Ozonolysis of 4,22-Stigmastadien-3-one GEORGE SLOMP, Jr., and JAMES L. J O H N S O N
Downloaded by CORNELL UNIV on August 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch025
Research Laboratories, Upjohn Co., Kalamazoo, Mich.
The ozonolysis reaction was used to prepare the steroidal aldehyde, 3-ketobisnor-4-cholen-22-al from 4,22-stigmastadien-3-one. Methylene chloride was used as the solvent. W h e n aldehydes are prepared by ozonolysis, exactly the right amount of ozone must be a d d e d . A n infrared method makes it possible to follow quantitatively the rate of disappearance of double bonds a n d locate the end point exactly.
The o z o n o l y s i s r e a c t i o n h a s b e e n u s e d w i d e l y as a n a n a l y t i c a l t o o l f o r d e t e r m i n a t i o n of t h e s t r u c t u r e of olefins. A n excess of ozone i s u s u a l l y a d d e d a n d t h e s t r u c t u r e i s deduced f r o m whatever products c a n be isolated. I n this structure w o r k there is a r a t h e r b r o a d choice of s o l v e n t s . O z o n o l y s i s h a s b e c o m e m o r e u s e f u l of l a t e as a s y n t h e t i c m e t h o d . T h e a u t h o r s w i s h e d t o use t h e o z o n o l y s i s r e a c t i o n f o r t h e p r e p a r a t i o n of t h e s t e r o i d a l a l d e h y d e , 3-ketobisnor-4-cholen-22-al ( I I ) , f r o m 4,22-stigmastadien-3-one ( I ) .
I
II
ΙΠ
H e r e t h e objective was to cleave t h e side-chain double b o n d selectively a n d , at the s a m e t i m e , t o k e e p t h e n u c l e a r d o u b l e b o n d i n t a c t . T h i s i s a r e a s o n a b l e o b j e c t i v e , as t h e s i d e - c h a i n d o u b l e b o n d has a m u c h h i g h e r e l e c t r o n d e n s i t y t h a n t h e n u c l e a r d o u b l e b o n d w h i c h i s c o n j u g a t e d w i t h t h e e l e c t r o n - w i t h d r a w i n g c a r b o n y l g r o u p a n d , hence, the isolated b o n d s h o u l d react m u c h m o r e r a p i d l y w i t h the electrophilic ozone. I n u s i n g t h e o z o n o l y s i s r e a c t i o n as a p r e p a r a t i v e m e t h o d f o r a l d e h y d e s , c e r t a i n l i m i t i n g c o n s i d e r a t i o n s a r e i m m e d i a t e l y e n c o u n t e r e d . T h e r e i s a m o r e l i m i t e d choice of s o l v e n t s , a n d a n excess of ozone s h o u l d b e a v o i d e d . E t h y l acetate h a s f r e q u e n t l y b e e n u s e d as a s o l v e n t f o r o z o n o l y s i s r e a c t i o n s . I t r e a d i l y dissolves a v a r i e t y of c o m p o u n d s , b u t i n t h e p r e p a r a t i o n of a l d e h y d e s i t i s n o t a g e n e r a l l y s a t i s f a c t o r y s o l v e n t , as l a r g e a m o u n t s of acids a r e f o r m e d [ p o s s i b l y because of t h e presence of some e t h a n o l 162
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
SLOMP A N D J O H N S O N - 4 , 22-STIGMASTADIEN-3-ONE
163
Downloaded by CORNELL UNIV on August 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch025
(1) ] . F o r m i c a n d acetic acids h a v e p r o v e d p a r t i c u l a r l y g o o d f o r t h e p r e p a r a t i o n of some a l d e h y d e s , b u t t h e s o l u b i l i t y of s t i g m a s t a d i e n o n e i n these s o l v e n t s i s l o w . C e r t a i n halogenated h y d r o c a r b o n solvents, w h i c h dissolved more stigmastadienone, have b e e n i n v e s t i g a t e d . W h e n ozone w a s p a s s e d i n t o c h l o r o f o r m ( s t a b i l i z e d w i t h e t h a n o l ) a t — 60° C , s o m e of t h e ozone r e a c t e d , p r e s u m a b l y w i t h t h e e t h a n o l , t o f o r m a c i d i c materials. W h e n the experiment was repeated on methylene chloride at —78°, a s a t u r a t e d s o l u t i o n of ozone i n m e t h y l e n e c h l o r i d e w a s f o r m e d , deep b l u e i n c o l o r , f r o m w h i c h n e a r l y a l l of t h e ozone c o u l d b e r e c o v e r e d b y s p a r g i n g w i t h n i t r o g e n . T h i s s o l v e n t w a s t h e r e f o r e c h o s e n f o r t h e o z o n o l y s i s of s t i g m a s t a d i e n o n e . W h e n a l d e h y d e s a r e p r e p a r e d b y o z o n o l y s i s , e x a c t l y t h e c o r r e c t a m o u n t of ozone m u s t b e a d d e d , because excess ozone c o n v e r t s a l d e h y d e s t o a c i d s a n d p e r a c i d s . I n a d d i t i o n , a l c o h o l s , ethers, d o u b l e b o n d s , o r o t h e r f u n c t i o n a l g r o u p s p r e s e n t i n t h e m o l e c u l e m a y be a t t a c k e d . T h i s b r i n g s u p t h e p r o b l e m of d e t e r m i n i n g w h e n t o s t o p t h e o z o n o l y s i s r e a c t i o n . T h e t h e o r e t i c a l a m o u n t o f ozone m a y b e a d d e d , b u t s e v e r a l cases a r e r e c o r d e d i n w h i c h m o r e t h a n one m o l a r e q u i v a l e n t of o z o n e i s r e q u i r e d t o cleave o n e d o u b l e b o n d . O n e m a y s t o p w h e n ozone a p p e a r s i n t h e effluent gas f r o m the reactor. H o w e v e r , p r e l i m i n a r y experiments have shown t h a t a t this l o w t e m p e r a t u r e ozone begins t o o v e r f l o w v e r y s o o n a f t e r t h e r e a c t i o n h a s s t a r t e d . A m o r e useful m e t h o d has been t o stop t h e ozonolysis w h e n t h e reaction m i x t u r e n o longer shows u n s a t u r a t i o n . T h i s m a y b e d e t e c t e d q u a l i t a t i v e l y b y t h e use of b r o m i n e i n c a r b o n tetrachloride, t e t r a n i t r o m e t h a n e , etc. A n i n f r a r e d m e t h o d makes i t possible to f o l l o w q u a n t i t a t i v e l y t h e r a t e of d i s a p p e a r a n c e of t r a n s d o u b l e b o n d s a n d t o l o c a t e t h e end p o i n t more exactly. T h e m e t h o d was a p p l i e d to the ozonolysis of stigmastadienone w i t h good results. T h e o z o n o l y s i s w a s p e r f o r m e d i n m e t h y l e n e c h l o r i d e , a n d a l i q u o t s of t h e r e a c t i o n m i x t u r e were r e m o v e d a t t i m e d i n t e r v a l s a n d assayed b y t h e i n f r a r e d m e t h o d f o r the a m o u n t s of e a c h d o u b l e b o n d r e m a i n i n g . P o r t i o n s of some of t h e s p e c t r a w h i c h were o b t a i n e d a r e s h o w n i n F i g u r e 1. T h e a b s o r p t i o n of t h e s i d e - c h a i n d o u b l e b o n d a p pears a t 10.26 m i c r o n s , of t h e n u c l e a r d o u b l e b o n d a t 6.2 m i c r o n s , a n d of t h e a l d e h y d e s (2) f o r m e d b y t h e o z o n o l y s i s of t h e s i d e - c h a i n d o u b l e b o n d a t 5.86 m i c r o n s . B y u s i n g the b a s e - l i n e t e c h n i q u e of H e i g l , B e l l , a n d W h i t e (4), i t w a s possible t o c a l c u l a t e t h e a m o u n t of s i d e - c h a i n d o u b l e b o n d p r e s e n t i n e a c h s a m p l e . T h e a m o u n t s of n u c l e a r d o u b l e b o n d a n d of a l d e h y d e p r e s e n t w e r e also c a l c u l a t e d . T h e s e r e s u l t s a r e r e c o r d e d g r a p h i c a l l y i n F i g u r e 2. T h e s e d a t a n o w i n d i c a t e e x a c t l y w h e n t o s t o p t h e o z o n o l y s i s r e a c t i o n so as t o h a v e m a x i m u m selectivity: a t t h e point i n t h e χ axis where t h e t w o double-bond dis a p p e a r a n c e c u r v e s a r e t h e f a r t h e s t a p a r t — i . e . , 1.1 ± 0.5 m o l a r e q u i v a l e n t s o f ozone. T h e y i e l d o f a l d e h y d e s h o u l d b e 7 0 t o 8 5 % a n d s h o u l d c o r r e s p o n d t o t h e s e p a r a t i o n of the t w o curves o n t h e y axis. T h e a l d e h y d e f o r m a t i o n c u r v e g a v e e v i d e n c e t h a t t h e cleavage of one m o l e o f s i d e c h a i n d o u b l e b o n d y i e l d e d one m o l e o f a l d e h y d e , t h e o t h e r e n d of t h e d o u b l e b o n d b e i n g c o n v e r t e d t o s o m e t h i n g else. T h i s w a s i n a g r e e m e n t w i t h t h e r e s u l t s o b s e r v e d b y C r i e g e e (1). T h e ozonolysis was therefore repeated u n d e r a v a r i e t y of conditions a n d n e w curves were c o n s t r u c t e d f o r e a c h . T h e r e s u l t s w e r e b e s t a t l o w t e m p e r a t u r e (—78° C . w a s b e t t e r t h a n — 5 3 ° C ) , a t a h i g h olefin c o n c e n t r a t i o n (as h i g h as t h e s o l u b i l i t y l i m i t a t i o n s w o u l d p e r m i t ) , i n n o n p o l a r s o l v e n t s , a n d w i t h a s m a l l a m o u n t of p y r i d i n e p r e s e n t i n t h e s o l v e n t . T h e d r a m a t i c effect o f t h e i n c l u s i o n o f a p p r o x i m a t e l y 1 % p y r i d i n e i s s h o w n i n F i g u r e 3. T h e s e l e c t i v i t y w a s g r e a t l y i m p r o v e d , t h e n u c l e a r d o u b l e b o n d r e maining intact u n t i l the side-chain double b o n d h a d almost completely reacted. T h e a l d e h y d e f o r m a t i o n c u r v e i n d i c a t e s t h a t a p p r o x i m a t e l y t w o m o l e c u l e s of a l d e h y d e w e r e f o r m e d f r o m t h e cleavage of e a c h d o u b l e b o n d . T h e s e c u r v e s r e p r e s e n t o p t i m a l c o n d i t i o n s a n d w e r e selected f r o m r u n s a t v a r i o u s p y r i d i n e c o n c e n t r a t i o n s . F i g u r e 3 indicates that m a x i m u m selectivity i n t h e p y r i d i n e - m e t h y l e n e chloride s y s t e m s h o u l d b e o b t a i n e d b y u s i n g 1.6 t o 1.7 m o l a r e q u i v a l e n t s of o z o n e . T h e e x p e r i -
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN CHEMISTRY SERIES
Downloaded by CORNELL UNIV on August 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch025
164
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by CORNELL UNIV on August 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch025
SLOMP A N D
165
JOHNSON-4 22-STIGMASTADIEN-3-ONE /
τ
ι
ι
ι
ι
I
.2
.3
.4
.5
Figure 3.
1 1 ι 1 1 ι 1 ι ι ' ' »· V .6 .7 .8 .9 1.0 I.I 1.2 1.3 1.4 1.5 1.6 1.7 1.8 MOLAR EQUIVALENTS OF OZONE
' V 1.9 2.0
Ozonolysis of stigmastadienone in methylene chloride
merits w e r e r e p e a t e d u s i n g t h i s a m o u n t of ozone, t h e m i x t u r e w a s s u b j e c t e d t o z i n c decomposition, a n d the steroidal aldehyde was isolated b y crystallization. T h e yields were i n g o o d agreement w i t h t h e p r e d i c t i o n ( T a b l e I ) . Table I.
Yields of Bisnoraldehyde from Ozonolysis of Stigmastadienone Molar Equiv. Ozone 1.07 1.66
Solvent MeCl MeCls + 0.94% pyridine 2
Yield Predicted 70-85 95
Found 82 94
I t w a s of i n t e r e s t t o c o n s i d e r t h e role of t h e p y r i d i n e i n t h i s o z o n o l y s i s r e a c t i o n . S i x m a , B o e r , a n d W i b a u t (6) h a v e s h o w n t h a t t h e e l e c t r o p h i l i c r e a c t i v i t y o f ozone c a n be c a t a l y z e d b y acids o f t h e L e w i s t y p e . T h i s m a y b e d u e t o t h e f o r m a t i o n of a salt l i k e i n t e r m e d i a t e I V , w h i c h w o u l d be e x p e c t e d t o s h o w e n h a n c e d e l e c t r o p h i l i c r e a c t i v -
+
0 θ ' 0—A1C1 X
IV
3
i t y . N u c l e o p h i l i c agents, s u c h as p y r i d i n e a n d p y r i d i n e o x i d e , o n t h e o t h e r h a n d , w o u l d be e x p e c t e d t o f o r m c o m p o u n d s , o r a t least c o m p l e x e s ( i n these n o n p o l a r s o l v e n t s ) s u c h as V , V I , a n d V I I .
or
f\-/ V
f A - - VI
+
/ -
or
/
Λ
-
ο
Λ
τ
VII
T h e s e , i n t u r n , w o u l d be e x p e c t e d t o s h o w d i m i n i s h e d e l e c t r o p h i l i c r e a c t i v i t y a n d p o s s i b l y , i n some cases, n u c l e o p h i l i c r e a c t i v i t y (a). T h i s m a y e x p l a i n t h e loss of a l d e h y d e w h i c h w a s o b s e r v e d w h e n a l a r g e a m o u n t of p y r i d i n e w a s p r e s e n t d u r i n g t h e ozonolysis r e a c t i o n . W h e t h e r i t is a p y r i d i n e - o z o n e c o m p l e x w h i c h is r e a c t i n g w i t h t h e d o u b l e b o n d s i n a m o r e selective m a n n e r o r w h e t h e r t h e s e l e c t i v i t y arises because of t h e d i m i n i s h i n g
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
166
ADVANCES
IN CHEMISTRY SERIES
of t h e i n s t a n t a n e o u s ozone c o n c e n t r a t i o n b y f o r m a t i o n of t h e p y r i d i n e o r p y r i d i n e oxide complex is n o t certain. T h e a p p e a r a n c e of t h e s e c o n d m o l e c u l e of a l d e h y d e i s a t t r i b u t e d t o a m o d e of s t a b i l i z a t i o n of t h e z w i t t e r i o n (1) i n t e r m e d i a t e b y r e a c t i o n w i t h t h e p y r i d i n e t o f o r m p y r i d i n e oxide a n d a s e c o n d m o l e c u l e of a l d e h y d e :
ν
_ C H N
Downloaded by CORNELL UNIV on August 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch025
/ \
5
=^=±:
5
γ I )0
/
\
+
3
C HjN 5
V
%
Ν
\
+ 0
0
A T h i s m a y o c c u r b y a d d i t i o n of t h e p y r i d i n e t o t h e z w i t t e r i o n ( V I I I ) solvates), followed b y rearrangement:
(which it probably
V-0 - ->Q
(ν
Ν
IX
>-0
C=0
+
Χ
II or III
P y r i d i n e oxide w a s s h o w n t o b i n d l a r g e q u a n t i t i e s of ozone, f r o m w h i c h a l l of t h e p y r i d i n e o x i d e c o u l d be r e c o v e r e d b y a d d i t i o n of m e t h a n o l . T h i s a p p a r e n t l y a c c o u n t s f o r t h e a d d i t i o n a l ozone r e q u i r e d f o r t h e o z o n o l y s i s w h e n p y r i d i n e i s p r e s e n t . U n f o r t u n a t e l y , p y r i d i n e oxide c o u l d n o t be d e m o n s t r a t e d i n t h e r e a c t i o n m i x t u r e . I t w a s shown, however, i n a separate experiment t h a t p y r i d i n e oxide reacted r e a d i l y w i t h b i s n o r a l d e h y d e a t r o o m t e m p e r a t u r e . T h e i s o l a t i o n w a s n o t a t t e m p t e d a t —-78°C. T h e o z o n o l y s i s m i x t u r e s s t i l l r e q u i r e d r e d u c t i v e t r e a t m e n t t o o b t a i n h i g h y i e l d s of a l d e h y d e . T h e r e d u c t i o n w a s a p p a r e n t l y necessary t o d e s t r o y t h e p y r i d i n e oxide-ozone i n t e r m e d i a t e s w h i c h were p o s t u l a t e d a b o v e . I t w a s possible, h o w e v e r , t o e l i m i n a t e t h e reduction step i f the more reactive formaldehyde was added to destroy the reactive i n t e r m e d i a t e s . T h e r e s u l t s o b t a i n e d b y t r e a t m e n t of s e v e r a l a l i q u o t s of a n o z o n o l y s i s reaction m i x t u r e are shown i n T a b l e I I . T a b l e II.
Decomposition Methods as A p p l i e d to Ozonolysis Reaction Mixtures
Treatment Formaldehyde Zinc reduction No reduction Dimethylsulfoxide Trioxymethylene a
Yield 91.8 93.0 77.2 82.2 75.9
[α]ϋ of Product* +81.4 +84.3 +80.1 +80.5 +80.8
[ « ] of pure 3-ketobisnor-4-22-al is + 8 5 ° (CHCh). D
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
SLOMP A N D
JOHNSON-4 22-STIGMASTADIEN-3-ONE #
167
F o r m a l d e h y d e w a s d i s t i n c t l y b e t t e r t h a n t h e o t h e r m e t h o d s of t r e a t m e n t , b u t n o t c o m p a r a b l e t o z i n c r e d u c t i o n . T h e f o l l o w i n g r e d u c i n g agents w e r e also t r i e d : a q u e o u s s o d i u m b i s u l f i t e , a q u e o u s f e r r o u s s u l f a t e , s u l f u r d i o x i d e , aqueous s o d i u m t h i o s u l f a t e , catalytic hydrogénation [ p y r i d i n e oxide is difficult t o hydrogenate ( 3 ) ] , c a l c i u m h y d r i d e a n d a c e t i c a c i d , a n d s t a n n o u s c h l o r i d e a n d acetic a c i d . O n l y s t a n n o u s c h l o r i d e - a c e t i c a c i d w a s effective. I t g a v e m a t e r i a l o f v e r y g o o d q u a l i t y , b u t t h e y i e l d w a s s l i g h t l y less (84 t o 8 5 % ) t h a n b y t h e u s u a l z i n c d e c o m p o s i t i o n m e t h o d . Acknowledgment
Downloaded by CORNELL UNIV on August 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch025
T h e authors are indebted to A . E . F o n k e n a n d M . Grostic for the measurement and both qualitative a n d quantitative interpretation of infrared spectra, to W i l l i a m A . S t r u c k a n d h i s associates f o r a n a l y t i c a l d a t a , a n d t o M e l v i n N e w m a n a n d D o n a l d C r a m f o r v a l u a b l e suggestions d u r i n g t h e course o f t h e w o r k . Literature C i t e d (1) (2) (3) (4) (5)
Criegee, R., Ann. 583, 1 (1953). Criegee, R., Lohaus, G., Ibid., 583, 6 (1953). Culvenor, C. C. J., Rev. Pure Appl. Chem. 3, 83 (1953). Heigl, J. J., Bell, M. F., White, J. W., Anal. Chem. 19, 293 (1947). Leffler, J. E., Chem. Revs. 45, 400 (1949).
(6) Sixma, F. L. J., Boer, H., Wibaut, J. P., Rec. trav. chim. 70, 1005 (1951). RECEIVED for review M a y 27, 1957. Accepted June 19, 1957.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.