13 Paramyosin, a Model α-Helical Protein
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
LYNN M. RIDDIFORD
Biological Laboratories, Harvard University, Cambridge, Mass. 02138
Paramyosin
is proposed as a model protein
base optical rotatory dispersion tent.
helix upon which to
estimates of protein
It is suggested that this rigid two-chain residues comprising
helical
con
coiled coil is one
chain
with the proline
ORD
studies from 600 to 190 mµ for the native helix and to 205
mμ for the 7M guanidine-denatured analyzed.
the hairpin
molecule were performed and
In both the 600- to 300-mμ and the 315- to 240-mμ
region,
the Moffitt
parameters
are shown to be colinear
[m']
but not with λ , over the entire three-step helix-coil
tion.
An estimate of helical content for myoglobin
232
turn.
c
paramyosin
parameters
(using
b
0
based on the
as the most reliable
agrees well with the x-ray crystallographic
with transi index)
analysis.
/ ^ p t i c a l r o t a t o r y d i s p e r s i o n ( O R D ) is one of t h e c o m m o n m e t h o d s of i n vestigating protein conformation.
M o s t n a t i v e g l o b u l a r proteins show
s i m p l e d i s p e r s i o n i n t h e v i s i b l e s p e c t r u m (63),
a n d t h u s , t h e d a t a c a n be
described b y t h e o n e - t e r m D r u d e e q u a t i o n , (1) where [m'] is t h e r e d u c e d m e a n residue r o t a t i o n . x
B y contrast, the soluble
fibrous proteins a n d h e l i c a l s y n t h e t i c p o l y p e p t i d e s show c o m p l e x d i s p e r s i o n (12, 63).
I n 1956, M o f f i t t (39) proposed a t h e o r y t o e x p l a i n t h e c o m p l e x
d i s p e r s i o n of t h e α-helical p o l y p e p t i d e s , f r o m w h i c h arose t h e f o l l o w i n g p h e n o m e n o l o g i c a l e q u a t i o n (40) :
(λ
2
-
λ. ) 2
2
where bo a n d λ are m a i n l y f u n c t i o n s of t h e h e l i c a l b a c k b o n e a n d are r e l a 0
t i v e l y i n s e n s i t i v e t o e n v i r o n m e n t a l factors, a n d a
0
is a f u n c t i o n of b o t h
i n t r i n s i c residue r o t a t i o n s a n d i n t e r a c t i o n s w i t h i n t h e h e l i x a n d t h u s m a y v a r y w i t h the environment.
A l t h o u g h t h e t h e o r e t i c a l basis of t h i s e q u a 167
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
168
ORDERED FLUIDS AND LIQUID CRYSTALS
t i o n is i n c o m p l e t e , i t s e m p i r i c a l use for t h e e s t i m a t i o n of h e l i c a l c o n t e n t r e m a i n s v a l i d (54, 63,
66).
O R D measurements are c o m m o n l y extended i n t o t h e f a r - u l t r a v i o l e t region where t h e C o t t o n effects c h a r a c t e r i s t i c of the α - h e l i x (a t r o u g h a t 233 ιημ a n d a m a x i m u m near 200 ιημ) (8, 56) are f o u n d .
B y analyzing the
c i r c u l a r d i c h r o i c spectra of α - h e l i c a l p o l y p e p t i d e s , H o l z w a r t h a n d D o t y (24) h a v e s h o w n t h a t three r o t a t o r y b a n d s (the Πχ — π~ t r a n s i t i o n at 222 ιημ, t h e p a r a l l e l - p o l a r i z e d π° — ir
e x c i t o n t r a n s i t i o n a t 206 ιημ, a n d t h e p e r
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
p e n d i c u l a r l y p o l a r i z e d π° — ττ e x c i t o n t r a n s i t i o n at 190 πΐμ) c a n a c c o u n t for these C o t t o n effects.
W h e n t h e p o l y p e p t i d e c h a i n becomes d i s o r d e r e d ,
o n l y a single C o t t o n effect w i t h a t r o u g h a t 204 ιημ is seen
(8).
P r e v i o u s l y , a l l t h e estimates of h e l i c a l content of p r o t e i n s h a v e been based o n the p o l y p e p t i d e models.
I n d e p e n d e n t evidence is a v a i l a b l e for
the existence of these p o l y p e p t i d e s as α - h e l i c a l r i g i d rods or as r a n d o m coils i n aqueous s o l u t i o n , d e p e n d i n g u p o n p H [for reviews, see 27, 63].
Re
c e n t l y , Y a n g a n d M c C a b e (68) a n d M c D i a r m i d (37) h a v e s h o w n t h a t t h e m a g n i t u d e s of t h e h e l i c a l C o t t o n effects for t h e f u l l y h e l i c a l p o l y g l u t a m i c a c i d ( P G A ) v a r y w i t h p H a n d i o n i c s t r e n g t h ; t h i s p h e n o m e n o n m a y be cor r e l a t e d w i t h t h e aggregation of h e l i c a l chains w h i c h a p p a r e n t l y affects o n l y t h e specific r o t a t i o n a n d a b u t n o t fr (55). 0
an inadequate model helix.
0
I n a n y case, P G A seems t o be
N o t a l l h e l i c a l p o l y p e p t i d e s , especially those
of t h e a r o m a t i c a m i n o acids, e x h i b i t n o r m a l O R D b e h a v i o r , even i n t h e v i s i b l e range (27).
I n t h e u l t r a v i o l e t range h e l i c a l a r o m a t i c p o l y p e p t i d e s
s h o w C o t t o n effects i n t h e 260- t o 300 ιημ region as w e l l as a n o m a l o u s C o t t o n effects i n t h e f a r - u l t r a v i o l e t region (6, 7,17,18).
H e l i c a l polypeptides
c o m p o s e d of t w o or three a m i n o acids, s u c h as c o p o l y - L - t y r o s i n e - L - g l u t a m i c acid ( 5 %
t y r o s i n e ) ( P T G A ) (17, 61)
tamic acid ( P A L G A )
(19,
62)
and copoly-L-alanine-L-lysine-L-glu-
give somewhat
different v a l u e s for
M o f f i t t parameters t h a n t h e single p o l y a m i n o acids.
the
Presumably the dif
ferent values arise f r o m t h e effects of t h e increasing n u m b e r of s i d e - c h a i n i n t e r a c t i o n s possible i n these copolymers.
Y e t , w i t h o n l y t w o or three
a m i n o acids, t h e m a n y v a r i e d t y p e s of s i d e - c h a i n i n t e r a c t i o n s f o u n d i n p r o teins are s t i l l n o t i m p l i c i t l y a c c o u n t e d for i n t h e O R D of either t h e h e l i c a l or t h e r a n d o m c o n f o r m a t i o n or of a n y m i x t u r e s of t h e t w o
conformations.
C o n s e q u e n t l y , a b e t t e r m o d e l is a p r o t e i n w h i c h is n a t i v e l y a n α - h e l i c a l r i g i d r o d f r o m evidence independent of O R D a n d w h i c h c a n be t r a n s f o r m e d readily and reversibly into a random coil.
A l s o , it should contain a l l the
c o m m o n a m i n o acids except p r o l i n e , w h i c h d i s r u p t s t h e α - h e l i c a l s t r u c t u r e , a n d p o s s i b l y cystine. A s o r i g i n a l l y p o i n t e d o u t b y C o h e n a n d S z e n t - G y o r g y i (12), t h e soluble fibrous
proteins w h i c h possess t h e α - t y p e wide-angle x - r a y d i f f r a c t i o n d i a
g r a m , w i t h the exception of
fibrinogen,
show complex r o t a t o r y dispersion
s i m i l a r t o t h a t of t h e s y n t h e t i c p o l y p e p t i d e s .
Light meromyosin Fraction
I ( L M M F r . I ) , t r o p o m y o s i n , a n d p a r a m y o s i n a l l h a v e o v e r 9 0 % h e l i x (12)
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
13.
RiDDiFORD
169
Paramyosin
w h i c h is correlated w i t h t h e i r l o w p r o l i n e content (58).
T h e s e proteins
show a 5.1-A. m e r i d i o n a l reflection i n s t e a d of the 5.4-A. p i t c h reflection, characteristic of the α - h e l i c a l p o l y p e p t i d e s , w h i c h b o t h C r i c k (15)
and
P a u l i n g a n d C o r e y (44) h a v e a t t r i b u t e d to t h e presence of a coiled c o i l . T h e t w o - c h a i n coiled c o i l m o d e l is t h e best fit for the wide-angle x - r a y p a t t e r n of the p a r a m y o s i n - r i c h (over 5 0 % of the s t r u c t u r a l protein) anterior byssus r e t r a c t o r muscle of the m u s s e l Mytilus
edulis
(10).
T h e physico-
c h e m i c a l d a t a for p a r a m y o s i n , L M M F r . I , a n d t r o p o m y o s i n agree w i t h the
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
proposed t w o - c h a i n s t r u c t u r e (34~36, 65).
T h e i r c r y s t a l l i n e p a t t e r n s as
seen b y t h e electron microscope are different b u t h a v e some inherent s i m i l a r i t i e s — n a m e l y , a repeated occurrence of the 7 0 - A . a n d 140-A. spacings T h e o n l y n a t i v e p r o t e i n w h i c h appears to be a single α - h e l i c a l
(11, 23, 60). c h a i n is Pinna
nobilis t r o p o m y o s i n A ( s i m i l a r i n a m i n o a c i d c o m p o s i t i o n to
Venus p a r a m y o s i n ) (28, 29) ;
some c o n t r o v e r s y has arisen over existence
of t h i s p r o t e i n as a single c h a i n [for the c r i t i c i s m a n d its r e b u t t a l , see (36 and
30)].
C e r t a i n l y , Pinna
t r o p o m y o s i n is more u n s t a b l e t h a n
Venus
p a r a m y o s i n since i t is c o m p l e t e l y (and n o t e n t i r e l y reversibly) d e n a t u r e d i n SM 9.5M
u r e a (29).
Venus
p a r a m y o s i n is a b o u t t w o - t h i r d s d e n a t u r e d i n
u r e a (12) or i n 5M g u a n i d i n e - 1 . 2 M u r e a (48), a n d c o m p l e t e l y (and
r e v e r s i b l y ) d e n a t u r e d o n l y i n 7M g u a n i d i n e - H C l ( G - H C 1 ) (42, 43, 46)T h e coiled c o i l c o n f i g u r a t i o n of these proteins a p p a r e n t l y does not alter t h e i r r o t a t o r y b e h a v i o r , at least i n the v i s i b l e w a v e l e n g t h range as i n d i c a t e d b y bo (12).
T h i s r e l a t i v e i n s e n s i t i v i t y is n o t s u r p r i s i n g since the m a j o r
h e l i x of the coiled c o i l requires a t i l t angle r e l a t i v e to the m i n o r h e l i x of o n l y 10° a n d a t w i s t per residue of 2.86° as c o m p a r e d w i t h t h e t w i s t per residue i n the m i n o r h e l i x of 100° (14)·
Therefore, one of these
three
fibrous muscle proteins w o u l d be a good p r o t e i n m o d e l since they are a l l readily available. Paramyosin
as a Model
Helix
O f these three α - h e l i c a l proteins, p a r a m y o s i n is a suitable m o d e l h e l i x for the f o l l o w i n g rea-sons: P a r a m y o s i n is t h e o n l y one for w h i c h there is e x p e r i m e n t a l evidence of t h e existence of t h e t w o - c h a i n coiled c o i l in situ (10) as w e l l as i n t h e d r i e d fiber (4, 5) a n d i n s o l u t i o n (36). P a r a m y o s i n behaves as a n e x t r e m e l y a s y m m e t r i c α - h e l i c a l r i g i d r o d i n s o l u t i o n , as s h o w n b y its h y d r o d y n a m i c a n d l i g h t - s c a t t e r i n g properties (22, 36), its d y n a m i c viscoelastic b e h a v i o r (1,2), the h y p o c h r o m i c i t y of its f a r u l t r a v i o l e t a b s o r p t i o n s p e c t r u m (50), a n d its o p t i c a l r o t a t o r y properties (12, 56). P a r a m y o s i n is r e v e r s i b l y d e n a t u r e d b y 7M G - H C 1 (42, 4$, 46) whereas L M M F r . I is i r r e v e r s i b l y dissociated i n t o t h e p r o t o m y o s i n s b y 5M u r e a (59), a n d t h e 3 . 5 M G - H C 1 d e n a t u r a t i o n of t r o p o m y o s i n is o n l y 8 0 % r e v e r s i b l e (42, 4$)> A l l three proteins are insensitive t o p H d e n a t u r a t i o n , except t h a t a b o v e p H 10 t r o p o m y o s i n begins to u n f o l d p a r t i a l l y (34)»
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
170
ORDERED FLUIDS A N D LIQUID CRYSTALS
P a r a m y o s i n h a s , a t m o s t , 2 t o 3 prolines p e r 220,000 m o l e c u l a r w e i g h t (32, 47), a w e i g h t % s i m i l a r to t h a t f o u n d for L M M F r . I . a n d l o w e r t h a n t h a t for t r o p o m y o s i n (58).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
P a r a m y o s i n has no c y s t i n e residues a n d a l o w n u m b e r of cysteine residues (11, 46, 4-7), whereas L M M F r . I (35) has h a l f - c y s t i n e s a n d shows no t r a c e of free s u l f h y d r y l groups b y t h e p - c h l o r o m e r c u r i b e n z o a t e t i t r a t i o n . T r o p o m y o s i n also has at least one disulfide b o n d (11) w h i c h m a y l i n k t h e t w o chains of t h e coiled c o i l (65). P a r a m y o s i n has 3 7 % h i g h l y h y d r o p h o b i c residues a n d 3 6 % charged a m i n o acids (34, 46), a n d l a c k s o n l y t r y p t o p h a n of t h e c o m m o n a m i n o acids (47). O n e u n c e r t a i n t y as t o p a r a m y o s i n s t r u c t u r e r e m a i n s :
whether the
coiled c o i l consists of t w o separate α-helical chains (each a b o u t 1400 A . long) or m e r e l y t w o p a r t s of one 2 8 0 0 - A . α-helical c h a i n w i t h a h a i r p i n t u r n n e a r i t s center.
F r o m t h e i n t r i n s i c v i s c o s i t y of t h e c o m p l e t e l y d e n a t u r e d
m o l e c u l e ( 6 i l f G - H C 1 , 43°), N o e l k e n (42) c a l c u l a t e d a r a d i u s of g y r a t i o n w h i c h agrees f a i r l y w e l l w i t h t h a t expected for a s i n g l e - c h a i n r a n d o m c o i l w i t h a m o l e c u l a r w e i g h t of 225,000.
H o w e v e r , he also s h o w e d t h a t t w o
r a n d o m l y coiled chains of m o l e c u l a r w e i g h t n e a r 110,000 c a n give e q u a l l y g o o d agreement.
H y d r o d y n a m i c a n d l i g h t - s c a t t e r i n g studies i n 7M
G-
H C 1 , i n w h i c h t h e molecule exists i n i t s r a n d o m c o n f o r m a t i o n at r o o m t e m p e r a t u r e (42, 46), are needed t o resolve t h e q u e s t i o n . S i n c e t h e molecule a l w a y s refolds t o i t s n a t i v e c o n f o r m a t i o n u p o n r e m o v a l of t h e g u a n i d i n e (see T a b l e I ) , e v e n after p r o l o n g e d h e a t i n g a t 5 0 ° C . i n t h i s solvent (46) a n d since t h e r e are no disulfide b o n d s or o t h e r k n o w n c o v a l e n t c r o s s - l i n k s (11, 47), I f a v o r t h e o n e - c h a i n h y p o t h e s i s . Table I.
Optical Rotatory Dispersion
Solvent
a
0
0.6MKC1, pH7.2
I t seems
-17°
b Wavelength Range 600-240 0
± 5°
- 4 4 0 ° ± 3°
Wavelength Range 600-300 0.SM KC1, p H 7 . 4 0 . 6 M KC1, p H 7 . 2 7 M guanidine + 0 . 6 M KC1, p H 7.2* c
d
- 1 ° ± 5.4° + 14° ± 1.4° - 5 4 3 ° ± 5°
- 5 7 4 ° ± 10° - 6 0 0 ° ± 3° + 2 0 ° ± 7°
Wavelength Range 315-240 0.6MKC1, pH7.2or 0 . 6 M N a F or K F , p H 7.2 7M guanidine + 0 . 6 M KC1, p H 7.2 0 . 6 M KC1, p H 7.2 after 7M guanidine
- 1 0 9 ° ± 9° - 4 7 6 ° ± 9° - 1 0 6 ° ± 10°
A l l values are averages for at least 6 different preparations. a b kurude, and \ are standard deviations for individual values. [ra'J values are limits of values averaged. Data from only two experiments calculated in this manner. α
0f
0}
c
- 3 4 3 ° ± 4° + 2 0 ° ± 4° - 3 4 3 ° ± 4° Errors indicated for Errors indicated for
6
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
13.
RIDDIFORD
171
Paramyosin
u n l i k e l y t h a t p a i r s of c o m p l e t e l y separated c h a i n s c o u l d reassemble i n t h e f a i r l y d i l u t e solutions (about 20 μΜ).
Also, although Ramakrishnan a n d
R a m a c h a n d r a n (45) h a v e r e c e n t l y s h o w n t h a t a n α - h e l i c a l c h a i n c a n i n c o r p o r a t e a n L - p r o l i n e residue t o w a r d s a n e n d w i t h a m i n i m u m 35° angle b e t w e e n t h e t w o h e l i c a l p o r t i o n s i f there is a s l i g h t d i s t o r t i o n of t h e p l a n a r i t y of t h e p e p t i d e g r o u p , t h e l o c a t i o n of t h e t w o prolines i n p a r a m y o s i n a t a h a i r p i n t u r n w o u l d b o t h a c c o u n t f o r t h e t u r n a n d least d i s r u p t t h e ah e l i c a l s t r u c t u r e of t h e t w o single chains of t h e coiled c o i l .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
I n t h e f u l l y d e n a t u r e d m o l e c u l e (7M G - H C 1 a t 5 0 ° ) , w h e r e t h e r e is a b o u t 1 0 % r e s i d u a l h e l i x as c o m p a r e d w i t h p o l y p e p t i d e s (46), these p r o l i n e residues m i g h t r e s t r i c t complete r a n d o m n e s s b y a l l o w i n g i n t e r a c t i o n s b e t w e e n a m i n o acids t o r e m a i n i n a l o c a l i z e d r e g i o n ( a m i n i m u m of eight residues i n v o l v e d ) o n e i t h e r side of t h e m .
B r a n t a n d F l o r y (9) h a v e s h o w n
t h a t o n l y electrostatic i n t e r a c t i o n s b e t w e e n a m i d e groups a n d n o t specific s i d e - c h a i n o r s o l v e n t i n t e r a c t i o n s influence t h e c o n f i g u r a t i o n of r a n d o m p o l y p e p t i d e chains i f t h e p o l y p e p t i d e c h a i n is e n t i r e l y i n t h e t r a n s confor mation.
Y e t , t h e p r o l i n e p e p t i d e l i n k a g e c a n be either t h e t r a n s o r t h e cis
c o n f o r m a t i o n , a n d t h e existence of t h e cis c o n f o r m a t i o n i n d i c a t e s t h e p r e s ence of f a v o r a b l e i n t r a m o l e c u l a r i n t e r a c t i o n s w h i c h c o u n t e r a c t t h e h i g h e r energy of t h i s c o n f o r m a t i o n (54).
I n p a r a m y o s i n t h e existence of s u c h
i n t e r a c t i o n s i n t h e r a n d o m c o n f o r m a t i o n c a n n o t be r u l e d o u t . H y d r o phobic interactions certainly are i m p o r t a n t i n stabilizing t h e native coiled c o i l s t r u c t u r e (10, 34, 47, 48) a n d are i m p l i c a t e d i n t h e d e n a t u r e d s t a t e (46, T h e s e h y d r o p h o b i c i n t e r a c t i o n s m a y exist b e t w e e n side c h a i n s i n
48).
o t h e r p o r t i o n s of t h e u n f o l d e d m o l e c u l e as w e l l as i n t h e r e g i o n of t h e h a i r Parameters for Paramyosin
a
terude Χ IP
λ (τημ) β
τημ (λ = 218 πΐμψ 0
Nonlinear
Nonlinear
Nonlinear Nonlinear - 2 4 . 6 ± 0.2
Nonlinear Nonlinear 208.2 ± 0.8
( - 2 3 . 0 + 1.5)· - 2 3 . 2 ± 0.2 ( - 2 2 . 5 ± 1.4)'
(236.7 ± 0 . 7 ) · 214.2 ± 0.4 (236.7 + 0 . 7 ) ·
ιημ (λ = 212 ιημ) 0
τημ (λ = 220 ηΐμΥ 0
Ν'] 32 2
- 1 5 , 4 0 0 ° ± 150° -2090° ± 2 0 ° - 1 5 , 0 0 0 ° ± 200°
Μίθδ.δ + 7 0 , 2 0 0 ° + 500° ....
Recalculated from Riddiford and Scheraga (45), using Lorentz correction for dis persion of refractive index of water. From Table III (46). Parentheses indicate that these values based on assumption of a linear Drude plot are not strictly valid since larger standard deviations indicate nonlinearity. c
d
6
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
172
ORDERED FLUIDS A N D LIQUID CRYSTALS
pin turn.
A possible m e t h o d f o r t e s t i n g t h i s h y p o t h e s i s is n o w a v a i l a b l e .
I n a p r e l i m i n a r y note, W i l c h e k et al. (64) r e p o r t t h e use of s o d i u m i n l i q u i d a m m o n i a for t h e specific cleavage of i V - p r o l i n e peptides i n c l u d i n g p o l y - L p r o l i n e (molecular w e i g h t 1500).
I f t h i s m e t h o d is specific for p r o l i n e
l i n k a g e s i n proteins, t h e n t h i s t y p e of r e d u c t i v e cleavage
of
denatured
p a r a m y o s i n s h o u l d give t w o chains of a p p r o x i m a t e l y e q u a l l e n g t h a n d m o l e c u l a r w e i g h t 110,000, o n t h e a s s u m p t i o n t h a t t h e p r o l i n e residues are
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
involved i n the hairpin turn. ORD
Studies
of
Paramyosin
Experimental. A l l t h e O R D studies were m a d e w i t h p a r a m y o s i n p r e p a r e d f r o m t h e w h i t e p o r t i o n of t h e a d d u c t o r m u s c l e of t h e c l a m Venus mercenaria, as o u t l i n e d b y R i d d i f o r d a n d S c h e r a g a (47). T h e experimental p r o c e d u r e has been g i v e n i n d e t a i l (46). A l l O R D measurements were m a d e o n t h e C a r y m o d e l 60 r e c o r d i n g s p e c t r o p o l a r i m e t e r a t 23° ± 2 ° C . , except as otherwise n o t e d . T h e c o m p u t a t i o n s of t h e M o f f i t t p a r a m e t e r s (see E q u a t i o n 2 ) , u t i l i z i n g t h e s t a t i s t i c a l procedures w i t h error analyses developed b y S o g a m i , L e o n a r d , a n d F o s t e r (57) t o d e t e r m i n e t h e best λ v a l u e s , a n d of t h e D r u d e p a r a m eters {see E q u a t i o n 1; a m o d i f i e d D r u d e p l o t of [m'\ vs. [m']\ (67) was used} w i t h error analyses were p e r f o r m e d w i t h t h e I B M 7094 c o m p u t e r . C o r r e c t i o n for t h e dispersion of r e f r a c t i v e i n d e x of t h e solvent was m a d e as o u t l i n e d (46). 0
2
A s s h o w n i n F i g u r e 1, t h e M o f f i t t p l o t of t h e O R D d a t a f r o m 600 to 300 ιημ does n o t differ s i g n i f i c a n t l y w i t h K C 1 c o n c e n t r a t i o n .
T h e data in
λ -λ| 2
Figure 1.
Moffitt plot of optical rotatory dispersion of paramyosin from 600 to 300 ra/z at 24° and 20°C., respectively Ο 0.6M KCl, 0.01M phosphate buffer, pH 7.2 A 0.3M KCl, 0.01M phosphate buffer, pH 7.4 λ = 212 τημ 0
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
13.
RIDDIFORD
173
Paramyosin
λ -λ| 2
Figure 2. MoffiU plot of optical rotatory dispersion of paramyosin in 0.6M KCl, Ό.01Μ phosphate buffer, pH 7.2, from 600 to 240 my.
at 24°C λο
=
218 mμ
0 . 3 M K C l were o b t a i n e d o n a R u d o l p h m o d e l 200 p o l a r i m e t e r as described b y R i d d i f o r d a n d S c h e r a g a (48) a n d are t h e same as s h o w n i n F i g u r e 2 of that paper;
t h e y h a v e been r e c a l c u l a t e d t o i n c o r p o r a t e t h e c o r r e c t i o n for
t h e d i s p e r s i o n of r e f r a c t i v e i n d e x of w a t e r (16).
T h e best λ for these d a t a β
i n 0 . 3 M K C l is 215 ιημ, b u t t h e p o i n t s o n t h e figure are those c a l c u l a t e d with λ
0
as 212 ηΐμ since t h a t is t h e best v a l u e for t h e m o r e a c c u r a t e C a r y
d a t a i n 0 . 6 M K C l (the circles) for w h i c h t h e l i n e s h o w n is c o m p u t e d . W h e n t h e d a t a f r o m 300 to 240 ηΐμ are a d d e d , t h e t y p i c a l M o f f i t t p l o t for t h e n a t i v e p r o t e i n i n 0 . 6 M K C l is seen i n F i g u r e 2.
T h e best λ is n o w 0
f o u n d t o be 218 ηΐμ, b u t t h e d e v i a t i o n s f r o m t h e p l o t t e d l i n e (negative a b o v e 275 ηΐμ a n d p o s i t i v e below) are greater t h a n seen i n p l o t s for t h e t w o s e p a r a t e d regions ( F i g u r e s 1 a n d 3). F i g u r e 3 shows t y p i c a l M o f f i t t p l o t s for t h e n a t i v e a n d t h e 7M G - H C 1 d e n a t u r e d p r o t e i n i n t h e 240- to 315-ηΐμ region where λ is 220 ιημ. 0
I n this
w a v e l e n g t h range t h e D r u d e p l o t for t h e n a t i v e p r o t e i n appears l i n e a r a l t h o u g h the statistical analysis indicates m u c h larger standard deviations for t h e slope a n d t h e i n t e r c e p t , especially t h e l a t t e r [nearly t e n t i m e s as great as for t h e r a n d o m f o r m of t h e p r o t e i n (46)].
A l s o , X and the D r u d e c
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
174
O R D E R E D FLUIDS A N D LIQUID CRYSTALS
c o n s t a n t o b t a i n e d f r o m a L o w r y p l o t of t h e same d a t a for t h e n a t i v e p r o t e i n do n o t agree. a b o u t 2 5 % less.
X is o n l y a b o u t 8 ιημ l a r g e r , b u t t h e D r u d e c o n s t a n t is c
T a b l e I gives t h e p e r t i n e n t M o f f i t t a n d D r u d e p a r a m e t e r s
a n d t h e i r s t a n d a r d d e v i a t i o n s for these t h r e e ranges as w e l l as t h e v a l u e s of [m'] 32 a n d [m']i9 .5 (the t r o u g h a n d t h e m a x i m u m of t h e h e l i c a l C o t t o n effect, 2
8
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
respectively).
Figure 3.
Moffitt plots of optical rotatory dispersion of paramyosin from 315 to 240 mμ at at 22°C. (46)
Ο 0.6M KCl, 0.01M phosphate buffer, pH 7.3 • 7M guanidine-HCl (prepared with 0.6M KCl, 0.01M phosphate buffer, pH λ = 220 mμ
7.3)
0
T h e h e l i x - c o i l t r a n s i t i o n of p a r a m y o s i n as a f u n c t i o n of G - H C 1 c o n c e n t r a t i o n occurs i n three d i s t i n c t steps as m e a s u r e d b y [m'] 32 or b or a 0
2
(for either w a v e l e n g t h region) (46).
0
F i g u r e 4 shows these t r a n s i t i o n s of
ΝΊ232 (open s y m b o l s , s o l i d curve) as a f u n c t i o n of G - H C 1 c o n c e n t r a t i o n a n d also shows t h a t t h e D r u d e p a r a m e t e r X (for t h e 240- t o 315-ηΐμ range) c
(closed s y m b o l s , dashed curve) is n o t as sensitive t o these changes.
No
d i s t i n c t t r a n s i t i o n i n X coincides w i t h t h e first t r a n s i t i o n i n [m'] 32, a n d o n l y c
2
a s m a l l t r a n s i t i o n i n X is e v i d e n t i n t h e second step. c
T h e sharper t r a n s i
t i o n i n X coincides w i t h t h e t h i r d a n d final t r a n s i t i o n i n d i c a t e d b y [ra'] 3 c
2
2
a n d occurs as t h e molecule becomes less t h a n 3 0 % h e l i c a l a n d t h e rigorous s t a t i s t i c a l d e f i n i t i o n of t h e best X (67) ceases to h o l d . 0
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
13.
RIDDIFORD
175
Paramyosin
MOLARITY
Figure 4-
GUANIDINE-HCI
Reduced mean residue rotation and \ as a function of guanidine-HCl concentration at 25°C. c
Open symbols and left-hand ordinate. 232^μ minimum of helical Cotton effect (46) Solid symbols and right-hand ordinate. \ of one-term Drude equation for 315- to 240^μ range Triangles and circles indicate two different stock solutions c
Discussion M i z u k a m i (38) has s h o w n t h a t p a r a m y o s i n is a m i x t u r e of m o n o m e r s a n d d i m e r s (monomeric m o l e c u l a r w e i g h t 206,000) a t Γ / 2 = 0.25, p H 7.8, a n d of m o n o m e r s , d i m e r s , a n d t r i m e r s a t Γ / 2 = 0.4, p H 7.2, b u t is solely i n i t s m o n o m e r i c c o n d i t i o n a t Γ / 2 = 0.6, p H 7.2, as also f o u n d b y L o w e y , K u c e r a , a n d H o l t z e r (36).
T h e r e f o r e , t h e m o l e c u l a r w e i g h t of 330,000 o b
t a i n e d b y R i d d i f o r d a n d S c h e r a g a (47) a t Γ / 2 = 0.3, p H 7.4, is p r e s u m a b l y i n d i c a t i v e of a m i x t u r e of m o n o m e r s a n d d i m e r s .
Y e t , there is n o signifi
cant difference i n t h e v a l u e s of t h e M o f f i t t p a r a m e t e r s i n t h e v i s i b l e w a v e l e n g t h range (see F i g u r e 1 a n d T a b l e I) for these t w o states of aggregation. S c h u s t e r (55) h a s r e c e n t l y f o u n d for h e l i c a l P G A t h a t b is r e l a t i v e l y i n 0
sensitive t o t h e state of aggregation whereas a changes. 0
Perhaps the ag
g r e g a t i o n is m o r e extended i n his case. A l t h o u g h aggregation is n o t t h e same as s u p e r c o i l i n g , t h e r e l a t i v e i n s e n s i t i v i t y of t h e M o f f i t t p a r a m e t e r , b , t o aggregation of helices leads one Q
to suspect t h a t s u p e r c o i l i n g of t w o helices as occurs i n n a t i v e p a r a m y o s i n also w i l l h a v e l i t t l e effect o n this p a r a m e t e r .
Supercoiling m a y have a n
effect u p o n t h e specific r o t a t i o n a t one w a v e l e n g t h , p a r t i c u l a r l y t h e r o t a t i o n a t t h e t r o u g h of t h e h e l i c a l C o t t o n effect a t 233 ιημ. t h e difference i n
[ra'] 32 2
F o r paramyosin,
between t h e h e l i c a l a n d r a n d o m c o n f o r m a t i o n s is
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
176
ORDERED
FLUIDS AND
LIQUID
CRYSTALS
- 1 3 , 3 0 0 ° (46), w h i c h is s l i g h t l y less t h a n t h e v a l u e s for P G A of - 1 4 , 0 0 0 ° t o - 1 4 , 5 0 0 ° f o u n d b y v a r i o u s w o r k e r s (25, 26, 51, 68). Whether this de crease is caused b y s u p e r c o i l i n g or b y specific side chains a n d / o r t h e i r i n t e r actions w i t h i n t h e molecule is n o t k n o w n . O p t i c a l l y a c t i v e t r a n s i t i o n s of t h e a r o m a t i c chromophores of p h e n y l a l a n i n e , t y r o s i n e , t r y p t o p h a n , a n d h i s t i d i n e occur i n t h e 210- t o 230-ηΐμ r e g i o n as w e l l as i n t h e 250- t o 300-ηΐμ region (6, 7, 17, 18, 49). T h e r a n d o m i n c o r p o r a t i o n of as l i t t l e as 5 % t y r o s i n e or p h e n y l a l a n i n e i n t o P G A decreases t h e absolute m a g n i t u d e of N'] 33 (17, 51), a p p a r e n t l y a result of s u c h a r o m a t i c t r a n s i t i o n s . R o s e n b e r g (49) suggests t h a t these a r o m a t i c effects w i l l generally be a c c o m m o d a t e d i n t h e M o f f i t t p a r a m e t e r a unless v e r y large, i n w h i c h case t h e y w i l l d r a s t i c a l l y change λ , as is observed i n n a t i v e carbonic a n h y d r a s e (3, 49), where a r o m a t i c C o t t o n effects w h i c h are observable i n t h e 260- t o 300-ηΐμ region (3, 13, 41, 49) a p p a r e n t l y d o m i n a t e t h e f a r - u l t r a v i o l e t O R D (49).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
2
0
0
bo
Figure 5. Reduced mean rotation and a as a function of the Moffitt parameter, b , for the entire Mix-coil transition of paramyosin in guanidine-HCl at 25°C. (46) Open symboh and left-hand ordinate. 232-mp minimum of helical Cotton effect Solid symbols and right-hand ordinate. Moffitt parameter a Moffitt parameters calculated from optical rotatory dispersion data from 315 to 240 mp using \ = 220 mμ 0
0
Q
0
F o r p a r a m y o s i n [m'] 32 a n d t h e M o f f i t t p a r a m e t e r s a a n d b are colinear for the entire h e l i x - c o i l t r a n s i t i o n (see F i g u r e 5), b u t since b represents a n a v e r a g i n g of r o t a t o r y c o n t r i b u t i o n s at m a n y w a v e l e n g t h s a n d is r e l a t i v e l y insensitive t o t h e e n v i r o n m e n t , i t is t h e preferable p a r a m e t e r for t h e es t i m a t i o n of h e l i x content. A s seen for t h e h e l i c a l p o l y p e p t i d e s (33, 61, 62), t h e extension of t h e M o f f i t t p l o t t o 240 ιημ for p a r a m y o s i n changes t h e best v a l u e of λ t o 218 2
0
0
0
0
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
13.
177
Paramyosin
RIDDIFORD
ηΐμ [(20, Ifi), see also T a b l e I]. Y e t t h i s v a l u e of λ does n o t g i v e p e r f e c t l y l i n e a r plots [Figure 2, (61, 62)] w h i c h are f o u n d if t h e w a v e l e n g t h range is s p l i t i n t o t w o separate regions (600 t o 300 ηΐμ a n d 315 t o 240 ηΐμ) (62) (see F i g u r e s 1 a n d 3). S i n c e t h e h e l i c a l p e p t i d e t r a n s i t i o n s d o m i n a t e t h e d i s p e r s i o n b e l o w 300 ιημ [native p a r a m y o s i n becomes m o r e l e v o r o t a t o r y t h a n t h e u n f o l d e d p r o t e i n a b o u t 310 ιημ (see F i g u r e 3)], a q u e s t i o n has been raised a b o u t t h e v a l i d i t y of u s i n g t h e M o f f i t t e q u a t i o n i n t h i s region (53, 57). Schecter a n d B l o u t (52) proposed t h e t w o - t e r m D r u d e e q u a t i o n as a b e t t e r m e t h o d for a n a l y z i n g O R D d a t a f r o m 700 t o 275 ιημ. T h i s t w o t e r m D r u d e a p p r o a c h gives n e a r l y t h e same estimates of h e l i x content for t h e v a r i o u s p o l y p e p t i d e s a n d for p a r a m y o s i n (52, 53) as does t h e M o f f i t t t r e a t m e n t . T h e s m a l l m a g n i t u d e of F at t h e m a x i m u m of F for t h e 315t o 240-ιημ range (46) shows t h a t the M o f f i t t e q u a t i o n is adequate to fit t h e O R D d a t a for a f u l l y h e l i c a l p r o t e i n molecule f r o m 300 t o 240 ιημ ( i n t h e absence of a n y observable C o t t o n effects i n t h i s region), as U r n e s (61, 62) has p r e v i o u s l y f o u n d for t h e p o l y p e p t i d e s P G A , P T G A , a n d P A L G A .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
0
Q
T h e s t a t i s t i c a l c r i t e r i a for t h e best λ (a m a x i m u m i n F a n d a m i n i m u m i n F at t h e same w a v e l e n g t h ) f a i l w h e n p a r a m y o s i n becomes less t h a n 3 0 % h e l i c a l (46)—i.e., a b o v e 5 . 5 M G - H C 1 — w h i c h as expected (57) is precisely t h e p o i n t at w h i c h the o n e - t e r m D r u d e e q u a t i o n becomes sufficient t o describe t h e d a t a . T h e v a l u e of X begins t o decrease r a p i d l y ( F i g u r e 4 ) , a n d t h e s t a n d a r d d e v i a t i o n s i n t h e slope a n d i n t e r c e p t of t h e D r u d e p l o t decrease t o those c h a r a c t e r i s t i c of a r i g o r o u s l y l i n e a r p l o t ( e q u a l t o those f o u n d for the r a n d o m coil). T h e a p p a r e n t l i n e a r i t y of t h e D r u d e p l o t for the n a t i v e h e l i c a l p r o t e i n i n t h e 315- t o 240-ηΐμ range c a n be m i s l e a d i n g . A s seen i n F i g u r e 4, \ shows o n l y t w o steps of t h e three-step h e l i x - c o i l t r a n s i t i o n i n d i c a t e d b y [ra'] (or b y a or b , F i g u r e 5). F u r t h e r m o r e , if \ is u s e d t o e s t i m a t e h e l i x c o n t e n t (67), there is a great d i s c r e p a n c y w i t h estimates based o n either [m'] or b . F o r example, at 4 M G - H C 1 , t h e X e s t i m a t e gives 8 0 % h e l i x whereas either [m'] or b estimates g i v e a b o u t 3 5 % h e l i x . T h i s d i s c r e p a n c y is consistent w i t h t h e s t a t i s t i c a l i n d i c a t i o n of n o n l i n e a r i t y of t h e D r u d e p l o t since \ has no m e a n i n g if t h e p l o t is n o t linear. 0
Q
c
c
0
232
0
c
0
232
c
232
0
c
T h e M o f f i t t t r e a t m e n t r e m a i n s v a l i d where the o n e - t e r m D r u d e e q u a t i o n is sufficient if λ is k e p t c o n s t a n t (63). 0
T h e r e f o r e , i n t h e case of t h e
d e n a t u r e d h e l i c a l p r o t e i n o r of t h e n a t i v e g l o b u l a r p r o t e i n w i t h l o w h e l i x c o n t e n t , λ s h o u l d be m a i n t a i n e d at t h e v a l u e f o u n d for t h e h e l i c a l p o l y 0
peptides a n d for p a r a m y o s i n — λ (46, 61, 62) a n d λ
0
= 220 ιημ i n t h e 240- t o 315- ιημ range
= 212 ηΐμ i n t h e 300- to 600-ηΐμ range (46, 63).
0
Hence,
b c a n r e a d i l y be u s e d as a measure of h e l i c a l content a c c o r d i n g t o E q u a t i o n 0
3. f
_ bp ( n a t i v e protein) — b (unfolded protein) b (α-helix) — b ( r a n d o m coil) 0
Q
0
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
(3)
178
ORDERED FLUIDS AND LIQUID CRYSTALS
As seen in Table I, b in the lower wavelength range is —343° for the native protein and + 2 0 ° for the denatured protein. Therefore, using myo globin as an example, the value of —250° obtained by Harrison and Blout (21) gives 74% helix, and the value of —266°, corrected for the Soret Cotton effect, obtained by Urnes (61, 62) gives 79% helix. These two values agree well with the 77% amide bonds in helical array from the x-ray analysis of the myoglobin crystal (31) and also with the values of 73% and 77% helix, respectively, based on the polypeptide models (an average of the values for P G A , P T G A , and P A L G A ) (61, 62). Thus, in spite of the apparent lack of complete randomness and the possible effects of supercoiling on optical activity, paramyosin seems to be a satisfactory model upon which to base estimates of helical contents of proteins.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
Q
Acknowledgment
t
I thank Judy Campbell for her technical assistance, Peter Urnes for many enlightening discussions and his criticisms of this manuscript, and John Edsall for his critical appraisal of the manuscript. For use of the Cary 60 spectropolarimeter I thank Paul Doty and the Harvard Chemistry Department. Literature
Cited
(1) Allis, J., Ferry, J., J. Am. Chem. Soc. 87, 4681 (1965). (2) Allis, J., Ferry, J., Proc. Natl. Acad. Sci. U. S. 54, 369 (1965). (3) Armstrong, J., Myers, D. V., Verpoorte, J. Α., Edsall, J. T., J. Biol. Chem. 241, 5137 (1966). (4) Bear, R. S., J. Am. Chem. Soc. 66, 2043 (1944). (5) Bear, R. S., Selby, C., J. Biophys. Biochem. Cytol. 2, 55 (1956). (6) Beychok, S., Fasman, G., Biochemistry 3, 1675 (1964). (7) Beychok, S., Pflumm, M . N . , Lehman, J. E., J. Am. Chem. Soc. 87, 3990 (1965). (8) Blout, E. R., Schmier, I., Simmons, N. S., J. Am. Chem. Soc. 84, 3193 (1962). (9) Brant, D. Α., Flory, P. J., J. Am. Chem. Soc. 87, 2788, 2791 (1965). (10) Cohen, C., Holmes, K . C., J. Mol. Biol. 6, 423 (1963). (11) Cohen,C.,Szent-Györgyi, A. G., "Fourth International Congress of Biochemistry," Vol. 8, "Proteins," p. 108, Pergamon Press, London, 1960. (12) Cohen, C., Szent-Györgyi, A. G., J. Am. Chem. Soc. 79, 248 (1957). (13) Coleman, J. E., Biochemistry 4, 2644 (1965). (14) Crick, F. C., Acta Cryst. 6, 639 (1953). (15) Crick, F. C., Nature 170, 882 (1952). (16) Fasman, G., "Methods in Enzymology," Vol. 6, p. 928, Academic Press, New York, 1963. (17) Fasman, G., Bodenheimer, E., Lindblow, C., Biochemistry 3, 1665 (1964). (18) Fasman, G., Landsberg, M . , Buchwald, M., Can. J. Chem. 43, 1588 (1965). (19) Friedman, E., Gill, T. J., Doty, P., J. Am. Chem. Soc. 84, 3485 (1962). (20) Harrap, B. S., private communication, 1960. (21) Harrison, S. C., Blout, E . R., J. Biol. Chem. 240, 299 (1965). (22) Hodge, Α., Proc. Natl. Acad. Sci. U. S. 38, 850 (1952). (23) Hodge, A. J., Rev. Mod. Phys. 34, 409 (1959). (24) Holzwarth, G., Doty, P., J. Am. Chem. Soc. 87, 218 (1965). (25) Iizuka, E., Yang, J. T., Biochemistry 4, 1249 (1965). (26) Jirgensons, B., J. Biol. Chem. 240, 1064 (1965).
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 15, 2015 | http://pubs.acs.org Publication Date: January 1, 1967 | doi: 10.1021/ba-1967-0063.ch013
13.
RIDDIFORD
Paramyosin
179
(27) Katchalski, E., Sela, M., Silman, H . I., Berger, Α., "The Proteins," 2nd ed., Vol. 2, p. 405, Academic Press, New York, 1964. (28) Kay, C. M., Biochim. Biophys. Acta 27, 469 (1958). (29) Kay, C. M., Bailey, K., Biochim. Biophys. Acta. 31, 20 (1959). (30) Kay, C. M . , Smillie, L. B., "Biochemistry of Muscle Contraction," p. 379, Little Brown, Boston, 1964. (31) Kendrew, J. C., Watson, H . C., Strandberg, Β. E., Dickerson, R. E., Phillips, B. C., Shore, V. C., Nature 190, 666 (1961). (32) Kominz, D. R., Saad, F., Laki, K., "Proceedings of Conference on Chemistry of Muscular Contraction," p. 66, Igaku Shoin, Osaka, Japan, 1957. (33) Leonard, W. J., Jr., Foster, J. F., J. Mol. Biol. 7, 590 (1963). (34) Lowey, S., J. Biol. Chem. 240, 2421 (1965). (35) Lowey, S., Cohen, C., J. Mol. Biol. 4, 293 (1962). (36) Lowey, S., Kucera, J., Holtzer, Α., J. Mol. Biol. 7, 234 (1963). (37) McDiarmid, R. S., Ph.D. thesis, Harvard University, Cambridge, 1965. (38) Mizukami, H., Ph.D. thesis, University of Illinois, Urbana, 1963. (39) Moffitt, W., J. Chem. Phys. 25, 467 (1956). (40) Moffitt, W., Yang, J. T., Proc. Natl. Acad. Sci. U. S. 42, 597 (1956). (41) Myers, D. V., Edsall, J. T., Proc. Natl. Acad. Sci. U. S. 53, 169 (1965). (42) Noelken, M . , Ph. D. thesis, Washington University, St. Louis, 1962. (43) Noelken, M., Holtzer, Α., "Biochemistry of Muscle Contraction," p. 374, Little, Brown, Boston, 1964. (44) Pauling, L., Corey, R. J., Nature 171, 59 (1953). (45) Ramakrishnan, C., Ramachandran, G. N., Biophys. J. 5, 909 (1965). (46) Riddiford, L. M., J. Biol. Chem. 241, 2792 (1966). (47) Riddiford, L. M . , Scheraga, Η. Α., Biochemistry 1, 95 (1962). (48) Ibid., p. 108. (49) Rosenberg, Α., J. Biol. Chem. 241, 5119, 5126 (1966). (50) Rosenheck, K., Doty, P., Proc. Natl. Acad. Sci. U. S. 47, 1775 (1961). (51) Sage, H. J., Fasman, G., Biochemistry 5, 286 (1966). (52) Schechter, E., Blout, E. R., Proc. Natl. Acad. Sci. U. S. 51, 695 (1964). (53) Schechter, E., Carver, J. P., Blout, E. R., Proc. Natl. Acad. Sci. U. S. 51, 1029 (1964). (54) Schellman, J. Α., Schellman, C. G., "The Proteins," 2nd ed., Vol. 2, p. 1, Academic Press, New York, 1964. (55) Schuster, T. M., Biopolymers 3, 681 (1965). (56) Simmons, N. S., Cohen, C., Szent-Györgyi, A. G., Wetlaufer, D. B., Blout, E. R., J. Am. Chem. Soc. 83, 4766 (1961). (57) Sogami, M . , Leonard, W. J., Jr., Foster, J. F., Arch. Biochem. Biophys. 100, 260 (1963). (58) Szent-Györgyi, A. G., Cohen, C., Science 126, 697 (1957). (59) Szent-Györgyi, A. G., Cohen, C., Philpott, D. E., J. Mol. Biol. 2, 133 (1960). (60) Tsao, T., Kung, T., Peng, C., Chang, Y., Tsou, Y., Sci. Sinica 14, 91 (1965). (61) Urnes, P., J. Gen. Physiol. 49, 75 (1965). (62) Urnes, P., Ph.D. thesis, Harvard University, Cambridge, 1963. (63) Urnes, P., Doty, P., Advan. Protein Chem. 16, 401 (1961). (64) Wilchek, M., Said, S., Patchornik, B., Biochim. Biophys. Acta 104, 616 (1965). (65) Woods, E . F., Nature 207, 82 (1965). (66) Yang, J. T., Proc. Natl. Acad. Sci. U. S. 53, 438 (1965). (67) Yang, J. T., Doty, P., J. Am. Chem. Soc. 79, 761 (1957). (68) Yang, J. T., McCabe, W., Biopolymers 3, 109 (1965). RECEIVED March 1, 1966. Supported by National Science Foundation Grant GB-3748
In Ordered Fluids and Liquid Crystals; Porter, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.