Patterns of Mercury Accumulation among Seston in Lakes of the

May 21, 2009 - stratification in nine lakes in the Adirondack Mountains of New. York State that exhibit ... Mountains of New York had among the highes...
0 downloads 0 Views 311KB Size
Environ. Sci. Technol. 2009, 43, 4836–4842

Patterns of Mercury Accumulation among Seston in Lakes of the Adirondack Mountains, New York RYAN M. ADAMS,† M I C H A E L R . T W I S S , * ,†,‡ A N D CHARLES T. DRISCOLL§ Center for the Environment, Clarkson University, Potsdam, New York 13699, Department of Biology, Clarkson University, Potsdam, New York 13699, and Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244

Received February 9, 2009. Revised manuscript received April 28, 2009. Accepted May 4, 2009.

Mercury (Hg) concentrations in seston (biotic and abiotic particles 153 µm). Total dissolved Al (153 µm).

Acknowledgments Funding was provided by a grant from the National Science Foundation Bio-Complexity program (NSF Grant 0322022). We thank I.R. MacLeod and D.I. Page for help with sample collection and C. Fuss and J. Dittman for ancillary water chemistry analysis. This is Clarkson Center for the Environment Contribution No. 350.

Literature Cited (1) Driscoll, C. T.; Han, Y.; Chen, C. Y.; Evers, D. C.; Fallon Lambert, K.; Holsen, T. M.; Kamman, N. C.; Munson, R. K. Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. BioScience 2007, 57, 17–28. (2) Kamman, N. C.; Lorey, P. M.; Driscoll, C. T.; Estabrook, R.; Major, A.; Pientka, B.; Glassford, E. Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont lakes, USA, sampled using a geographically randomized design. Environ. Toxicol. Chem. 2005, 23, 1172–1186. (3) Evers, D. C.; Han, Y.; Driscoll, C. T.; Kamman, N. C.; Goodale, M. W.; Lambert, K. F.; Holsen, T. M.; Chen, C. Y.; Clair, T. A.; Butler, T. Biological mercury hotspots in the Northeastern United States and Southeastern Canada. BioScience 2007, 57, 29–43. (4) Driscoll, C. T.; Yan, C.; Schofield, C. L.; Munson, R.; Holsapple, J. The mercury cycle and fish in the Adirondack lakes. Environ. Sci. Technol. 1994, 28, 136A–143A. (5) Dennis, I. F.; Clair, T. A.; Driscoll, C. T.; Kamman, N. C.; Chalmers, A.; Shanley, J. B.; Norton, S. A.; Kahl, S. Distribution patterns of mercury in lakes and rivers of northeastern North America. Ecotoxicology 2005, 14, 113–123. (6) Hudson, R. J. M.; Gherini, S. A.; Watras, C. J.; Porcella, D. B. Modeling the biogeochemical cycle of mercury in lakes: the mercury cycling model (MCM) and its application to the MTL study lakes. In Mercury Pollution Integration and Synthesis; Watras, C. J., Huckabee, J. W., Eds.; Lewis Publishers: Boca Raton, FL, 1994; pp 473-523. (7) Pickhardt, P. C.; Fisher, N. S. Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ. Sci. Technol. 2007, 41, 125–131. (8) Mason, R. P.; Reinfelder, J. R.; Morel, F. M. M. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 1996, 30, 1835–1845. (9) Watras, C. J.; Morrison, K. A.; Host, J. S.; Bloom, N. S. Concentration of mercury species in relationship to other sitespecific factors in the surface waters of northern Wisconsin lakes. Limnol. Oceanogr. 1995, 40, 556–565. (10) Watras, C. J.; Back, R. C.; Halvorsen, S.; Hudson, R. J. M.; Morrison, K. A.; Wente, S. P. Bioaccumulation of mercury in pelagic freshwater food webs. Sci. Total Environ. 1998, 219, 183–208. (11) Grieb, T. M.; Driscoll, C. T.; Gloss, S. P.; Schofield, C. L.; Bowie, G. L.; Porcella, D. B. Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environ. Toxicol. Chem. 1990, 9, 919–930. (12) Cope, G. W.; Wiener, J. G.; Rada, R. G. Mercury accumulation in yellow perch in Wisconsin seepage lakes: relation to lake characteristics. Environ. Toxicol. Chem. 1990, 9, 931–940. (13) Haines, T. A.; Komov, V.; Jagoe, C. H. Lake acidity and mercury content of fish in Darwin National Reserve, Russia. Environ. Pollut. 1992, 78, 107–112. (14) Heiskary, S. A.; Helwig, D. D. Mercury levels in northern pike, Esox lucius, relative to water chemistry in northern Minnesota lakes. Lake Reserv. Manage. 1986, 2, 33–37. (15) McMurtry, M. J.; Wales, D. L.; Scheider, W. A.; Beggs, G. L.; Dimond, P. E. Relationship of mercury concentrations in lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomieui) to the physical and chemical characteristics of Ontario lakes. Can. J. Fish. Aquat. Sci. 1989, 46, 426–434. (16) Swain, E. B.; Helwig, D. D. Mercury in fish from northeastern Minnesota lakes: historical trends, environmental correlates, and potential sources. J. Minn. Acad. Sci. 1989, 55, 103–109. (17) Pickhardt, P. C.; Folt, C. L.; Chen, C. Y.; Klaue, B.; Blum, J. D. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4419–4423. (18) Chen, C. Y.; Folt, C. L. High plankton densities reduce mercury biomagnification. Environ. Sci. Technol. 2005, 39, 115–121. (19) Kainz, M.; Mazumder, A. Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton. Environ. Sci. Technol. 2005, 39, 1666–1672.

(20) Larsson, P.; Collvin, L.; Okla, L.; Meyer, G. Lake productivity and water chemistry as governors of the uptake of persistent pollutants in fish. Environ. Sci. Technol. 1992, 26, 346–352. (21) Essington, T. E.; Houser, J. N. The effect of whole-lake nutrient enrichment of mercury concentrations in age-1 yellow perch. Trans. Am. Fish. Soc. 2003, 132, 57–68. (22) Eckley, C. S.; Watras, C. J.; Hintelmann, H.; Morrison, K.; Kent, A. D.; Regnell, O. Mercury methylation in the hypolimnetic waters of lakes with and without connection to wetlands in northern Wisconsin. Can. J. Fish. Aquat. Sci. 2005, 62, 400–411. (23) Twiss, M. R.; Campbell, P. G. C. Trace metal cycling in the surface waters of Lake Erie: Linking ecological and geochemical fates. J. Great Lakes Res. 1998, 24, 791–807. (24) Twiss, M. R.; Campbell, P. G. C.; Auclair, J.-C. Regeneration, recycling, and trophic transfer of trace metals by microbial foodweb organisms in the pelagic surface waters of Lake Erie. Limnol. Oceanogr. 1996, 41, 1425–1437. (25) Fisher, N. S.; Bohe, M.; Teyssie, J. L. Accumulation and toxicity of Cd, Zn, Ag, and Hg in 4 marine phytoplankters. Mar. Ecol.: Prog. Ser. 1984, 18, 201–213. (26) Watras, C. J.; Bloom, N. S. Mercury and methylmercury in individual zooplankton - implications for bioaccumulation. Limnol. Oceanogr. 1992, 37, 1313–1318. (27) Sieburth, J. M.; Smetacek, V.; Lenz, J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. (28) Hall, B. D.; Bodaly, R. A.; Fudge, R. J. P.; Rudd, J. W. M.; Rosenberg, D. M. Food as the dominant pathway of methylmercury uptake by fish. Water, Air, Soil Pollut. 1997, 100, 13–24. (29) Harris, R. C.; Bodaly, R. A. Temperature, growth, and dietary effects on fish mercury dynamics in two Ontario lakes. Biogeochemistry 1998, 40, 175–187. (30) Dittman, J. A.; Driscoll, C. T. Factors influencing changes in mercury concentrations in yellow perch (Perca flavescens) in Adirondack lakes. Biogeochemistry 2009, 93, 179–196. (31) Sutherland, J. W., Ed. Field Surveys of the Biota and Selected Water Chemistry Parameters in 50 Adirondack Mountain Lakes; Final Report, Adirondack Biota Project; New York State Department of Environmental Conservation: Albany, NY, 1989. (32) Havens, K. E. Pelagic food web structure in Adirondack Mountain, USA, Lakes of varying acidity. Can. J. Fish. Aquat. Sci. 1993, 50, 149–155. (33) Adams, R. A. Mercury accumulation in seston across a range of lakes in the Adirondack Mountains, New York, 2007. M.Sc. thesis, Center for the Environment, Clarkson University, Potsdam, NY. (34) Morrison, K. A.; Watras, C. J. Mercury and methyl mercury in freshwater seston: direct determination at picogram per litre levels by dual filtration. Can. J. Fish. Aquat. Sci. 1999, 56, 760– 766. (35) U.S. Environmental Protection Agency. Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry; Office of Water Engineering and Analysis Division: Washington, DC, 2002. (36) Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985–1992. (37) Twiss, M. R.; Campbell, P. G. C. Trace metal cycling in the surface waters of Lake Erie: Linking ecological and geochemical fates. J. Great Lakes Res. 1998, 24, 791–807. (38) Twiss, M. R.; Twining, B. S.; Fisher, N. S. Partitioning of dissolved thallium by seston in Lakes Erie and Ontario. Can. J. Fish. Aquat. Sci. 2003, 60, 1369–1375. (39) Fisher, N. S. Accumulation of metals by marine picoplankton. Mar. Biol. 1985, 87, 37–142. (40) Kreeger, D. A.; Goulden, C. E.; Kilham, S. S.; Lynn, S. G.; Datta, S.; Interlandi, S. J. Seasonal changes in the biochemistry of lake seston. Freshwater Biol. 1997, 38, 539–554. (41) Watson, S.; McCauley, E. Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can. J. Fish. Aquat. Sci. 1992, 49, 2605–2610. (42) Wu, F.; Cai, Y.; Evans, D.; Dillon, P. Complexation between Hg(II) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy. Biogeochemistry. 2005, 71, 339– 351. (43) Parent, L.; Twiss, M. R.; Campbell, P. G. C. Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: A test for the free-ion model of trace metal toxicity. Environ. Sci. Technol. 1996, 30, 1713–1720. (44) Shindler, D. W. Effects of acid rain on freshwater ecosystems. Science 1988, 239, 149–157. VOL. 43, NO. 13, 2009 / ENVIRONMENTAL SCIENCE & TECHNOLOGY

9

4841

(45) Campbell, P. G. C.; Hontela, A.; Rasmussen, J. B.; Gigue`re, A.; Gravel, A.; Kraemer, L.; Kovesces, J.; Lacroix, A.; Levesque, H.; Sherwood, G. Differentiating between direct (physiological) and food-chain mediated (bioenergetic) effects on fish in metalimpacted lakes. Human Ecol.Risk Assess.: Int. J. 2003, 9, 1080– 7039. (46) Persson, G.; Broberg, O. Nutrient concentrations in the acidified Lake Gårdsjphin: The role of transport and retention of phosphorus, nitrogen and DOC in watershed and lake. Ecol. Bull. (Stockholm) 1985, 37, 158–175.

4842

9

ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 13, 2009

(47) Jansson, M.; Persson, G.; Broberg, O. Phosphorus in acidified lakes: the example of Lake Gårdsjo¨n, Sweden. Hydrobiologia 1986, 139, 81–96. (48) Kopacek, J.; Hejzlar, J.; Borovec, J.; Porcal, P.; Kotorova, I. Phosphorus inactivation by aluminum in the water column and sediments: Lowering of in-lake phosphorus availability in an acidified watershed-lake system. Limnol. Oceanogr. 2000, 45, 212–225.

ES900409B