Oxyphosphorane and monomeric metaphosphate ion intermediates in

Monomeric metaphosphate formation during radical-based dephosphorylation. L. Z. Avila , John W. Frost. Journal of the American Chemical Society 1988 1...
0 downloads 0 Views 747KB Size
1460

Journal of t h e A m e r i c a n Chemical S o c i e t y

of 2-hydroxymethyl- 1 -methylpyrrolidine (0.466 g, 4.05 mmol) was added n-butyllithium (6.75 mmol) at 0 'C. After 30 min, the reaction mixture was cooled to - 123 "C. An ether (2 mL) solution of benzaldehyde (0.106 g, 1 mmol) was added and stirred for 1 h at - 123 'C. The usual workup gave (S)-I-phenyl-1-pentanol (0.146 g, 89%): [ c Y ] * ~-4.3' D (c 2.99, benzene) (14%, optical purity).

Acknowledgment. The authors wish to thank the Ministry of Education, Japan, for a grant-in-aid. References and Notes (1) (a) Morrison, J. D.; Mosher, H. S. "Asymmetric Organic Reactions", Prentice-Hall: Englewood Cliffs, N.J., 1971; pp 160-218, 415-419; (b) Izumi, Y.; Tai, A.; Hirota, K.; Harada, T. Kagaku Sosetsu 1971, 85-151. (2) Chiral lithium hydride reagents: (a) Brinkmeyer, R. S.; Kapoor, V. M. J. Am. Chem. Soc. 1977, 99, 8339-8341; (b) Asami, M.; Ohno, H.; Kobayashi, S.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1978, 51, 1869-1873, and references cited therein. Chiral borohydrides: Brown, H. C.; Mandal, A . K. J. Org. Chem. 1977, 42, 2996-2999, and references cited therein. (3) (a) Levi, A.; Modena, G.; Scorrano, G. J. Chem. SOC., Chem. Commun. 1975,6-7; (b) Heil, B.; Toros, S.; Vastag, S.; Morko, L. J. Organomet. Chem. 1975, 94, C47-48. (4) Ojima, I.; Kogure, T.; Nagai, Y. J. Organornet. Chem. 1976, 122, 8397. (5) (a) Seebach, D.; k i s s , K.-H. "New Application of Organometallic Reagents in Organic Synthesis"; Seebach, D., Ed.; Elsevier: Amsterdam, 1976; pp 54-58; (b) Nozaki, H.; Aratani, T.; Toraya, T. Tetrahderon Lett. 1966, 4097-4098; (c) Nozaki, H.; Aratani, T.; Toraya, T.; Noyori, R. Tetrahedron 1971, 27, 905-913; (d) Seebach, D.; Dorr, H.; Bastani, B.; Ehrig. V. Angew. 1969, 81, 1002-1003; (e) Seebach, D.; Kalinowski. H.; Bastani, B.; Grass, G.; Daum, H.; Dorr, H.; DuPreez, N. P.; Ehrig, V.; Langer. W.; Nussler, C.; Oei, H.-A., Schmidt, M. Helv. Chim. Acta 1977, 60, 301325. (6) (a) Blomberg, C.; Coops, J. Red. Trav. Chim. Pays-Bas 1964, 83, 1083-1092; (bj French, W.; Wright, G. F. Can. J. Chem. 1964, 42, 2474-2479; (C) Inch, T. D.; Lewis, C. J.; Sainsbury, G. L.; Sellers, D. J. Tetrahedron Lett. 1969, 3657-3600; (d) Meyers, A. I.; Ford, M. E. Tetra-

/

101:6

1 March 14, 1979

hedronLett. 1974, 1341-1344; (e) Iffland, D. C.; Davis, J. E. J. Org. Chem. 1977. 42.4150-4151. (7) Zweig, J. S.; Luche, J. L.; Barreriro, E.; Crabbe, P. Tetrahedron Lett. 1975, 235512358. (8)Bruer, H.-J.; Hailer, R. Tetrahedron Lett. 1972, 5227-5230. (9) Boireau, G.; Abenhaim, D.; Bourdais, J.: Henry-Bash, E. Tetrahedron Lett.

1976.4781-4782. (10) Reported in preliminary form: (a) Mukaiyama, T.; Soai, K.; Kobayashi, S. Chem. Lett. 1978, 219-222; (b) Soai, K.; Mukaiyama, T. Chem. Lett. 1978, 491-492; (c) Sato, T.; Soai, K.; Suzuki, K.; Mukaiyama, T. Chern. Lett. 1978, 601-604. (11) Alkyllithium is known to form a tight complex with a bidentate diamine such as N,N,N',N'-tetramethylethylenediamine. See Peterson, D. J. J. Org. Chern. 1967, 32, 1717-1720. (12) Meyers reported the similar effect of metal salt; the magnesium salt of 4-hydroxymethyl-2-methyl-5-phenyI-2-oxazoline was more effective as a ligand for the asymmetric addition of Grignard reagents to carbonyl compounds than 4-methoxymethyl-2-methyl-5-phenyi-2-oxazoline. See ref 6d. (13) The content of iodide ion in the ether solution of methyllithium was determined by means of volumetric analysis using potassium periodate, and the ratio of 2d:iodide ion was 1:O.e. (14) Yamaguchi, S.; Mosher, H. S. J. Org. Chem. 1973, 38, 1870-1877. (15) Pickard, H. L.; Kenyon, J. J. Chem. Soc. 1914, 1115-1131. (16) Mislow, K.; Hamermesh, C. L. J. Am. Chem. SOC.1955, 77, 15901594. (17) Pickard, H. L.; Kenyon, J. J. Chem. SOC.1913, 1923-1959. (18) MacLeod, R.; Welch, F. J.; Mosher, H. S. J. Am. Chem. SOC.1980, 82, 876-880. (19) Wittig, G.; Hesse, A. Org. Syn. 1970, 50, 66-72. (20) Gillman, H.; Moore, F. W.; Baine. 0. J. Am. Chem. SOC.1941, 63, 2479-2482. (21) Noller, C. R. "Organic Syntheses"; Wiley: New York, 1948; Collect. Vol. 11, pp 184-187. (22) Klieger, E.; Schroder, E.; Gibian, H. Justus Liebigs Ann. Chem. 1961, 640, 157-1 67. (23) Guttman, S. He&. Chim. Acta. 1961, 44, 721-744. (24) Martinez, J.; Winternitz, F. Bull. Soc. Chim. Fr. 1972, 4707-4709. (25) Nagasawa,T.; Kuroiwa, K,; Narita, K.; Isowa, Y. Bull. Chem. SOC.Jpn. 1973, 46, 1269-1272.

Oxyphosphorane and Monomeric Metaphosphate Ion Intermediates in Phosphoryl Transfer from 2,4-Dinitrophenyl Phosphate in Aprotic and Protic Solvents Fausto Ramirez*' and James F. Marecek Contribution from the Department of Chemistry>S t a t e Unicersity of New York a t Stony Brook, S t o n y Brook, New York 11794. Receiced September 7 , 1978

Abstract: The reactions of 2,4-dinitrophenyl dihydrogen phosphate, ArPHl, and of salts of type (ArPH)-(R4N)+, (ArPH)-(RjNH)+, ( F J P ) ~ - ( R ~ N ) + ( R ~ N H ) +and , (ArP)2-2(R3NH)+, where R4N+ = (n-C4H9)41\iC and R3N = (i-C3H7)*C*H5N, have been studied in aprotic and protic solvents. in the absence and in the presence of alcohols or water, ROH, following the release of phenol and the fate of the phosphorus. The results are interpreted as follows. ( I ) The acid and the monoanion react via oxyphosphorane intermediates, P(5). ( 2 ) The dianion reacts via a monomeric metaphosphate ion intermediate, PO3-. In the absence of R O H , acid, monoanion, and dianion generate cyclic trimetaphosphoric acid or its salts, (CP3)3- in aprotic solvents. Phosphoryl transfer to R O H by the P(5) mechanism proceeds at a relatively slow rate, the ratedepends on alcohol size, and the reaction does not generate tert-butyl phosphate from rert-butyl alcohol. Rates are faster and independent of alcohol size, and rrrr-butyl phosphate is formed from ter[-butyl alcohol by the PO3- mechanism. Formation of (CP3)3- is not an indication of P o l - intermediacy in phosphorylation. The conclusions are limited to aminium salts of ArPH2 where the amine is sterically hindered.

This work is concerned with the mechanisms by which phosphomonoesters transfer their phosphoryl group to nucleophiles in solutions: XP(O)(OH)1+ R O H

ROP(O)(OH),

+ XH

(I) We have studied the behavior of anhydrous 2,4-dinitrophenyl phosphate* in aprotic and protic media, in the absence of bases and in the presence of one or more molar equivalents of the sterically hindered diisopropylethylamine, and have compared the results with those obtained utilizing the anhydrous monotetra-n-butylammonium salt of the acid, (ArPH)-(R4N)+. +

0002-7863/79/ I50 I - I460$0l .OO/O

From such studies, we have obtained compelling evidence for the participation of oxyphosphorane, P(5), and of monomeric metaphosphate ion, PO3-, intermediates in these reactions, depending on experimental conditions. The participation of P(5) intermediates in reactions of phosphotriesters and phosphodiesters is widely a ~ c e p t e d . ~ - ~ The intervention of PO3- intermediates in the hydrolysis of alkyl phosphates was proposed to account for a maximum reaction rate a t the pH which corresponds to a maximum concentration of monoanion, (RPH)-'O-I3 (eq 2).1°-" A r y l phosphates, XP(O)(OH)2, derived from phenols, XH,

0 I979 American Chemical Society

/

Ramirez, Marecek

Phosphoryl Transfer from 2,4-Dinitrophenyl Phosphate

Table 1. Reactions of 2,4-Dinitrophenyl Phosphate, ArPH2, in 1 .O M Solution at 35 "C, RPH2 = Alkyl Phosphate. CP3H3 = Cyclic Trimetaphosphoric Acid

0 -

I

4

O-F-OR I

.

I

I

H . . 0-H

with pK, >5.5 (in water) have pH-rate profiles similar to those of alkyl phosphate^.'^-^^ KirbyI5 concluded that, in the absence of nucleophilic amines, monoanions of this type undergo hydrolysis via PO,-, as shown in eq. 3. 0

I1 0-P--M -

0 a

I1 + O-P-XH -

I

I OH

0 C

\P-0 - +

04

XH

(3)

0-

Aryl phosphates derived from phenols with pK,