? for electrodes fluorinated at various temperatures T , normalized to white xenon arc irradiation of 1.25 W • (cm )- (13) 2
x
F
T
,
D
2
* >z UJ ^
- x
x
2
1
F
x O
0.H
0.5
0. H
0.2
--
+
--
+
+
•
• $ o *
.
n
a
+
n
OT
n
R
=
+ * n
+
a
n
S75
*
T = SBB
P
T
+
x
F
=
7DQ
•+-
250
300
350
400
H50
WAVELENGTH C N M ) Inorganic Chemistry
Figure 11. Quantum efficiency in electrons per photon as a function of excitation wavelength for TiO _ F electrodes fluorinated at various temperatures T (13) g
X
X
F
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
9.
WOLD A N D DWIGHT
Oxyfluoride
173
Fhotoeleqtrodes
5PECTRRL
RESPONSE
0.25 • f
0
0.2
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
n
I
0 . 15
E
0.1
• o zn
0.05
XX
+
X i
250
1 . 300
•
•
•
1
• • • « T 9
350
e 450
400
WRVELEN5TH ( N M ) Inorganic Chemistry
Figure 12. Comparison between the spectral photo response of TiO _ F electrodes fluorinated at 575°C and that of Ti0 _ electrodes reduced at 600°C, normalized to white xenon arc irradiation of 1.25 W • (cm )' (13) z
2
x
x
x
2
1
t i m e is s h o w n i n F i g u r e 13. T h e fluorinated electrode w a s f o u n d t o b e a p p r e c i a b l y less stable t h a n the r e d u c e d electrode i n 0 . 2 M s o d i u m acetate, p r e s u m a b l y because of h y d r o l y s i s o f t h e fluorine ions. S t i c h h y d r o l y s i s s h o u l d b e suppressed b y a sufficient c o n c e n t r a t i o n o f fluoride ions i n t h e electrolyte. M e a s u r e m e n t s w e r e m a d e i n a l u c i t e c e l l h a v i n g a fluorite w i n d o w 2 m m t h i c k w i t h a 0 . 2 M s o l u t i o n of p o t a s s i u m b i f l u o r i d e b u f f e r e d to a p H o f 6 w i t h p o t a s s i u m h y d r o x i d e a n d w i t h a 0 . 2 M s o l u t i o n o f u n b u f f e r e d p o t a s s i u m b i f l u o r i d e ( p H = 3 . 5 ) . A s seen i n F i g u r e 13, t h e h y d r o l y s i s w a s p a r t i a l l y a n d c o m p l e t e l y suppressed, r e s p e c t i v e l y , b y these t w o electrolytes. I n t h e latter case t h e l o n g - t e r m s t a b i l i t y w a s i m p r o v e d over t h a t of u n f l u o r i n a t e d r u t i l e . I n s u m m a r y , t h e s u b s t i t u t i o n o f s m a l l amounts of fluorine f o r o x y g e n i n W 0 increases t h e s t a b i l i t y of t h e p h o t o a n o d e a n d i n T i 0 increases the p h o t o c u r r e n t o u t p u t , w h i c h arises f r o m i n c r e a s e d response at l o n g e r w a v e l e n g t h s . T h e i m p r o v e d response m a y b e p a r t i a l l y a t t r i b u t e d t o a n increase i n t h e w i d t h of t h e c h a r g e d e p l e t i o n l a y e r . T h e increase i n s t a b i l i t y is a r e s u l t of t h e l a c k o f defects i n t h e n - t y p e o x y f l u o r i d e elec trodes. F u r t h e r w o r k is necessary i n o r d e r t o d e t e r m i n e i f a n o x y f l u o r i d e electrode c a n b e p r e p a r e d t h a t c o m b i n e s i n c r e a s e d s t a b i l i t y w i t h a suffi cient p h o t o response necessary f o r a s u i t a b l e p h o t o anode. 3
2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
174
SOLID S T A T E C H E M I S T R Y : A
CONTEMPORARY OVERVIEW
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
5TRBILITY
2
1 i i i i ii ii i | i i i i | i i i i Ii i i i 0
I
2
3
H
ELRP5ED TIME
S
1 i i i i I i i i ii
H
7
(HOURS) Inorganic Chemistry
Figure 13. Comparison between the decay of photocurrent with time for Ti0 . electrodes in 0.2M sodium acetate and that for TiO . F electrodes fluorinated at 575°C in 0.2M potassium bifluoride, 0.2M potassium bifluoride buffered with potassium hydroxide, and 0.2M sodium acetate. Measurements were made with 1.5 V of anodic bias under white xenon arc irradiation of 1.25 W • (cm )' (13). 2 x
s x
2
x
1
Acknowledgment T h e authors w o u l d l i k e to a c k n o w l e d g e the Office of N a v a l R e s e a r c h , A r l i n g t o n , V A , f o r t h e i r s u p p o r t of K i r b y D w i g h t . A c k n o w l e d g m e n t is also m a d e to the N a t i o n a l Science F o u n d a t i o n , W a s h i n g t o n , D . C . , N o . G H 37104. I n a d d i t i o n , t h e authors w o u l d also l i k e to a c k n o w l e d g e the support
of
the
Materials
Research
Laboratory
Program
at
Brown
University.
Literature Cited 1. Harris, L. A.; Wilson, R. H. J. Electrochem. Soc. 1976, 123, 1010. 2. Harris, L. A.; Gross, D. R.; Gerstner, M . E. J. Electrochem. Soc. 1977, 124, 839. 3. Derrington, C. E.; Godek, W. S.; Castro, C. A.; Wold, A. Inorg. Chem. 1978, 17, 977.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch009
9.
WOLD
A N D DWIGHT
Oxyfluoride
Photoelectrodes
175
4. Roth, R. S.; Waring, J. L. J. Res. Natl. Bur. Stand., Sec. A 1966, 70(4), 281. 5. Gebert, E.; Ackermann, R. J. Inorg. Chem. 1966, 5, 136. 6. Butler, M. A.; Nasby, R. D.; Quinn, R. K. Solid State Commun. 1976, 19, 1011. 7. Deb, S. K. Philos. Mag. 1973, 27, 801. 8. DeWald, J. F. J. Phys. Chem. Solids 1960, 14, 155. 9. Gissler, W.; Memming, R. Electrochem. Soc., Virginia Conf., Airlie, VA, May 1977. 10. Gomes, W. P.; Cardon, F. "Proceedings of Conference on Electrochemistry and Physics of Semiconductor-Liquid Interfaces Under Illumination"; Heller, A., Ed.; Electrochem. Soc.: Princeton, NJ, 1977; 120. 11. Hardee, K. L.; Bard, A. I. J. Electrochem. Soc. 1977, 124, 215. 12. Hodes, G.; Cahen, D.; Manassen, J. Nature (London) 1786, 26, 312. 13. Van der Pauw, L. J. Phillips Tech. Rev. 1958, 20, 220. 14. Subbarao, S. N . ; Yun, Y. H.; Kershaw, R.; Dwight, K.; Wold, A., unpub lished data. 15. McCauldin, J. O.; McGill, T. C. "Electrochem. Soc. Monograph on Thin Films and Interfaces"; Mayer et al., Eds.; 1977; in press. RECEIVED September 13, 1978.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.