Chapter 13
Particle Separation and Size Characterization by Sedimentation Field-Flow Fractionation 1
1
1
J. Calvin Giddings, Marcus N. Myers , Myeong Hee Moon , and Bhajendra N. Barman Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
2
1
Field-Flow Fractionation Research Center, Department of Chemistry, University of Utah, Salt Lake City, UT 84112 FFFractionation, Inc., P.O. Box 58718, Salt Lake City, UT 84158-0718
2
This chapter provides, first, an overview of particle characterization by field-flow fractionation (FFF) and describes how FFF works, the applicable size range, the properties that can be characterized, and the underlying theory. Second, a number of applications of sedimentation FFF are shown to illustrate the applicability of this FFF technique to diverse particulate materials in both submicron and supramicron size ranges. The materials examined include uniform and broad latex populations, dense inorganic and metallic particles, elongated Teflon particles, and plate-like clay particles. It is shown that self-consistent particle size distributions can be obtained under different experimental conditions and that narrow fractions can be collected and further examined and characterized by microscopy or other means. The high speed of steric FFF is illustrated by a one minute run of 3-15 µm copper particles.
F i e l d - f l o w fractionation ( F F F ) is a family o f separation methods i n w h i c h p a r t i c l e s w i t h d i f f e r e n t p r o p e r t i e s are e l u t e d f r o m the t h i n F F F flow c h a n n e l at d i f f e r e n t t i m e s a n d t h e i r r e l a t i v e a m o u n t s r e c o r d e d ( 1 - 5 ) . T h e p r o p e r t i e s that c o n t r o l e l u t i o n t i m e s d e p e n d o n the F F F s u b t e c h n i q u e utilized: p a r t i c l e s i z e i n the case o f flow F F F , mass a n d d e n s i t y f o r sedimentation F F F , sedimentation coefficients for c y c l i c a l - f i e l d F F F , etc. In e a c h case the c o n c e n t r a t i o n v e r s u s e l u t i o n t i m e c u r v e c a n b e c o n verted into a property distribution curve: mass d i s t r i b u t i o n , size d i s t r i bution, sedimentation coefficient distribution, etc. Because F F F is capable o f y i e l d i n g so m a n y k i n d s o f i n f o r m a t i o n o n s o m a n y categories o f p a r t i c l e s a n d d o i n g these t a s k s b o t h flexibly and with high resolution, the F F F f a m i l y h a s e m e r g e d as t h e m o s t v e r s a t i l e a n d e f f e c t i v e s i n g l e m e t h o d ology available for detailed particle characterization. F o r highly complex c o l l o i d s , fractions c a n be collected and further characterized b y electron m i c r o s c o p y , elemental analysis, and other complementary techniques. 0097-6156/91/0472-0198$06.00/0 © 1991 American Chemical Society
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
13.
GIDDINGS ET AL.
Sedimentation
Field-Flow
199
Fractionation
F o r p e r s p e c t i v e , it is u s e f u l to d e s c r i b e the range o f a p p l i c a b i l i t y o f FFF. A t the s m a l l diameter end o f the s p e c t r u m , w e have a p p l i e d flow F F F to p a r t i c l e s (e.g., g l o b u l a r proteins) as s m a l l as 0.005 u m (5 n m ) and b e l o w . A t the l a r g e d i a m e t e r e x t r e m e , s e d i m e n t a t i o n F F F o p e r a t i n g i n the s t e r i c m o d e has been a p p l i e d i n o u r laboratories to p a r t i c l e s u p to 5 0 0 u m (0.5 m m ) i n diameter. T h e total mass range c o v e r e d is o v e r 1 0 . Applications h a v e been m a d e t h r o u g h o u t t h i s range. W h i l e m o s t w o r k has been d o n e w i t h aqueous s u s p e n s i o n s o f p a r t i c l e s , w e h a v e a p p l i e d s e d i m e n t a t i o n F F F to n o n a q u e o u s suspensions as w e l l (&). (Nonaqueous sedimentation F F F w o r k has also been reported by Y o n k e r et a l . (1).) M o r e r e c e n t l y , w e have d e m o n s t r a t e d that t h e r m a l F F F is a p p l i c a b l e to v a r i o u s c a t e g o r i e s of particles suspended i n organic l i q u i d s (&).
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
1 5
T h e p a r t i c u l a t e m a t e r i a l s that h a v e been s u b j e c t e d to F F F a n a l y s i s h a v e n o w i n v o l v e d w o r k i n so m a n y l a b o r a t o r i e s , b o t h a c a d e m i c a n d i n d u s t r i a l , that they cannot be c o m p i l e d w i t h o u t s e r i o u s o m i s s i o n s . While m o s t o f the a n a l y z e d m a t e r i a l s are i n d u s t r i a l i n t e r m e d i a t e s o r p r o d u c t s , m a n y o f t h e m p r o p r i e t a r y , there have been m a n y a p p l i c a t i o n s o f F F F to b i o l o g i c a l and environmental materials. T h e p a r t i c l e s range f r o m h i g h d e n s i t y m e t a l a n d l o w d e n s i t y latex m i c r o s p h e r e s to v a r i o u s " s o f t " a n d h i g h l y d e f o r m a b l e p a r t i c l e s s u c h as those c o n s t i t u t i n g e m u l s i o n s , b i o l o g i cal cells, and liposomes. A l i s t i n g o f m a n y o f the p a r t i c u l a t e m a t e r i a l s s t u d i e d by F F F i n o u r l a b o r a t o r i e s , as s h o w n i n T a b l e I , is suggestive o f the b r o a d scope o f the m e t h o d o l o g y . (Polymers, analyzed by thermal and flow F F F , are not l i s t e d i n this table.)
Principles of FFF F i e l d - f l o w fractionation is generally carried out i n a ribbon shaped c h a n n e l o n l y a f e w h u n d r e d u m t h i c k and 0.25-1 m i n l e n g t h . The channel contains no packing material. A c c o r d i n g l y , flow t h r o u g h the channel is even and predictable, assuming a parabolic flow profile b e t w e e n the t w o m a j o r c h a n n e l faces (see F i g u r e 1). The velocity of p a r a b o l i c flow approaches z e r o at both w a l l s and reaches a m a x i m u m at the m i d p o i n t b e t w e e n the w a l l s . T h e essence o f F F F is to apply a f i e l d o r gradient across the t h i n d i m e n s i o n o f the c h a n n e l p e r p e n d i c u l a r to flow s u c h that it w i l l d r i v e entrained particles into particular cross sectional positions or d i s t r i b u t i o n s w i t h i n the c h a n n e l . P a r t i c l e s d r i v e n c l o s e to a w a l l w i l l be d i s p l a c e d v e r y s l o w l y b y flow because o f the l o w flow v e l o c i t y n e a r the b o u n d i n g surfaces as s h o w n i n F i g u r e 1 (&). P a r t i c l e s p o s i t i o n e d f u r t h e r f r o m the w a l l are d i s p l a c e d m o r e r a p i d l y . B e c a u s e the a p p l i e d f i e l d causes d i f f e r e n t p a r t i c l e p o p u l a t i o n s to a c c u m u l a t e i n d i f f e r e n t d i s t r i b u t i o n s , t h e y are s w e p t a l o n g at d i f f e r e n t m e a n v e l o c i t i e s . W i t h u n e q u a l v e l o c i t i e s , the p o p u l a t i o n s m i g r a t e d i f f e r e n t i a l l y a n d are t h u s separated (2JDThe field most w i d e l y used for F F F particle characterization is sedimentation (hence sedimentation F F F ) . W h i l e g r a v i t y has h a d l i m i t e d use f o r p a r t i c l e s o v e r 1 u m i n d i a m e t e r ( 1 0 ) . the s e d i m e n t a t i o n f o r c e s are u s u a l l y generated i n a c e n t r i f u g e c u s t o m d e s i g n e d f o r F F F w o r k . H e r e the F F F c h a n n e l , rather t h a n h a v i n g a flat c o n f i g u r a t i o n as s u g g e s t e d i n F i g u r e 1, e n c i r c l e s the a x i s o f r o t a t i o n l i k e a r o t a t i n g b e l t , h e l d i n p l a c e i n a s p e c i a l l y d e s i g n e d basket. R o t a t i n g seals are used to b r i n g the l i q u i d stream i n t o a n d out o f the c h a n n e l . F o l l o w i n g s e p a r a t i o n , the p a r t i c l e s are
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
200
P A R T I C L E S I Z E D I S T R I B U T I O N II
Table I.
Some Particles Characterized by F F F Methods i n F F F R C and F F F r a c t i o n a t i o n L a b o r a t o r i e s *
latex polystyrene (s,f) polyvinylchloride (s) polybutadiene (s) polyurethane (s) polymethylmethacrylate(PMMA) styrene-butadiene (s) grafted polybutadience - P M M A vinyltoluene t-butadiene (s) e p o x y - a c r y l i c latex (s) emulsions s o y b e a n o i l (s) s a f f l o w e r o i l (s) perfluorocarbon m i l k (s) liposomes (s)
(s) (s)
(s)
environmental fly ash (s) coal liquefaction residue ground coal (f) c o a l dust (s) w a t e r b o r n e c o l l o i d s (s) d i e s e l soot (s) p o l l e n g r a i n s (f)
(s)
• L e t t e r s s a n d f i n parentheses methods, respectively.
represent
inorganic g o l d (s) copper (s) silver (s) palladium (s) selenium (s) nickel (s) g l a s s beads (s,f) silica (s,f) hematite (s) T e f l o n (s) c l a y (s) limestone (0 zirconia (s) paint pigments (s,f) biological red b l o o d c e l l s (s,f) w h i t e b l o o d c e l l s (s,f) H e L a c e l l s (s) yeast c e l l s (s) h u m a n l e n s p a r t i c l e s (s) albumin microspheres (s) c a s e i n p a r t i c l e s (s) viruses ( T 2 , Q P , P B C V , T 4 D , P 2 2 ) (s,f) g y p s y m o t h N P v i r u s (s) mitochondria (s) lysosomes (s) sedimentation F F F and
flow
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
FFF
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
13.
GIDDINGS ETA L .
Sedimentation Field-Flow Fractionation
201
Figure 1. Structure of thin F F F channel (upper) and an enlarged edge view (lower) showing the different distributions of two particulate species A and B that are undergoing differential migration and separation in the channel. (Reproduced with permission from Ref. 9. Copyright 1989 John Wiley & Sons.)
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
202
P A R T I C L E S I Z E D I S T R I B U T I O N II
e l u t e d f r o m the c h a n n e l , t h r o u g h the s e a l s , a n d i n t o a d e t e c t o r w h e r e relative concentrations c a n be recorded. B e c a u s e o f the r a p i d l y g r o w i n g i m p o r t a n c e o f s e d i m e n t a t i o n F F F i n p a r t i c l e c h a r a c t e r i z a t i o n , the a p p l i c a t i o n s s h o w n l a t e r i n t h i s c h a p t e r w i l l be b a s e d e n t i r e l y o n t h i s F F F t e c h n i q u e . W e note that flow F F F i s also b e i n g i n c r e a s i n g l y d e v e l o p e d f o r particle analysis. I n flow F F F , a cross f l o w o f fluid m o v i n g i n a d i r e c t i o n p e r p e n d i c u l a r to the c h a n n e l flow serves as the d r i v i n g f o r c e to d i s p l a c e p a r t i c l e s across the t h i n d i m e n s i o n o f the c h a n n e l . T h e flow F F F c h a n n e l s h a v e p e r m e a b l e w a l l s to f a c i l i t a t e the c r o s s flow. T h e apparatus a n d m e t h o d o l o g y f o r t h i s " u n i v e r s a l l y " a p p l i c a b l e F F F a p p r o a c h are d e s c r i b e d m o r e completely i n an a c c o m p a n y i n g report. W e h a v e v e r y r e c e n t l y d i s c o v e r e d that the F F F s u b t e c h n i q u e of t h e r m a l F F F i s a p p l i c a b l e to p a r t i c l e s suspended i n o r g a n i c l i q u i d s . This m e t h o d , i n w h i c h a temperature g r a d i e n t serves as a d r i v i n g f o r c e f o r t r a n s v e r s e d i s p l a c e m e n t , has b e e n a p p l i e d w i d e l y to p o l y m e r a n a l y s i s i n the past. T h e device consists of a thin channel sandwiched between s p e c i a l l y c o a t e d a n d p o l i s h e d c o p p e r b l o c k s , one heated a n d one c o o l e d so that a c o n t r o l l a b l e temperature g r a d i e n t c a n be a p p l i e d a c r o s s the channel (11). O t h e r variants o f F F F exist but have been less w e l l d e v e l o p e d . One these i s c y c l i c a l - f i e l d F F F , i n w h i c h the d i r e c t i o n o f the field is c y c l e d b a c k a n d forth d u r i n g the r u n ( 1 2 ) . Separation i n c y c l i c a l - f i e l d F F F is governed m a i n l y by differences i n a transport coefficient, which, d e p e n d i n g o n the field, m i g h t be the s e d i m e n t a t i o n c o e f f i c i e n t o r the electrophoretic mobility.
of
Theory of F F F T h e r e are a n u m b e r o f different o p e r a t i n g m o d e s o f F F F , e a c h associated w i t h its o w n t h e o r y . The principal operating modes for particle analysis are n o r m a l F F F , steric F F F , h y p e r l a y e r F F F , a n d c y c l i c a l - f i e l d F F F . (Any one o f these m o d e s c a n be used w i t h a s e d i m e n t a t i o n field.) It is not o u r purpose to d e t a i l a l l o f these theories here. Instead w e w i l l d e s c r i b e i n a g e n e r a l w a y h o w the t h e o r i e s are f o r m u l a t e d a n d w h a t t h e y a c c o m p l i s h . A f e w k e y equations f o r n o r m a l a n d steric F F F w i l l be g i v e n . P r o v i d i n g the f o r c e s a c t i n g o n p a r t i c l e s are k n o w n , t r a n s p o r t i n the F F F s y s t e m i s h i g h l y p r e d i c t a b l e because o f the u n i f o r m c h a n n e l g e o m e t r y , the e v e n a p p l i c a t i o n o f the field, and the w e l l u n d e r s t o o d flow profile. T h e first o b j e c t i v e o f theory is to d e s c r i b e the v e l o c i t y a n d thus the r e t e n t i o n t i m e o f d i f f e r e n t p o p u l a t i o n s o f p a r t i c l e s m a k i n g u p the particulate sample. F o r particles distributed over different streamlines, the v e l o c i t y o f d o w n s t r e a m t r a n s p o r t c a n be c a l c u l a t e d b y a v e r a g i n g the v e l o c i t y o f p a r t i c l e s o c c u p y i n g the d i f f e r e n t s t r e a m l a m i n a e (2-4). B y a somewhat more complicated procedure, band broadening, representing the a x i a l d i s p e r s i o n o f p a r t i c l e s a n d thus h a v i n g an i m p o r t a n t b e a r i n g o n r e s o l u t i o n , c a n a l s o be c a l c u l a t e d ( 1 3 ) . F F F has been w i d e l y a p p l i e d i n the n o r m a l m o d e o f o p e r a t i o n , g e n e r a l l y a p p l i c a b l e to p a r t i c l e s o f s u b m i c r o n s i z e . H e r e the d i s t r i b u t i o n o f p a r t i c l e s r e l a t i v e to d i e a c c u m u l a t i o n w a l l o f the c h a n n e l , fixed b y the b a l a n c e b e t w e e n f i e l d - d r i v e n t r a n s p o r t t o w a r d the a c c u m u l a t i o n w a l l a n d d i f f u s i v e transport i n the o p p o s i t e d i r e c t i o n , is e x p o n e n t i a l i n nature (2-5)
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
13. G I D D I N G S E T A L .
Sedimentation Field-Flow Fractionation c(x)
—
-xAw
o>
e
w h e r e c ( x ) i s the c o n c e n t r a t i o n o f p a r t i c l e s at d i s t a n c e x a c c u m u l a t i o n w a l l , C Q is the c o n c e n t r a t i o n at the w a l l , w t h i c k n e s s , a n d X i s the retention parameter. parameter given by
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
203
The
a b o v e the i s the c h a n n e l
latter is a
dimensionless
w h e r e k T is t h e r m a l energy and F is the force exerted o n a s i n g l e p a r t i c l e b y the f i e l d . S e p a r a t i o n is based o n different l e v e l s o f f o r c e F , w h i c h l e a d to d i f f e r e n t d i s t r i b u t i o n s c ( x ) as expressed i n E q u a t i o n 1. T h e mean retention time t o f a population o f l i k e particles obtained r
by
the
above
mentioned 1 = t°
w h e r e t ° , the v o i d t i m e , m o v i n g w i t h the average s h o w n b y the a r r o w , is a F o r most fields, F p a r t i c u l a r l y p a r t i c l e mass
averaging
procedure
1 6X{coth(l/2X)-2X]
is
given
by
> J L (3)
is the t i m e needed to elute a tracer m a t e r i a l fluid velocity. T h e final part o f E q u a t i o n 3, s i m p l e f o r m approached b y t / t ° for X « 1. is a p r e d i c t a b l e f u n c t i o n o f p a r t i c l e p r o p e r t i e s , and s i z e . Thus for a sedimentation field r
Ap F =m ^ G or
( 4 )
equivalently
F =l*d ApG 3
where Ap
m
is the
particle mass, d
i s the p a r t i c l e density (p ) p
i s the e f f e c t i v e
( 5 )
spherical particle
less the c a r r i e r density (p),
diameter,
and G is the
acceleration. F o r flow F F F , F is g i v e n b y F = 370id U
(6)
s
w h e r e r\ is v i s c o s i t y , U is the v e l o c i t y o f cross f l o w , and d diameter.
s
i s the Stokes
T h e a b o v e force e q u a t i o n s , used i n c o n j u n c t i o n w i t h eqs 2 a n d 3, p r o v i d e a d i r e c t t h e o r e t i c a l l i n k b e t w e e n p a r t i c l e p r o p e r t i e s ( s u c h as m , d , d , and A p ) and retention t i m e t . T h u s m e a s u r e d r e t e n t i o n t i m e s c a n be u s e d to c a l c u l a t e r e l e v a n t p r o p e r t i e s . The observed distribution of r e t e n t i o n t i m e s , r e p r e s e n t e d by the r e c o r d e d e l u t i o n p r o f i l e o r f r a c t o g r a m , c a n then be u s e d to o b t a i n p r o p e r t y d i s t r i b u t i o n s , s u c h as the s
r
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
204
P A R T I C L E S I Z E D I S T R I B U T I O N II
particle size distribution ( P S D ) . P a r t i c l e d e n s i t i e s c a n also b e o b t a i n e d b y sedimentation F F F . F o r steric a n d h y p e r l a y e r F F F , a p p l i c a b l e p r i m a r i l y t o p a r t i c l e s over 1 u m i n diameter, t is given by ( 1 4 ) r
l
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
w h e r e y i s the steric c o r r e c t i o n F F F , y > 2.
=
_w_
factor.
(7)
F o r steric F F F , y < 2 ; f o r h y p e r l a y e r
Experimental T h e e x p e r i m e n t s r e p o r t e d here w e r e c a r r i e d o u t o n s e v e r a l d i f f e r e n t ( b u t c l o s e l y related) s e d i m e n t a t i o n F F F d e v i c e s . T h e apparatus f o r s y s t e m s I and II i s the m o d e l S 1 0 1 c o l l o i d / p a r t i c l e f r a c t i o n a t o r f r o m F F F r a c t i o n a t i o n , Inc. (Salt L a k e C i t y , U T ) . S y s t e m s I I I , I V , a n d V are research d e v i c e s used i n the F i e l d - F l o w Fractionation Research Center ( F F F R C ) laboratories. I m p o r t a n t features a n d e s s e n t i a l c o m p o n e n t s o f these s y s t e m s a r e provided i n Table II. F o r a l l runs, s m a l l (sub-milligram) samples i n s u s p e n s i o n w e r e i n j e c t e d i n t o a n a q u e o u s c a r r i e r stream that enters a n d f l o w s t h r o u g h the c h a n n e l . D e t e c t i o n i n a l l systems i s b a s e d o n l i g h t s c a t t e r i n g o f the e m e r g i n g c o m p o n e n t s w i t h i n t h e flow c e l l o f a U V detector designed for l i q u i d chromatography. Particle size distributions were obtained from F F F r a c t i o n a t i o n and F F F R C software. T h e runs s h o w n here w e r e m a d e e i t h e r at constant f i e l d strength o r u n d e r c o n d i t i o n s o f power programming, a unique form o f field programming yielding u n i f o r m f r a c t i o n a t i n g p o w e r ( I S ) . H e r e , t h e f i e l d strength G , after b e i n g h e l d constant f o r t i m e t i , decreases as the f o l l o w i n g p o w e r f u n c t i o n o f the e l a p s e d t i m e t f r o m the start o f the r u n
(8)
where
G o i s the i n i t i a l a c c e l e r a t i o n
Illustrative
and t
a
i s a constant.
Applications
F i g u r e 2 i l l u s t r a t e s the r e s o l u t i o n o f s i x p o l y s t y r e n e l a t e x p a r t i c l e s i n the d i a m e t e r range 0 . 2 0 to 0 . 8 6 u m u s i n g s y s t e m I a n d a p o w e r p r o g r a m m e d r u n w i t h parameters G o = 3 8 0 . 2 g r a v i t i e s ( 1 5 0 0 r p m ) , t i = 13 m i n , t = - 1 0 4 a
m i n , flow rate V = 6.37 m L / m i n , a n d s t o p - f l o w t i m e t f = 12 m i n . T h e aqueous carrier solution contained 0 . 0 5 % ( w / v ) sodium d o d e c y l sulfate ( S D S ) and 0 . 0 1 % ( w / v ) sodium azide. W h i l e m i x t u r e s o f n a r r o w latex standards, as r e s o l v e d i n F i g u r e 2 , are i n n o sense t y p i c a l o f i n d u s t r i a l s a m p l e s , a n attempt t o r e s o l v e s u c h standards p r o v i d e s an i m p o r t a n t r e s o l u t i o n test. E v e n for broad distributions, h i g h resolution is necessary f o r distinguishing subtle population changes, discerning bimodal and trimodal distributions, a c c u r a t e l y m e a s u r i n g the t a i l s o f a d i s t r i b u t i o n , a n d g e n e r a l l y o b t a i n i n g s
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991. standard
standard
SdFFF
type
dual
outlet
Minipuls 2 Gilson, (Middleton, WI)
Isochrom L C Spectra-Physics (San Jose, C A )
Isochrom L C Spectra-Physics, (San Jose, C A )
Data
recording
U V at 254 n m
Detectors
Pump
15.3
strip chart recorder
15.1
FFFractionation software
15.1
FFFractionation software
(cm) U V at 2 5 4 n m
radius
4.50
90.5 2.0 0.0254
III
Systems
Devices
U V at 254 n m
Channel
(mL)
4.52
volume
4.25
Void
89.4 2.0 0.0254
89.4 1.9 0.0254
tip),
C h a n n e l length (tip breadth, thickness (cm)
to
II
SdFFF
Description of S d F F F
Features/Components
T a b l e II.
standard
M o d e l L C 414 Kontron Electrolab (London, U K )
strip chart recorder
U V at 254 n m
15.75
4.20
90.0 2.0 0.0254
IV
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
slow-flow injection
Model QD-1 Fluid Metering (Oyster B a y , N Y )
strip chart recorder
U V at 350 n m
15.1
1.40
0.0127
90.0 1.0
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
206
P A R T I C L E S I Z E D I S T R I B U T I O N II
Figure 2. High resolution separation of polystyrene latex standards of indicated diameters by sedimentation FFF.
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
13. G I D D I N G S E T A L .
207
Sedimentation Field-Flow Fractionation
o t h e r d e t a i l s o f the s i z e d i s t r i b u t i o n c u r v e that m a y h a v e an i m p o r t a n t bearing on product quality. A n y m e t h o d o r i n s t r u m e n t that c a n n o t r e s o l v e c l o s e l y i n g latex standards is l i k e l y to g l o s s o v e r s i g n i f i c a n t d e t a i l s c h a r a c t e r i z i n g the p a r t i c u l a t e m a t e r i a l . T h e a b i l i t y to r e s o l v e m o n o d i s p e r s e latex s a m p l e s is r e c o m m e n d e d as a standard test f o r a l l m e t h o d o l o g i e s d e s i g n e d to p r o v i d e accurate a n d d e t a i l e d p a r t i c l e s i z e distributions. M o r e t y p i c a l o f an i n d u s t r i a l latex s a m p l e is the a c r y l i c b a s e d latex m a t e r i a l w h o s e f r a c t o g r a m is s h o w n i n F i g u r e 3 a . T h i s run was obtained w i t h system I u s i n g G o = 169.0 gravities, t i = 10 m i n , t = -80 m i n , V = 1.25 m L / m i n , and t f = 2 0 m i n . A 0 . 0 5 % ( w / v ) S D S s o l u t i o n w i t h 0.01 ( w / v ) s o d i u m azide w a s used as c a r r i e r l i q u i d . U s i n g a p a r t i c l e density o f 1.1 g / m L , eqs 2, 3, and 5 can be c o m b i n e d to p r o v i d e a u n i q u e v a l u e o f the p a r t i c l e d i a m e t e r d f o r p a r t i c l e s e l u t i n g at any s p e c i f i e d r e t e n t i o n t i m e t . T h i s e x e r c i s e m a k e s it p o s s i b l e to a f f i x a d i a m e t e r scale ( a l o n g w i t h the o b s e r v e d t i m e s c a l e ) to the f r a c t o g r a m o f F i g u r e 3 a , m a k i n g it easy to v i s u a l i z e the e m e r g i n g p a r t i c l e peak i n t e r m s o f c o n s t i t u e n t d i a m e t e r s . H o w e v e r , i n o r d e r to a r r i v e at a p a r t i c l e s i z e d i s t r i b u t i o n ( P S D ) f o r the s a m p l e , a standard scale c o r r e c t i o n p r o c e d u r e must be e m p l o y e d (16). W h e n t h i s p r o c e d u r e , i m p l e m e n t e d t h r o u g h the S 1 0 1 software ( F F F r a c t i o n a t i o n , I n c . ) , i s a p p l i e d to the f r a c t o g r a m o f F i g u r e 3 a , the P S D s h o w n i n F i g u r e 3b e m e r g e s .
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
a
s
r
S e d i m e n t a t i o n F F F c a n be a p p l i e d w i t h e q u a l f a c i l i t y to dense inorganic and metallic particles. Figure 4a, for example, shows a fractogram obtained from system I V for a finely d i v i d e d z i r c o n i a p o w d e r h a v i n g a p a r t i c l e density o f 6.0 g / m L . T h e carrier was 0 . 1 % (v/v) F L - 7 0 solution with 0 . 0 1 % (w/v) sodium azide. T h e s i z e d i s t r i b u t i o n c a l c u l a t e d (as a b o v e ) f o r this m a t e r i a l is s h o w n i n F i g u r e 4 b . T h e r u n w a s c a r r i e d out u s i n g p o w e r p r o g r a m m i n g ( i n w h i c h the v a r i a t i o n o f r p m w i t h t i m e i s s h o w n b y the b r o k e n l i n e ) w i t h G o = 7.05 g r a v i t i e s , t i = 5 m i n , and t = - 4 0 a
m i n , and w i t h V = 9.5 m L / m i n and t f = 10 m i n . T h e v a l i d i t y o f the s i z e - b a s e d f r a c t i o n a t i o n a n d o f the r e s u l t i n g s i z e d i s t r i b u t i o n c u r v e s o b t a i n e d f r o m s e d i m e n t a t i o n F F F c a n be v e r i f i e d i n several ways. O n e o f these is to c o l l e c t fractions and e x a m i n e t h e m b y electron microscopy. A s e c o n d means o f v a l i d a t i o n is to c o m p a r e s i z e distribution results obtained under different conditions, perhaps even by u s i n g different F F F systems. B o t h o f these approaches are i l l u s t r a t e d i n F i g u r e 5 where a T e f l o n sample is e x a m i n e d . A 0 . 1 % (v/v) A e r o s o l - O T s o l u t i o n w i t h 0 . 0 1 % ( w / v ) s o d i u m a z i d e w a s used as c a r r i e r l i q u i d f o r the analysis o f T e f l o n particles. T h e u p p e r f r a c t o g r a m (a) w a s o b t a i n e d f r o m s
s y s t e m III u s i n g a constant f i e l d strength o f 10.7 g r a v i t i e s w i t h V = 1.33 m L / m i n and t f = 19 m i n . F r a c t i o n s ( c o r r e s p o n d i n g to the shaded areas) w e r e c o l l e c t e d f r o m t h i s r u n a n d subjected to e l e c t r o n m i c r o s c o p y . The r e s u l t i n g m i c r o g r a p h s are s h o w n at the top o f F i g u r e 5. The mean d i a m e t e r s f o r the p a r t i c l e s eluted i n these c u t s are c a l c u l a t e d f r o m eqs 2 , 3, and 5 ( w i t h a T e f l o n density o f 2.20 g / m L ) to be 0 . 2 1 , 0.27, and 0.32 u m , respectively. T h e s e s i z e s s h o w g o o d c o r r e s p o n d e n c e w i t h those o b t a i n e d f r o m the e l e c t r o n m i c r o g r a p h s . ( T h i s c o m p a r i s o n i s s i m p l e to q u a n t i f y w i t h s p h e r i c a l p a r t i c l e s but less s i m p l e f o r the s o m e w h a t e l o n g a t e d T e f l o n particles.) s
T h e l o w e r fractogram a constant
f i e l d strength o f
(b) 15.2
of
Figure 5 was obtained
gravities and with V =
from
1.68
system
II at
m L / m i n and t f
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
s
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
208
P A R T I C L E S I Z E D I S T R I B U T I O N II
b
DIAMETER (/xm) Figure 3. Fractionation of a broad acrylic based latex dispersion by sedimentation FFF. (a) Fractogram with diameter scale. The diameter scale is based on a particle density of 1.1 g/mL. (b) Particle size distribution of acrylic latex dispersion derived from the fractogram in (a).
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
GIDDINGS ET AL.
Sedimentation Field-Flow Fractionation
b
0
0.2
0.4
0.6
0.8
1.0
(a)
Fractogram;
DIAMETER (/xm) Figure 4 . Sedimentation size distribution.
F F F of zirconia.
(b)
Particle
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
P A R T I C L E S I Z E D I S T R I B U T I O N II
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
210
F i g u r e 5. F r a c t o g r a m s o f T e f l o n p a r t i c l e s o b t a i n e d f r o m (a) s y s t e m III a n d (b) s y s t e m II u n d e r d i f f e r e n t e x p e r i m e n t a l c o n d i t i o n s (see t e x t ) . T h e e l e c t r o n m i c r o g r a p h s (top) o f p a r t i c l e s c o l l e c t e d i n the i n d i c a t e d s h a d e d areas o f f r a c t o g r a m (a) v e r i f y f r a c t i o n a t i o n a n d s i z e s c a l i n g .
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
13. G I D D I N G S E T A L .
211
Sedimentation Field-Flow Fractionation
= 15 m i n . T h e t w o fractograms are o b v i o u s l y s i m i l a r despite the use o f different systems and conditions. H o w e v e r the r e s u l t s b e c o m e m e a n i n g f u l o n l y w h e n the t w o p a r t i c l e s i z e d i s t r i b u t i o n c u r v e s are c o m p a r e d . Such a c o m p a r i s o n i s p r o v i d e d i n F i g u r e 6. T h e agreement b e t w e e n the t w o curves is quite satisfactory. F F F , o f c o u r s e , does not r e q u i r e s p h e r i c a l p a r t i c l e s f o r a n a l y s i s . S e p a r a t i o n i n the n o r m a l m o d e o f s e d i m e n t a t i o n F F F is based s t r i c t l y u p o n e f f e c t i v e p a r t i c l e m a s s , m ' = m A p / p p , as is apparent f r o m E q u a t i o n 4. For s p h e r i c a l p a r t i c l e s , m ' relates d i r e c t l y to sphere d i a m e t e r d . For n o n s p h e r i c a l p a r t i c l e s , one c a n e i t h e r o b t a i n a p a r t i c l e m a s s ( o r volume) d i s t r i b u t i o n f r o m the f r a c t o g r a m o r ( m o r e c o m m o n l y ) p r o c e e d w i t h the c a l c u l a t i o n o f a p a r t i c l e s i z e d i s t r i b u t i o n w i t h the u n d e r s t a n d i n g that the " d i a m e t e r " s c a l e refers to the e f f e c t i v e s p h e r i c a l d i a m e t e r o f e m e r g i n g particles. T h i s a p p r o a c h w a s u s e d f o r the n o n s p h e r i c a l T e f l o n p a r t i c l e s i n F i g u r e 6. A m o r e extreme e x a m p l e is p r o v i d e d b y c l a y . F i g u r e 7 s h o w s three fractograms o f a s a m p l e o f k a o l i n c l a y o b t a i n e d f r o m system I. B e c a u s e o f the h i g h aspect r a t i o o f the c l a y p a r t i c l e s a n d the c o n s e q u e n t e n h a n c e d r i s k o f s t e r i c p e r t u r b a t i o n s , the three r u n s w e r e m a d e u n d e r q u i t e d i f f e r e n t e x p e r i m e n t a l c o n d i t i o n s to c h e c k the s e l f - c o n s i s t e n c y o f the r e s u l t s . T h e c o n d i t i o n s f o r the three r u n s , a l l u t i l i z i n g p o w e r p r o g r a m m i n g , were as f o l l o w s : (a) Go = 6.7 g r a v i t i e s , t i = 5 m i n , t = -40 m i n ; (b) Go = 15.2 gravities, t i = 5 m i n , t = -40 m i n ; (c) Go = 2 7 gravities, t i = 10 m i n , and t = -80 m i n . F o r a l l three runs a a
a
a
0 . 1 % (v/v) was 1.50
D i s p e x A 4 0 s o l u t i o n was used as c a r r i e r l i q u i d .
+. 0.02 m L / m i n and the
field,
The
once it reached a l e v e l o f
flow
rate
V
0.95
g r a v i t i e s , w a s h e l d constant f o r the r e m a i n d e r o f the r u n . T h e f r a c t o g r a m s o f F i g u r e 7 s h o w l i t t l e r e s e m b l a n c e to o n e a n o t h e r except for a slight hint of bimodality. H o w e v e r w h e n the s i z e d i s t r i b u t i o n c u r v e s ( w h e r e one m u s t k e e p i n m i n d that s i z e i s m e a s u r e d i n terms o f e f f e c t i v e s p h e r i c a l d i a m e t e r ) are c o m p a r e d f o r the three r u n s , v e r y s i m i l a r d i s t r i b u t i o n s are o b t a i n e d as s h o w n i n F i g u r e 8. A density v a l u e o f 2.55 g / m L w a s used f o r the c l a y s a m p l e . W h i l e there are a f e w s p e c i f i c d i f f e r e n c e s i n the three c u r v e s o f F i g u r e 8, p a r t i c u l a r l y i n the v i c i n i t y o f the first m o d e , the o v e r a l l agreement i s q u i t e s a t i s f a c t o r y c o n s i d e r i n g the c o m p l e x i t y o f the s a m p l e and the d i v e r s i t y o f e x p e r i m e n t a l c o n d i t i o n s . We note that the m o d a l i t y features o f the a b o v e d i s t r i b u t i o n w o u l d not be clearly represented by any method p r o v i d i n g s i g n i f i c a n t l y less resolution than F F F . E l e c t r o n m i c r o g r a p h s o b t a i n e d f r o m another r u n o n k a o l i n c l a y (not s h o w n here) demonstrate a c l e a r s i z e f r a c t i o n a t i o n . W e c o n c l u d e that s e d i m e n t a t i o n F F F is g e n e r a l l y a s u i t a b l e m e t h o d f o r the s i z e c h a r a c t e r i z a t i o n o f c l a y but c a u t i o n that the d i a m e t e r s c a l e m u s t be c a r e f u l l y i n t e r p r e t e d as d e s c r i b e d above. F o r completeness, we show i n Figure 9 a fractogram o f metallic c o p p e r p a r t i c l e s ( m a i n l y spheres) w i t h d i a m e t e r s g r e a t e r t h a n 1 u m obtained from system V . T h e o r i g i n a l p o w d e r s a m p l e w a s first d i s p e r s e d i n an a q u e o u s s o l u t i o n c o n t a i n i n g 0 . 0 7 % ( w / v ) s o d i u m salt o f n a p h t h a l e n e sulfonic acid-formaldehyde. T h e resulting dispersion was then analyzed i n 0 . 1 % (v/v) F L - 7 0 solution with 0.02% (w/v) sodium azide. A constant f i e l d o f 2 9 . 9 g r a v i t i e s and a flow rate o f 29.4 m L / m i n were u s e d . F o r these l a r g e r p a r t i c l e s the steric m o d e o f o p e r a t i o n i s u t i l i z e d ( w i t h o u t s t o p - f l o w ) a n d the r e t e n t i o n t i m e o f i n d i v i d u a l s u b p o p u l a t i o n s i s d e t e r m i n e d b y E q u a t i o n 7. F o r steric F F F , the f l o w rates c a n be v e r y h i g h and the runs c o r r e s p o n d i n g l y short w i t h o u t a s i g n i f i c a n t l o s s o f r e s o l u t i o n . T h u s the
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
P A R T I C L E S I Z E D I S T R I B U T I O N II
F i g u r e 7. different
Fractograms of a kaolin clay experimental conditions.
sample
obtained
under
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
13. G I D D I N G S E T A L .
Sedimentation Field-Flow Fractionation
213
DIAMETER (/im) Figure 8. Particle size distributions of a kaolin clay sample derived from the three fractograms shown in Figure 7.
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
214
P A R T I C L E S I Z E D I S T R I B U T I O N II
b
DIAMETER
(/im)
Figure 9. Sedimentation steric FFF of copper particles, (a) Fractogram; (b) Particle size distribution. The inserted micrographs obtained from cuts 3, 8, and 11 verify steric mechanism and size scaling.
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
13. G I D D I N G S E T A L .
Sedimentation Field-Flow Fractionation
215
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
r u n s h o w n i n F i g u r e 9 a i s c o m p l e t e d w i t h i n about one m i n u t e o f s a m p l e injection. T h e resulting size distribution for this material, obtained by a s p e c i a l l y m o d i f i e d software p a c k a g e , i s s h o w n i n F i g u r e 9 b . The density of c o p p e r p a r t i c l e s w a s a s s u m e d to be 8.92 g / m L . T h e steric m o d e s e p a r a t i o n o f c o p p e r p a r t i c l e s i s v e r i f i e d b y s u b j e c t i n g f r a c t i o n s c o l l e c t e d at d i f f e r e n t p o s i t i o n s o f the f r a c t o g r a m to o p t i c a l m i c r o s c o p y (see F i g . 9 a ) . Inserted m i c r o g r a p h s o b t a i n e d f r o m cuts 3, 8, and 11 p r o v i d e d p a r t i c l e diameters o f 11.6 + 0.6 u m , 7.0 ± 0.7 J i m , and 5.3 ± . 0.4 u m , r e s p e c t i v e l y , i n g o o d agreement w i t h the d i a m e t e r scale (see figure) obtained by calibration. T h e steric F F F a n a l y s i s o f l a r g e r p a r t i c l e s ( s u c h as those o f c o p p e r s h o w n a b o v e ) i s a p p l i c a b l e to p r a c t i c a l l y a n y p a r t i c u l a t e m a t e r i a l f o r w h i c h d i a m e t e r s e x c e e d 1 \im and f o r w h i c h p a r t i c l e d e n s i t y is k n o w n . A p p l i c a t i o n s i n our laboratories have i n c l u d e d latex spheres, glass beads, f l y a s h , a n d o t h e r m e t a l l i c p a r t i c l e s i n c l u d i n g those o f p a l l a d i u m , s i l v e r , and g o l d . F o r the P S D c u r v e s s h o w n i n the v a r i o u s f i g u r e s , the c u r v e h e i g h t is w e i g h t e d b y l i g h t scattering since the detector f o r the s y s t e m i s a U V d e t e c t o r o f the t y p e u s e d i n l i q u i d c h r o m a t o g r a p h y , w h i c h f o r c o l l o i d s a n d p a r t i c l e s p r o d u c e s its p r i m a r y s i g n a l as a c o n s e q u e n c e o f l i g h t s c a t t e r i n g . L i g h t s c a t t e r i n g c o r r e c t i o n s h a v e been d e s c r i b e d i n the l i t e r a t u r e (12., ID but w e r e not u t i l i z e d f o r the P S D c u r v e s o f t h i s s t u d y . (Such corrections are e s s e n t i a l w h e n w a v e l e n g t h X » d , but less s i g n i f i c a n t w h e n X ~ d o r X « d as f o u n d g e n e r a l l y here.) It is l i k e l y that e f f e c t i v e detectors w i l l e v e n t u a l l y be d e v e l o p e d that r e s p o n d m o r e d i r e c t l y to s a m p l e m a s s o r volume. S u c h detectors m i g h t i n c l u d e the e v a p o r a t i v e l i g h t s c a t t e r i n g mass detector first tested w i t h F F F i n 1984 (12). It c o u l d also i n c l u d e d e n s i t y detectors, a v e r s i o n o f w h i c h w a s p r o p o s e d f o r c o u p l i n g w i t h F F F i n d i s c u s s i o n s w i t h D r . B e r n d T r a t h n i g g i n 1987 ( T r a t h n i g g , B . , p e r s o n a l c o r r e s p o n d e n c e , J u l y 2 0 , 1987). Other possibilities exist.
Conclusions T h e e x a m p l e s d e s c r i b e d h e r e i l l u s t r a t e the a p p l i c a t i o n o f s e d i m e n t a t i o n F F F to a v a r i e t y o f particulate m a t e r i a l s . H o w e v e r , the true scope o f F F F is m u c h b r o a d e r t h a n suggested b y these e x a m p l e s ; F F F has been a p p l i e d to p a r t i c l e s m u c h s m a l l e r and m u c h l a r g e r t h a n those d e s c r i b e d here a n d it has been a p p l i e d to nonaqueous suspensions o f p a r t i c l e s as w e l l . F o r most o f these a p p l i c a t i o n s , F F F has the advantage o f h i g h r e s o l u t i o n a n d a degree o f f l e x i b i l i t y that m a k e s s i m p l e s e l f - c o n s i s t e n c y tests p o s s i b l e . The a b i l i t y to c o l l e c t f r a c t i o n s and e x a m i n e t h e m b y e l e c t r o n m i c r o s c o p y a n d other t o o l s , b o t h to c o n f i r m the results c a l c u l a t e d f r o m F F F and to e x t e n d the a n a l y s i s t o i n c l u d e o t h e r p r o p e r t y d i s t r i b u t i o n s ( e . g . , s h a p e , e l e m e n t a l c o n t e n t , e t c . ) , s i g n i f i c a n t l y broadens the c a p a b i l i t y o f F F F . The flexibility o f o p e r a t i o n c a n also be u t i l i z e d i n t r a d i n g speed f o r r e s o l u t i o n ; i f less r e s o l u t i o n is needed i n the s u b m i c r o n s i z e range, the speed o f the r u n c a n be c o r r e s p o n d i n g l y i n c r e a s e d . F o r the l a r g e r p a r t i c l e s subject to s t e r i c F F F , the runs are a l r e a d y e x t r a o r d i n a r y fast as i l l u s t r a t e d i n F i g u r e 9. Acknowledgment This work 8800675.
was
supported
by
National Science
Foundation Grant C H E -
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
216
P A R T I C L E S I Z E D I S T R I B U T I O N II
Literature Cited
Downloaded by IMPERIAL COLLEGE LONDON on April 30, 2018 | https://pubs.acs.org Publication Date: September 24, 1991 | doi: 10.1021/bk-1991-0472.ch013
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
Giddings, J. C.Sep.Sci.1966,1,123. Giddings, J. C. Anal. Chem. 1981,53,1170A. Giddings, J. C. Sep. Sci. Technol. 1984, 19, 831. Caldwell, K. D. Anal. Chem. 1988, 60, 959A. Giddings, J. C. Chem. Eng. News 1988,66,34. Caldwell, K. D.; Karaiskakis, G.; Myers, M. N.; Giddings, J. C. J. Pharm. Sci. 1981, 70, 1350. Yonker, C. R.; Jones, H. K.; Robertson, D. M. Anal. Chem. 1987, 59, 2573. Liu, G.; Giddings, J. C. Anal. Chem., in press. Giddings, J. C.; Caldwell, K. D.; Kesner, L. F. In Molecular Weight Determination; Cooper, A. R., Ed.; Wiley-Interscience: New York, 1989; Chapter 12. Giddings, J. C.; Myers, M. N. Sep. Sci. Technol. 1978,13,637. Giddings, J. C.; Myers, M. N.; Caldwell, K. D.; Fisher, S. R. In Methods of Biochemical Analysis; Glick, D., Ed.; John Wiley: New York, 1980; Vol. 26, pp. 79-136. Lee, S.; Myers, M. N.; Beckett, R.; Giddings, J. C. Anal. Chem. 1988, 60, 1129. Giddings, J. C.; Yoon, Y. H.; Caldwell, K. D.; Myers, M. N.; Hovingh, M. E. Sep. Sci. 1975, 10, 447. Koch, T.; Giddings, J. C. Anal. Chem. 1986, 58, 994. Williams, P. S.; Giddings, J. C. Anal. Chem. 1987, 59, 2038. Giddings, J. C.; Myers, M. N.; Yang, F. J. F.; Smith, L. K. In Colloid and Interface Science; Kerker, M., Ed.; Academic Press: New York, 1976; Vol. IV, pp. 381-398. Kirkland, J. J.; Rementer, S. W.; Yau, W. W. Anal. Chem. 1981, 53, 1730. Yang, F.-S.; Caldwell, K. D.; Giddings, J. C. J. Colloid Interface Sci. 1983, 92, 81. Oppenheimer, L. E.; Mourey, T. H. J. Chromatogr. 1984, 298, 217.
RECEIVED January 14,
1991
Provder; Particle Size Distribution II ACS Symposium Series; American Chemical Society: Washington, DC, 1991.