Nonaqueous Colorimetric Method for Determination of Ozone A. D. DELMAN, A. E. RUFF, Β. B. SIMMS, and A. R. ALLISON
Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch016
Material Laboratory, New York Naval Shipyard, New York, Ν. Y.
A new colorimetric procedure has been developed for the quantitative measurement of atmospheric ozone. The specific, sensitive, and reproducible non aqueous method utilizes the rate of color produced on ozonization of o-dichlorobenzene solutions of N-phenyl-2-naphthylamine. The color reaction con forms to Beer's law a n d has a practical sensitivity of ±1.8 X 10-3 mg. of ozone. O x y g e n a n d oxides of nitrogen, in concentrations greater than those nor mally occurring in the atmosphere, do not interfere with the chromogenic reaction.
Investigation of t h e d e g r a d a t i v e effects of ozone o n e l a s t o m e r i c m a t e r i a l s h a s necessi t a t e d d e v e l o p i n g t e c h n i q u e s t o m e a s u r e ozone c o n c e n t r a t i o n p r e c i s e l y . T h e l i t e r a t u r e (2-4, 7, 9, 10, IS) h a s p r e s e n t e d t h e efforts of s e v e r a l w o r k e r s . H o w e v e r , t h e t e c h n i q u e s u s e d c o s t l y e q u i p m e n t s u c h as i n f r a r e d a n d u l t r a v i o l e t s p e c t r o p h o t o m e t e r s , aqueous c o l o r i m e t r i c m e t h o d s i n v o l v i n g t h e f o r m a t i o n o r d e s t r u c t i o n of fluorescence o r dyes, a n d i o d o m e t r i c p r o c e d u r e s . A q u e o u s c o l o r i m e t r i c m e t h o d s g i v e e r r a t i c r e s u l t s , because t r a c e a m o u n t s of s u c h o x i d i z i n g agents as oxides of n i t r o g e n i n t e r f e r e . I n t h e i o d o m e t r i c p r o c e d u r e s (2-4), t h e r e a c t i o n of ozone w i t h p o t a s s i u m i o d i d e is s i g n i f i c a n t l y affected b y t h e p H of t h e reacting m e d i u m a n d is t r u l y quantitative only i n n e u t r a l solution. D u r i n g the analysis of a i r c o n t a i n i n g h i g h ozone c o n c e n t r a t i o n s , f o r e x a m p l e , t h e p o t a s s i u m i o d i d e s o l u t i o n s t e n d t o increase i n a l k a l i n i t y r e s u l t i n g f r o m t h e f o r m a t i o n of p o t a s s i u m h y d r o x i d e , a n d the results become m o r e inaccurate w i t h increasing absorption time. H o w e v e r , the i o d o m e t r i c p r o c e d u r e agrees o v e r a n ozone c o n c e n t r a t i o n range f r o m 24 t o 160 m g . p e r l i t e r (2, 3, 8), w i t h a b s o l u t e m e t h o d s b a s e d o n gas d e n s i t y m e a s u r e m e n t s . I t is ac c u r a t e t o 0.06 m g . p e r l i t e r i f p r e c a u t i o n s a r e t a k e n t o c o n t r o l p H a n d a v o i d loss of iodine b y vaporization. T h e a u t h o r s i n v e s t i g a t e d b y v i s c o m e t r i c t e c h n i q u e s (5, 6) t h e p o t e n t i a l s u i t a b i l i t y of s e v e r a l c o m m e r c i a l l y a v a i l a b l e c h e m i c a l s as i n h i b i t o r s of o z o n e - i n d u c e d p o l y m e r c h a i n scission. C o l o r changes w e r e o b s e r v e d d u r i n g t h e o z o n i z a t i o n of e l a s t o m e r s o l u t i o n s c o n t a i n i n g s u c h p r o t e c t a n t c h e m i c a l s as i V ^ A f ' - d i - s e c - b u t y l - p - p h e n y l e n e d i a m i n e , nickel dibutyldithiocarbamate, a n d 6-ethoxy-l,2-dihydro-2,2,4-trimethylquinoline, re s p e c t i v e l y . T h e c h r o m o g e n i c r e a c t i o n s of these a n d o t h e r c h e m i c a l s i n d i c a t e d t h a t t h e c o l o r c h a n g e v a r i e d w i t h ozone c o n c e n t r a t i o n , a n d of t h e c h e m i c a l s e x a m i n e d , i V - p h e n y l 2 - n a p h t h y l a m i n e e x h i b i t e d s u p e r i o r b e h a v i o r . T h i s p a p e r r e p o r t s i t s use as a c o l o r i m e t r i c reagent f o r d e t e r m i n i n g ozone c o n c e n t r a t i o n s . 119
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN
120
Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch016
Reagents and
CHEMISTRY SERIES
Apparatus
C O L O R I M E T R Y . A 0 . 0 1 M s o l u t i o n of i V - p h e n y l - 2 - n a p h t h y l a m i n e is p r e p a r e d b y d i s s o l v i n g 0.439 g r a m of c h e m i c a l , E a s t m a n K o d a k N o . 2767 o r e q u i v a l e n t , i n 200 m l . of redistilled o-dichlorobenzene. I O D O M E T R I C C A L I B R A T I O N . P o t a s s i u m i o d i d e ( c r y s t a l l i n e p o w d e r , reagent g r a d e ) , 0.002iV s o d i u m t h i o s u l f a t e , 0 . 0 2 5 N p o t a s s i u m d i h y d r o g e n p h o s p h a t e , 0.025iV d i s o d i u m h y d r o g e n p h o s p h a t e , 0 . 0 0 2 N i o d i n e , 5 0 % s u l f u r i c a c i d ( b y v o l u m e ) , a n d 2 % soluble s t a r c h ( b y w e i g h t ) are r e q u i r e d . O X I D E S O F N I T R O G E N . T O d e t e r m i n e t h e i r c o n c e n t r a t i o n , 0.0IN p o t a s s i u m p e r m a n g a n a t e a n d s u l f u r i c a c i d (specific g r a v i t y 1.84 a t 15.6° C . ) are r e q u i r e d . A 0.005iV s o d i u m c a r b o n a t e s o l u t i o n c o n t a i n i n g 0.1 m o l e of p o t a s s i u m p e r m a n g a n a t e (11) is u s e d as a n a b s o r b a n t f o r oxides of n i t r o g e n . O Z O N I Z A T I O N . T h e a p p a r a t u s u s e d t o ozonize a l l s o l u t i o n s has b e e n d e s c r i b e d i n d e t a i l (6"). COLORIMETRY M E A S U R E M E N T S . A K l e t t - S u m m e r s o n photoelectric colorimeter, M o d e l M 3 8 9 6 , e q u i p p e d w i t h a N o . 42 filter h a v i n g a n a p p r o x i m a t e s p e c t r a l r a n g e f r o m 400 to 465 ιημ, was u s e d f o r c o l o r i m e t r i c m e a s u r e m e n t s . Experimental A n i n v e s t i g a t i o n of t h e effects of reagent c o n c e n t r a t i o n o n t h e i n t e n s i t y of c o l o r p r o d u c e d d u r i n g t h e c h r o m o g e n i c r e a c t i o n b e t w e e n ozone a n d 7 V - p h e n y l - 2 - n a p h t h y l amine i n o-dichlorobenzene i n d i c a t e d t h a t the o p t i m u m solution concentration was 0.01M. Reaction Rate. T h e i n t e n s i t y of c o l o r p r o d u c e d d u r i n g o z o n i z a t i o n of i V - p h e n y l 2 - n a p h t h y l a m i n e i n o - d i c h l o r o b e n z e n e s o l u t i o n w a s d e t e r m i n e d . A s t r e a m of o z o n i z e d a i r o r o z o n i z e d o x y g e n , flowing a t a r a t e of 0.05, 0.10, 0.15, a n d 0.20 c u b i c m e t e r p e r h o u r , r e s p e c t i v e l y , w a s b u b b l e d t h r o u g h 200 m l . of a s o l u t i o n c o n t a i n i n g 0.01 m o l e of reagent a t r o o m t e m p e r a t u r e a n d a t m o s p h e r i c p r e s s u r e . A l i q u o t s of t h e o z o n i z e d s o l u t i o n s were r e m o v e d a t preselected t i m e i n t e r v a l s f o r c o l o r i m e t r i c m e a s u r e m e n t . T h e r e s u l t s o b t a i n e d f o r e a c h of t h e flow rates w e r e i d e n t i c a l f o r t h e r e s p e c t i v e o z o n i z e d gases. T h e d a t a are p l o t t e d i n F i g u r e 1. T h e results of t h e c h r o m o g e n i c r e a c t i o n v a r y w i t h t h e c o n c e n t r a t i o n of ozone i n a c c o r d a n c e w i t h B e e r ' s l a w . Calibration. T h e ozone e q u i v a l e n c y of c o l o r i m e t e r scale r e a d i n g s , i n t e r m s of m i l l i g r a m s of ozone, w a s c a l c u l a t e d f r o m i o d o m e t r i c m e a s u r e m e n t s (12) of ozone
700
r
REACTION TIME-MINUTES Figure 1.
Rate of color formation
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
DELMAN, RUFF, SIMMS, A N D ALLISON-COLORIMETRIC
DETERMINATION
121
c o n c e n t r a t i o n . T h e o z o n i z e d gas w a s passed t h r o u g h a s o l u t i o n c o n t a i n i n g 2 0 g r a m s of p o t a s s i u m i o d i d e a n d 5 0 m l . e a c h of 0.002iV s o d i u m t h i o s u l f a t e , 0.0257V p o t a s s i u m d i h y d r o g e n p h o s p h a t e , a n d 0.0257V d i s o d i u m h y d r o g e n p h o s p h a t e f o r p r e d e t e r m i n e d time intervals at r o o m temperature a n d atmospheric pressure. T h e unreacted s o d i u m thiosulfate was titrated w i t h a standardized 0.002^ iodine solution, using freshly pre p a r e d s o l u b l e s t a r c h s o l u t i o n as t h e i n d i c a t o r . T h e v o l u m e of effluent gas w a s c o r r e c t e d f o r t e m p e r a t u r e a n d p r e s s u r e t o 2 5 ° C . a n d 7 6 0 m m . T h e ozone c o n c e n t r a t i o n was c a l c u l a t e d as f o l l o w s : Ozone concentration, mg. per liter —
Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch016
ml. of iodine (blank — sample) Χ Ν of iodine X 24 corrected volume
. .
A p l o t of c o l o r i m e t e r scale r e a d i n g s a g a i n s t m i l l i g r a m s of ozone g a v e a s t r a i g h t - l i n e curve. F i g u r e 2 presents t h e ozone c o n c e n t r a t i o n m e a s u r e m e n t s of o z o n i z e d a i r a n d o z o -
OZONIZED
FLOW
RATE
METER
Figure 2.
PER
-
OXYOEN
CUBIC HOUR
O z o n e concentration by iodometry
n i z e d o x y g e n . T h e ozone c o n c e n t r a t i o n w a s i n v e r s e l y p r o p o r t i o n a l t o t h e r a t e of flow of effluent gas. I n a d d i t i o n , t h e q u a n t i t y of ozone p r o d u c e d b y t h e g e n e r a t o r r e m a i n s r e l a t i v e l y c o n s t a n t f o r e a c h of t h e gases s t u d i e d . T h e c a l i b r a t i o n r e l a t i o n s h i p , c o l o r i m e t e r scale r e a d i n g vs. m i l l i g r a m s of ozone, m a y be u s e d t o d e t e r m i n e t h e ozone c o n c e n t r a t i o n of u n k n o w n s p e c i m e n s . Ozone concentration (mg. per liter) = colorimeter scale reading X mg. of ozone equiv. corrected volume
^
Effects of Oxygen. T h e effects of o x y g e n a l o n e o n o - d i c h l o r o b e n z e n e s o l u t i o n s of i V - p h e n y l - 2 - n a p h t h y l a m i n e were d e t e r m i n e d b y r e p e a t i n g t h e p r o c e d u r e w i t h u n o z o n i z e d o x y g e n . A s n o s i g n i f i c a n t c o l o r change w a s o b s e r v e d i n t h e r e a g e n t s o l u t i o n a f t e r 6 h o u r s , o x y g e n a l o n e h a s n o effect o n t h e c h r o m o g e n i c r e a c t i o n . Effects of Oxides of Nitrogen. T o d e t e r m i n e t h e effects of oxides of n i t r o g e n o n the chromogenic reaction investigated, the ozonization procedure was repeated after p a s s i n g t h e o z o n i z e d a i r t h r o u g h a p p r o x i m a t e l y 2 0 m l . of p o t a s s i u m p e r m a n g a n a t e absorbant.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN CHEMISTRY SERIES
122
T h e results were i d e n t i c a l w i t h those f o r o z o n i z e d a i r ( F i g u r e 1 ) . T h e r e f o r e , t h e oxides of n i t r o g e n a r e c o m p l e t e l y r e m o v e d b y t h i s a b s o r b a n t w i t h o u t affecting t h e ozone c o n c e n t r a t i o n . T h e c o n c e n t r a t i o n of oxides of n i t r o g e n i n o z o n i z e d a i r w a s d e t e r m i n e d b y b u b b l i n g a s t r e a m of gas, flowing a t 0.05, 0.10, 0.15, a n d 0.20 c u b i c m e t e r p e r h o u r , r e s p e c t i v e l y , t h r o u g h 50 m l . of c o n c e n t r a t e d s u l f u r i c a c i d f o r 2 h o u r s a t r o o m t e m p e r a t u r e a n d a t m o s p h e r i c p r e s s u r e . T h e a c i d c o n t a i n i n g t h e a b s o r b e d oxides of n i t r o g e n w a s a d d e d s l o w l y t o 50 m l . of d i s t i l l e d w a t e r i n a n ice b a t h , so as t o f o r m t w o l a y e r s . T h e c h i l l e d l i q u i d w a s t h e n t i t r a t e d w i t h O.OliV* p o t a s s i u m p e r m a n g a n a t e s o l u t i o n , w i t h g r a d u a l stirring to m i x the t w o layers slowly, u n t i l a faint p i n k color persisted for 1 m i n u t e . T h e v o l u m e of o z o n i z e d a i r w a s c o r r e c t e d f o r t e m p e r a t u r e a n d p r e s s u r e t o 25° C . a n d 760 m m . T h e v a l u e of oxides of n i t r o g e n , d e t e r m i n e d as n i t r o g e n d i o x i d e , were c a l c u l a t e d .
Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch016
Concentration of oxides of nitrogen (mg. per liter) = ml. of K M n Q Χ Ν of K M n Q X 46 corrected volume 4
4
( 3 )
R e s u l t s of these m e a s u r e m e n t s a r e p r e s e n t e d i n F i g u r e 3. T h e s e c o n c e n t r a t i o n s of oxides of n i t r o g e n , g r e a t e r e v e n t h a n t h e 0.7 X 1 0 - m g . p e r l i t e r e n c o u n t e r e d i n a i r 3
FLOW RATE-CUBIC METER PER HOUR Figure 3.
Concentration of oxides of nitrogen in ozonized air
s a m p l e s d u r i n g s m o g i n L o s A n g e l e s (1), h a v e n o effect o n t h e i n t e n s i t y of c o l o r p r o d u c e d i n t h e reagent s o l u t i o n d u r i n g o z o n i z a t i o n . A p p l i c a b i l i t y o f M e t h o d . T h e p o t e n t i a l s u i t a b i l i t y of t h e c o l o r i m e t r i c t e c h n i q u e , f o r use i n m e a s u r i n g a t m o s p h e r i c ozone c o n c e n t r a t i o n , w a s d e t e r m i n e d b y r e p e a t i n g t h e o z o n i z a t i o n p r o c e d u r e w i t h u n o z o n i z e d a i r flowing a t 0.40 c u b i c m e t e r p e r h o u r . I o d o m e t r i c m e a s u r e m e n t s of a t m o s p h e r i c ozone c o n c e n t r a t i o n were m a d e s i m u l taneously. T h e r e s u l t s of c o l o r i m e t r i c m e a s u r e m e n t s a r e g i v e n i n F i g u r e 4. T h e ozone c o n c e n t r a t i o n of t h i s a i r s p e c i m e n w a s , u s i n g E q u a t i o n 2, a p p r o x i m a t e l y 1.8 Χ 1 0 mg. p e r l i t e r . T h i s v a l u e is e q u i v a l e n t t o 9 p . p . h . m . ( b y v o l u m e ) , w h i c h is i d e n t i c a l w i t h that determined iodometrically. -
Recommended
4
Procedure
A s t h e chromogenic reaction presented follows Beer's l a w , the recommended c e d u r e i s as f o l l o w s :
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
pro
DELMAN, RUFF, SIMMS, AND
ALLISON-COLORIMETRIC DETERMINATION
123
B u b b l e a s t r e a m of a i r t h r o u g h t h e reagent s o l u t i o n u n t i l a c o l o r change is o b s e r v e d . M a k e a single c o l o r i m e t r i c m e a s u r e m e n t of t h e o z o n i z e d reagent. Determine t h e v o l u m e of effluent gas u s e d , c o r r e c t i n g f o r t e m p e r a t u r e a n d p r e s s u r e . C a l c u l a t e t h e ozone c o n c e n t r a t i o n , u s i n g E q u a t i o n 2.
24
r
Downloaded by CORNELL UNIV on October 10, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch016
ο
REACTION TIME-HOURS Figure 4. Precision of
Rate of color formation by atmospheric ozone
Method
B e c a u s e t h e p r e c i s i o n of m e a s u r e m e n t is a p p r o x i m a t e l y 0.1 d i v i s i o n a t t h e m i d p o i n t of t h e c o l o r i m e t e r scale, i n t h e w o r k i n g r a n g e u s e d , t h e s e n s i t i v i t y of t h e c o l o r i m e t r i c t e c h n i q u e is e q u i v a l e n t t o a p p r o x i m a t e l y ± 1 . 8 X 1 0 m g . of ozone. - 3
Acknowledgment T h e a u t h o r s g r a t e f u l l y a c k n o w l e d g e t h e i n t e r e s t a n d s p o n s o r s h i p of t h i s w o r k b y T . A . W e r k e n t h i n , h e a d of t h e E l a s t o m e r s B r a n c h , B u r e a u of S h i p s , N a v y D e p a r t m e n t , Washington, D . C. Literature (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Cited
Air Pollution Control Dist., C o . of Los Angeles, Calif., Ann. Rept. 1950-51. Birdsall, C. M., Jenkins, A. C., Spadinger, E., Anal. Chem. 24, 662-4 (1952). Briner, E., Paillard, H., Helv. Chim. Acta 18, 234-7 (1935). Crabtree, J., Kemp, A. R., Ind. Eng. Chem., Anal. Ed. 18, 769-74 (1946). Delman, A. D., Ruff, A. E., Simms, Β. B., Allison, A. R., Advances in Chem. Ser. N o . 21, 176 (1958). Delman, A. D., Simms, Β. B., Allison, A. R., Anal. Chem. 26, 1589-92 (1954). Eberhardt, W. H., Shand, W., Jr., J. Chem. Phys. 14, 525-30 (1946). K i r k , R. E., Othmer, D. F., eds., "Encyclopedia of Chemical Technology," V o l . IX, pp. 375-53, Interscience, New York, 1952. Prudhomme, Α., Ann. univ. Lyon Sci. Sect. Β 4 (3), 36-45 (1948). Teichert, F., Z. Meteorol. 7, 33-4 (1953). University of Alaska, Geophys. Inst. Rept. AD2950, Sci. Rept. N o . 1 (1952). Ibid., Chap. 1. Vassy, E., Vassy, Α., O.N.E.R.A. Rapp. tech. No. 42 (1948).
RECEIVED for review April 22, 1957. Accepted June 19, 1957. The opinions or asser tions contained in this paper are the private ones of the authors and are not to be con strued as official or reflecting the views of the Navy Department or the Naval Service a t large.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.