6 Patulin and Penicillic Acid DAVID M . WILSON
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
Department of Plant Pathology, University of Georgia, College of Agriculture Experiment Stations, Coastal Plain Station, Tifton, Ga. 31794 The mycotoxins patulin (4-hydroxy-4H-furo[3,2-c]pyran2(6H)-one) and penicillic acid (3-methoxy-5-methyl-4-oxo2,5-hexadienoic acid) are metabolites of several fungi, primarily species of Aspergillus and Penicillium. Their chemical and physical properties and biosynthesis are discussed. Recent work on analytical methods, reports of natural occurrence, and stability in foods and feeds are emphasized. Both patulin and penicillic acid inhibit DNA, RNA, protein synthesis, and some enzymes containing SH groups. The precise mode of toxic action remains uncertain. Since both patulin and penicillic acid are toxic and have been implicated in carcinogenesis and since patulin causes mutations in yeasts, they are potentially dangerous. The biological effects of orally ingested patulin and penicillic acid need further study to assess their potential health hazard. Once upon a time gasoline was a nuisance and the problem was how to get rid of it; once upon a time moulds were a nuisance and the problem was how to get rid of them. Not so today. Since the epoch-making purification of penicillin . . . by Florey and his associates . . . the search for therapeutic agents from moulds has crossed oceans and continents. At the London School of Hygiene and Tropical Medicine in London, England, Professor Harold Raistrick and his associates . . . have assiduously iso lated, purified, and established the structure of a number of therapeutically active compounds from various moulds. Their most recent and most interesting derivative from moulds is "patuline" which is obtained from the mould Penicillium patulum Bainier, and which holds promise of therapeutic activity against the common cold ( 1 ). Patulin was soon found almost useless in curing the common cold (2) and was too toxic for use as an antimicrobial agent. Therefore interest 90 In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
Patulin
WILSON
and Penicillic
91
Acid
has n o w s h i f t e d to t h e t o x i c p r o p e r t i e s of p a t u l i n a n d its r e l a t i o n t o t h e p o t e n t i a l c o n t a m i n a t i o n of foods a n d feeds. T h e structure of p a t u l i n
(4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one)
w a s d e t e r m i n e d b y W o o d w a r d a n d S i n g h ( 3 , 4 ) (see
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
* 0 ^
0
Figure 1.
H
Figure 1).
Patulin
Structure of patulin
has b e e n i s o l a t e d u n d e r v a r i o u s n a m e s : c l a v i c i n , c l a v i t i n , c l a v i f o r m i n , e x p a n s i n , l e u c o p i n , m y c o i n c, p e n i c i d i n , a n d t e r c i n i n ( 5 ) .
I t has b e e n
i s o l a t e d f r o m t h e f o l l o w i n g f u n g i : Pénicillium
[P.
(7)
urticae
a n d p e r h a p s s y n o n y m o u s P . griseo-fulvum
[ P . leucopus
(10)1,
P . claviforme pium
( 1 5 ) , P . lapidosum
(17),
A . giganteus
( 1 4 ) , P . novae-zeelandiae P . equinum
(16),
A . terreus
(18),
patulum
P . expansum
(8)1,
(9)
[ P . diver gens ( I I ) ] , P . Unosum
P. granuhtum
( 1 3 ) , P . melinii
(6)
(6),
P.
(14),
( 1 4 ) , Aspergillus
a n d Byssochlamys
(12), cycloclavatus
nivea
(19)
sp. (20)1 ·
[Gymnoascus
Penicillic acid ( C H i O ) , 8
0
3-methoxy-5-methyl-4-oxo-2,5-hexadienoic
4
a c i d , w a s first i s o l a t e d f r o m P . puberulum
b y A l s b e r g a n d B l a c k (21 ) w h o
n a m e d the c o m p o u n d a n d f o u n d i t t o x i c to m i c e . T h e y also f o u n d t h a t a l t h o u g h P . stoloniferum
produced mycophenolic acid ( C i H o 0 ) , it d i d 7
n o t p r o d u c e p e n i c i l l i c a c i d . B i r k i n s h a w (22)
2
6
showed that the structure
of p e n i c i l l i c a c i d w a s y - k e t o - ^ - m e t h o x y - 8 - m e t h y l e n e - A - h e x a n o i c a c i d o r a
t h e c o r r e s p o n d i n g γ - h y d r o x y l a c t o n e (see
Figure 2).
P e n i c i l l i c a c i d has
Ο OCH II I = C - C - C = C H - C O O H 3
J
CH
*· m
Figure 2.
Structure of penicillic
b e e n i s o l a t e d frorn t h e f o l l o w i n g f u n g i : Pénicillium ( 2 1 ) , P . griseum
berulum (22),
P. thomii
P . fenelliae catum
(29),
lilacinum (33),
(25),
(27), (12),
Aspergillus
[ P . suavolens
P. roqueforti
P. aurantio-virens
P . palitans
(30),
lividum
P . simplicissimum
(23),
(25)1,
( 2 8 ) , P . janthinellum
P . baarnense
P. canescens
(12),
P. chrysogenum
ochraceus
(20),
A . sulphur eus
cyclopium
P. martensii P.
(29),
P . madriti
(31),
(21), (34),
P . pu-
(23), P.
(24),
P.
acid
(32),
(26), viridiP.
olivino-viride
A . Melleus
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
(35)
92
MYCOTOXINS
[ A . quercinus
(34)1,
A. sclerotiorum
a n d Paecilomyces
(36),
Chemical
and
Physical
(36),
ehrlichii
A. alliaceus
A.
(36),
ostianus
(23).
Properties
Patulin. P a t u l i n has a n e m p i r i c a l f o r m u l a of C H 0 , a m o l e c u l a r 7
6
4
w e i g h t of 154, a n d a m e l t i n g p o i n t of 1 1 0 ° - 1 1 2 ° C . P a t u l i n has a n o p t i c a l l y a c t i v e c a r b o n a t o m ; h o w e v e r the r a c e m i c m i x t u r e occurs n a t u r a l l y . T h e crystals are l a r g e m o n o c l i n i c tables ( 0 0 1 ) .
T h e p l a n e of t h e o p t i c
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
axes is i n c l i n e d at a p p r o x i m a t e l y 2 0 ° to t h e n o r m a l to ( 0 0 1 ) to b).
T h e unit cell dimensions are: a =
(β _
(y is p a r a l l e l
12.42, & = 9.47, c =
7.78A
46.7° ) . T h e d e n s i t y is 1.528 ± .003, a n d the space g r o u p is P 2 t / a ,
Z = 4
(37).
P a t u l i n is s o l u b l e i n w a t e r , a l c o h o l , acetone,
e t h y l acetate,
and
c h l o r o f o r m , s l i g h t l y soluble i n e t h y l ether a n d b e n z e n e , a n d i n s o l u b l e i n p e t r o l e u m ether. I t d e c o m p o s e s s l o w l y i n w a t e r a n d m e t h a n o l , b u t i t is stable i n b e n z e n e , c h l o r o f o r m , a n d m e t h y l e n e c h l o r i d e (38).
P a t u l i n is
n o t stable as a t h i n film f r o m a n e v a p o r a t e d s o l u t i o n ( 3 9 ) . T h e i r s p e c t r u m of p a t u l i n has m a j o r b a n d s at 1768, 1745 a n d 3390 c m " i n n u j o l m u l l (40);
(shoulder),
i n h e x a c h l o r o b u t a d i e n e m u l l there is a
1
b r o a d O H b a n d at 3360 c m " , a n d i n K B r disks there are b a n d s at 1030, 1
1160, 1200, 1740, a n d 1765 c m '
1
e x t i n c t i o n coefficients
P a t u l i n has a single u v a b s o r p
(41, 42).
t i o n m a x i m u m at a b o u t 276 n m ( 4 3 ) .
Scott ( 4 4 ) p r e s e n t e d t h e r e p o r t e d
i n detail. T h e proton N M R spectrum i n C D C 1
3
exhibits c h e m i c a l shifts at δ = 5.97 ( 3 P , c o m p l e x ) , δ 4.73 ( I P , d o u b l e t of d o u b l e t s , A p a r t of A B X system, /
A B
doublets, Β p a r t of A B X system, J
B
7 = 5cps)
(44).
A
= =
1 7 c p s ) , δ 4.40 ( I P , d o u b l e t
of
17 c p s ) , a n d δ 3.46 ( I P , d o u b l e t ,
T h e mass s p e c t r u m of p a t u l i n w a s r e p o r t e d b y Scott
et a l . ( 4 5 ) ; the mass s p e c t r u m of the t r i m e t h y l s i l y l ether was r e p o r t e d b y Scott ( 4 4 ) .
Scott a n d Y a l p a n i (46)
p r o p o s e d structures for seven p r i n
c i p a l f r a g m e n t ions of d e u t e r a t e d p a t u l i n w i t h m/e =
138, 128, 111, 99,
83, 72, a n d 56. P a t u l i n forms a c e t y l , 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e , p h e n y l h y d r a z o n e , s e m i c a r b a z o n e , o x i m e , a n d m e t h y l ether d e r i v a t i v e s . It reduces F e h f i n g s reagent, p o t a s s i u m p e r m a n g a n a t e , a n d a m m o n i a c a l s i l v e r n i t r a t e ( 4 3 , 47, 48).
R e d u c t i o n w i t h s o d i u m b o r o h y d r i d e y i e l d s a s c l a d i o l , a less t o x i c
m y c o t o x i n i s o l a t e d f r o m A . cfovatus
(49).
Hydrogénation gives
p a t u l i n i c a c i d w h i c h has b e e n i s o l a t e d f r o m P . urticae (50).
[P.
P a t u l i n w a s s y n t h e s i z e d b y W o o d w a r d a n d S i n g h (51);
oxime was synthesized starting from acetylenic compounds
(52).
desoxypatuluml patulin For a
d e t a i l e d r e v i e w of p a t u l i n synthesis see K o r z y b y s k i et a l . ( 5 3 ) . Penicillic A c i d . P e n i c i l l i c a c i d , C H i O , has a m o l e c u l a r w e i g h t of 8
0
4
170, a m e l t i n g p o i n t of 8 4 ° - 8 7 ° C ( h y d r a t e d , 5 8 ° - 6 4 ° C ) , a n d a n e u t r a l i -
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
Patulin and Penicillic
WILSON
z a t i o n e q u i v a l e n t of 169 ( 2 5 ) . s o l u t i o n (54).
93
Acid
The K
a
is 1.26 X 10" at 2 5 ° C i n aqueous 6
P e n i c i l l i c a c i d is s l i g h t l y s o l u b l e i n c o l d w a t e r , s o l u b l e i n
h o t w a t e r , a l c o h o l , ether, b e n z e n e , c h l o r o f o r m , a n d e t h y l acetate a n d is i n s o l u b l e i n hexane a n d p e t r o l e u m ether. P e n i c i l l i c a c i d absorbs B r , reduces F e h l i n g s s o l u t i o n w h e n h e a t e d , 2
reduces a m m o n i a c a l s i l v e r n i t r a t e , turns y e l l o w i n a l k a l i n e s o l u t i o n a n d d e e p r e d u p o n exposure to a m m o n i a , a n d turns F e C l 55). (56).
b r o w n r e d ( 2 1 , 22,
T h e hydrogenated derivative dihydropenicillic acid was isolated
f r o m a n u n i d e n t i f i e d fungus (57). Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
3
P e n i c i l l i c a c i d has a t e n d e n c y to self-associate s t r o n g l y i n s o l u t i o n T h e a m m o n i a t e d d e r i v a t i v e is
fluores
cent w i t h e x c i t a t i o n m a x i m a at 350 n m a n d e m i s s i o n m a x i m a at 440 n m (58). T h e i n f r a r e d s p e c t r u m has b a n d s at 3270, 1 7 2 8 , 1 6 4 3 , 1352, 1223, 909, a n d 811 c m "
1
i n K B r (57).
K o v a c and Solcaniova (56)
give solution i r
b a n d s for p e n i c i l l i n a c i d i n c a r b o n t e t r a c h l o r i d e a n d c h l o r o f o r m .
The uv
a b s o r p t i o n m a x i m u m is at 227 n m i n H 0 , 225 n m i n 7 6 % e t h a n o l , 224 2
n m i n e t h a n o l , 221 n m i n m e t h a n o l , a n d shifts to 224 n m i n 0 . 0 2 N H C 1 a n d 293 n m i n 0 . 0 2 N N a O H (27, 56, 57, 5 9 ) .
T h e uv absorption m a x i
m u m f o r p e n i c i l l i c a c i d acetate is at 229 n m i n e t h a n o l a n d for m e t h y l p e n i c i l l a t e is at 224 n m i n e t h a n o l
(56).
T h e p r o t o n N M R s p e c t r u m of p e n i c i l l i c a c i d i n d e u t e r a t e d
benzene
exhibits c h e m i c a l shifts for a 3-proton s i g n a l at δ 1.72 a n d δ 3.14 a n d f o r a 1-proton s i g n a l at δ 419, δ 4.91, δ 5.02, a n d δ 5.62 ( 2 7 ) . ( 3 3 ) d e t e r m i n e d the N M R s p e c t r u m i n C D C 1
3
s p e c t r u m c a n b e f o u n d i n C i e g l e r a n d K u r t z m a n (30) (60).
V a n Eijk
(27)
K o b a y a s h i et a l .
a n d D M S O - d . T h e mass 6
a n d S u z u k i et a l .
d i s c u s s e d possible structures f o r f o u r p r i n c i p a l
f r a g m e n t ions i n the mass s p e c t r u m of p e n c i l l i c a c i d b u t c o u l d n o t d i s t i n g u i s h b e t w e e n t h e free a c i d a n d lactone tautomers. P e n i c i l l i c a c i d a n d d i h y d r o p e n i c i l l i c a c i d w e r e s y n t h e s i z e d b y R a p h a e l (55, 64,
65).
T h e t a u t o m e r i s m of p e n i c i l l i c a c i d has b e e n s t u d i e d u s i n g u v a b s o r p t i o n spectroscopy
( 3 1 , 61, 62, 63).
F o r d et a l . (61)
stated that u v
s p e c t r a l measurements h a v e d o u b t f u l v a l u e i n d e t e r m i n i n g t h e c y c l i c o r o p e n c h a i n f o r m a n d c o u l d n o t a d e q u a t e l y define t h e e q u i l i b r i u m b e t w e e n the cyclic and open
c h a i n forms
u s i n g i r spectroscopy.
Using
mass
spectroscopy, v a n E i j k ( 2 7 ) c o u l d n o t d i s t i n g u i s h b e t w e e n the c y c l i c a n d o p e n c h a i n f o r m s o n the basis of possible structures of the i o n f r a g m e n t s . T h e e q u i l i b r i u m a n d existence of the o p e n c h a i n a n d c y c l i c t a u t o m e r s i n v a r i o u s solutions w a r r a n t s f u r t h e r i n v e s t i g a t i o n . Biosynthesis P a t u l i n . B u ' L o c k et a l . (66)
w h o studied conditions favoring p a t u l i n
biosynthesis d e s c r i b e d t w o p h y s i o l o g i c a l phases i n P . urticae:
i n t h e first
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
94
MYCOTOXINS
p h a s e ( t r o p h o p h a s e ) m y c e l i a l Ν, P , R N A , a n d S H r e a c h m a x i m u m v a l u e s ; i n the s e c o n d p h a s e ( i d i o p h a s e ) these values are r e d u c e d , a n d p a t u l i n a n d other secondary metabolites f r o m 6-methylsalicylic a c i d appear.
Bassett
a n d T a n e n b a u m first p r o p o s e d a s c h e m e for p a t u l i n biosynthesis u s i n g k n o w n m e t a b o l i c p r o d u c t s of P . urticae from
1 4
(67, 68,69).
C - l a b e l e d 6 - m e t h y l s a l i c y l i c a c i d (70).
Patulin was derived
T h e 6-methylsalicyfic a c i d
w a s d e r i v e d f r o m glucose o r acetate w i t h a c e t y l c o e n z y m e A p l a y i n g a n i m p o r t a n t r o l e (71) coenzyme A
as d i d m a l o n a t e , p r e s u m a b l y i n t h e f o r m of m a l o n y l
(72).
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
B u ' L o c k et a l . (73)
d i s c u s s e d the enzymes t h a t m a y r e g u l a t e p a t u l i n
biosynthesis. T w o of the e n z y m e s r e q u i r e d for the c o n v e r s i o n of 6 - m e t h y l s a l i c y l i c a c i d to p a t u l i n are 6 - m e t h y l s a l i c y l i c a c i d d e c a r b o x y l a s e a n d m-hydroxybenzyl alcohol dehydrogenase L i g h t (76)
(75).
(74)
Also Arihood and
r e p o r t e d t h a t 6 - m e t h y l s a l i c y l i c a c i d synthesis w a s i n h i b i t e d
b y 6 - m e t h y l s a l i c y l i c a c i d a n d some s t r u c t u r a l analogues of this c o m p o u n d . F o r r e s t e r a n d G a u c h e r (77)
described the major p a t h w a y for patulin
biosynthesis s t a r t i n g w i t h a c e t y l C o - A + 3 m a l o n y l C o - A - » 6 - m e t h y l salicylic acid - » m-cresol - » m-hydroxybenzyl alcohol - » m-hydroxybenzaldehyde - » gentisaldehyde - » pre-patulin - » patulin. p r o p o s e d another p a t h w a y l e a d i n g d i r e c t l y f r o m
Scott
et
through an intermediate to patulin ( F i g u r e 3 ) .
OH OH
al.
( 78 )
m-hydroxybenzaldehyde
I
Bioorganic Chemistry
Figure 3. Proposed biosynthetic pathways from 6-methylsalicyclic acid to patulin (78)
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
Patulin
WILSON
and Penicillic
Penicillic A c i d .
95
Acid
B i r c h et a l . ( 7 9 ) suggested t h a t i n P .
cyclopium
p e n i c i l l i c a c i d w a s f o r m e d w h e n f o u r acetate u n i t s c o n d e n s e d t o f o r m o r s e l l i n i c a c i d f o l l o w e d b y r i n g cleavage a n d d e c a r b o x y l a t i o n t o y i e l d penicillic acid. baarense
M o s b a c h (80)
demonstrated a similar sequence i n P .
as d i d B i r k i n s h a w a n d G o w l a n d ( 3 2 ) i n P . madriti.
a n d K e i l (81,82)
showed that orsellinic acid was formed i n P .
Bentley cyclopium
w h e n o n e a c e t y l c o e n z y m e A u n i t c o n d e n s e d w i t h three m a l o n y l c o e n z y m e A u n i t s w h i c h s u b s e q u e n t l y lost t h r e e m o l e c u l e s o f C 0 f o r m i n g o r s e l l i n i c 2
a c i d a n d w h i c h u n d e r w e n t r i n g cleavage a n d d e c a r b o x y l a t i o n t o y i e l d Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
p e n i c i l l i c a c i d ( F i g u r e 4 ) . C i e g l e r et a l . (83) r e v i e w e d t h e biosynthesis of p e n i c i l l i c a c i d i n m o r e d e t a i l . acetyl CoA + 3 malonyl CoA
I Ο Ο Ο Il II II C H 3 - C - C H - C - C H - C - C H - C 0 S C 0 A I I I COOH COOH COOH J
OH
Journal of Biological Proceedings of the Chemical Society
Figure 4. Intermediates in the biosyn thesis of penicillic acid (81, 82) Toxicity Patulin.
P a t u l i n is a w i d e - s p e c t r u m b i o c i d e .
I t is t o x i c t o m a n y
bacteria, protozoa, fungi, mammals, a n d plants a n d inactivates some viruses.
F o r a d e t a i l e d d i s c u s s i o n o f p a t u l i n t o x i c i t y , see r e v i e w s b y
K o r z y b s k i et a l . ( 5 3 ) , E n o m o t o a n d Satio ( 8 4 ) , Scott ( 4 4 ) f o r t o x i c i t y d e tails, a n d B r o o m et a l . ( 8 5 ) f o r t h e p h a r m a c o l o g y of p a t u l i n . H o w e v e r a b r i e f c o n s i d e r a t i o n o f t h e t o x i c i t y o f p a t u l i n to f a r m a n i m a l s a n d p l a n t s is i m p o r t a n t i n r e l a t i o n to its n a t u r a l occurrence. f r o m soils w h e r e p h y t o t o x i c i t y is o b s e r v e d .
P a t u l i n has b e e n i s o l a t e d
I t c o n t r i b u t e s to t h e p h y t o -
t o x i c i t y of s t u b b l e - m u l c h e d soils (89) a n d to t h e s o i l sickness p r o b l e m i n a p p l e nurseries ( 9 0 ) . T h e r e is o n l y i n d i r e c t e v i d e n c e that p a t u l i n m a y b e associated w i t h a n i m a l diseases c a u s e d b y m y c o t o x i n c o n t a m i n a t e d f e e d .
U k a i et a l .
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
96
MYCOTOXINS
o b t a i n e d p a t u l i n f r o m a Pénicillium
(86)
sp. t h a t h a d b e e n i s o l a t e d f r o m
a m a l t f e e d associated w i t h the d e a t h of several cattle i n J a p a n . A t o x i c A . davatus
was isolated from a malt causing a feeding p r o b l e m
p a t u l i n m a y h a v e b e e n responsible.
R e c e n t l y , the L D
5 0
(87);
from oral admin
i s t r a t i o n of p a t u l i n for w h i t e L e g h o r n cockrels w a s 170 m g / k g
(88)—
demonstrating moderate toxicity. C h r o n i c a n d sub-acute f e e d i n g s t u d y trials are n e e d e d b e f o r e t h e i m p a c t of p a t u l i n o n f a r m a n i m a l s a n d h u m a n s is k n o w n . T h e effects of p a t u l i n o n the i n t e s t i n a l m i c r o f l o r a n e e d to be e x a m i n e d as w e l l as t h e Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
p o s s i b i l i t y of p a t u l i n a n d other c o m p o u n d s a c t i n g together
to g i v e
a
synergistic toxic reaction. Penicillic A c i d .
A l s b e r g a n d B l a c k (21)
found that penicillic acid
w a s l e t h a l to m i c e at a subcutaneous i n j e c t i o n of ca. 2 0 0 - 3 0 0 m g / k g .
The
a n t i m i c r o b i a l a c t i v i t y was s t u d i e d b y O x f o r d et a l . ; g r a m - n e g a t i v e b a c t e r i a w e r e affected m o r e t h a n g r a m - p o s i t i v e b a c t e r i a b y p e n i c i l l i c a c i d ( 9 1 , 9 2 ) . H o w e v e r , h e a r t b r o t h w a s u s e d i n these experiments, a n d O x f o r d
(93)
l a t e r f o u n d that p e n i c i l l i c a c i d lost bacteriostatic p o w e r i f a b r o t h m e d i u m was used. T h e pharmacology The L D
(94).
5 0
of p e n i c i l l i c a c i d was discussed b y M u r n a g h a n
of p e n i c i l l i c a c i d w a s 110 m g / k g for m i c e b y s u b c u t a n e
ous i n j e c t i o n a n d 250 m g / k g b y intravenous i n j e c t i o n (94).
N o charac
t e r i s t i c features w e r e f o u n d post m o r t e m . F o r r a b b i t s t h e m i n i m a l l e t h a l dose r a n g e d f r o m
100-200 m g / k g
administered subcutaneously
W i t h p e r o v a l a d m i n i s t r a t i o n of p e n i c i l l i c a c i d , u p to 715 m g / k g w e i g h t for 8 days w a s t o l e r a t e d b y w h i t e m i c e w i t h o u t detriment (95).
H a l l et a l . (96)
(95). body
recognizable
s h o w e d that p e n i c i l l i c a c i d h a d a n t i -
p h a g e a c t i v i t y against free b a c t e r i o p h a g e
particles.
T h e possible
anti
t u m o r a n d a n t i v i r a l properties of p e n i c i l l i c a c i d are discussed b y S u z u k i etal.
(60). T h e t o x i c i t y of p e n i c i l l i c a c i d a n d p a t u l i n i n c u l t u r e d cells
s t u d i e d b y N a t o r i et a l . ( 9 7 ) , U m e d a ( 9 8 ) , a n d K a w a s a k i et a l . W i t h H e L a cells, p e n i c i l l i c a c i d at ΙΟμ-g/ml p r o d u c e d
was (99).
a n increase
of
m i t o t i c cells a n d e n l a r g e m e n t of i n t e r p h a s i c cells. E n l a r g e d i n t e r p h a s i c cells c o n t a i n e d large n u c l e i w i t h dotty c h r o m a t i n a n d i r r e g u l a r a n d l a r g e r nucleoli.
Pleomorphism
was
relatively marked
(97).
The
action
of
p e n i c i l l i c a c i d o n H e L a cells was s l o w , a n d the a c c u m u l a t i o n of m e t a p h a s i c cells w a s p r o m i n e n t , a c c o m p a n i e d b y e l o n g a t i o n of the w h o l e c e l l cycle Stability
(99). and Mode of
Action
T h e s t a b i l i t y of p a t u l i n a n d p e n i c i l l i c a c i d at t h e p H of interest a n d t h e r e a c t i o n w i t h c e l l u l a r or m e d i u m constituents are i m p o r t a n t i n c o n -
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
Patulin and Penicillic
W I L S O N
97
Acid
s i d e r i n g t h e m o d e of a c t i o n of these m y c o t o x i n s .
Patulin, but not peni
c i l l i c a c i d , loses its b i o l o g i c a l a c t i v i t y i n a l k a l i n e c o n d i t i o n s . B o t h p a t u l i n a n d p e n i c i l l i c a c i d are c a p a b l e of r e a c t i n g w i t h s u l f h y d r y l g r o u p s
or
a m i n o g r o u p s , a n d t h e a d d u c t s seem to h a v e l i t t l e b i o l o g i c a l a c t i v i t y . T h u s i t is necessary to d e t e r m i n e t h e s t a b i l i t y u n d e r a n y set o f e x p e r i m e n t a l c o n d i t i o n s i n o r d e r to evaluate d a t a p r o p e r l y c o n c e r n i n g t h e m o d e of a c t i o n of these m y c o t o x i n s . A l s o i n d e t e r m i n i n g t h e m o d e o f a c t i o n o f patulin a n d penicillic acid, the mycotoxin concentration a n d time of the m e a s u r e d effect is c r i t i c a l to d i s t i n g u i s h b e t w e e n p r i m a r y a n d s e c o n d a r y Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
effects. H e a t l e y a n d P h i l p o t (100)
found that penicillic a c i d was stable
w h e n h e a t e d to 1 0 0 ° C at p H s 2.0 a n d 9.5. T h u s t h e effects of p H o n detoxification o f p e n i c i l l i c a c i d a r e p r o b a b l y m i n i m a l .
Patulin on the
other h a n d w a s stable at p H 2.0 a n d u n s t a b l e at p H 9.5 (100). decomposition
The
of p a t u l i n p r o d u c e d i n t h e c u l t u r e m e d i u m b y p a t u l i n
p r o d u c e r s p r o b a b l y arose f r o m p H changes
(101).
P a t u l i n w a s stable
i n M c l l v a i n e buffer solutions at p H 3.3-6.3; at p H 6.3 s l o w i n a c t i v a t i o n o c c u r r e d (102).
L o v e t t a n d P e e l e r (103) d e t e r m i n e d t h e t h e r m a l d e s t r u c
t i o n k i n e t i c s of p a t u l i n i n M c l l v a i n e s ' buffer of p H 3.5, 4.5, a n d 5.5 h e a t e d to 1 0 5 ° - 1 2 5 ° C . P a t u l i n w a s resistant to t h e r m a l d e s t r u c t i o n a t a l l p H s . However,
the thermal destruction
parameters
increased
as t h e p H
decreased. P a t u l i n is m o d e r a t e l y stable at 22 ° C i n a p p l e a n d g r a p e j u i c e b u t n o t i n o r a n g e juice or flour (104).
H e a t i n g t h e juices to 8 0 ° C f o r s h o r t
p e r i o d s d i d n o t c o m p l e t e l y destroy p a t u l i n . I t w a s stable i n d r y c o r n b u t u n s t a b l e i n w e t c o r n , w h e a t , s o r g h u m , o r aqueous solutions c o n t a i n i n g S0
2
( 3 8 , 1 0 5 ) . T h e s e studies w e r e d o n e at r o o m t e m p r e a t u r e ; f u r t h e r
studies o n t h e p r o d u c t i o n a n d s t a b i l i t y of p a t u l i n a n d p e n i c i l l i c a c i d a r e n e e d e d at different m o i s t u r e a n d t e m p e r a t u r e levels. P e n i c i l l i c a c i d w a s also m o d e r a t e l y stable at 22 ° C i n a p p l e a n d g r a p e j u i c e b u t n o t i n o r a n g e juice, w h o l e w h e a t , or b l e a c h e d
flour
H e a t i n g t h e juices f o r short p e r i o d s to 8 0 ° C d i d n o t c o m p l e t e l y
(104). destroy
the p e n i c i l l i c a c i d . P e n i c i l l i c a c i d w a s m o d e r a t e l y stable i n w e t c o r n a t 0 ° - 1 5 ° C a n d less stable at 2 0 ° C .
I n general, commodities w i t h h i g h p r o
t e i n content ( p e a n u t s , soybeans, a n d c o t t o n s e e d ) either d i d n o t s u p p o r t p e n i c i l l i c a c i d synthesis or p e n i c i l l i c a c i d w a s n o t stable i n t h e m ( 3 0 , 5 9 ) . P a t u l i n w a s stable i n a c i d soils a n d s a n d . I t w a s m o r e stable i n h e a t t r e a t e d s o i l at p H 7.2 t h a n i n u n t r e a t e d s o i l , i n d i c a t i n g t h a t b i o l o g i c a l a c t i v i t y c a u s e d i n a c t i v a t i o n (102).
P a t u l i n w a s m u c h m o r e stable i n s o i l
containing molds that p r o d u c e d patulin than i n garden soil w i t h a n e u t r a l pH
(106). O n e of the first suggested m e c h a n i s m s of t h e a c t i o n of p a t u l i n w a s
t h a t i t r e a c t e d w i t h S H groups of enzymes
a n d e x e r t e d its a n t i b i o t i c
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
98
MYCOTOXINS
a c t i v i t y i n this w a y . P a t u l i n a n d p e n i c i l l i c a c i d c a n react w i t h free S H g r o u p s as w e l l as N H g r o u p s u n d e r t h e p r o p e r c o n d i t i o n s . O x f o r d 2
(93)
d e m o n s t r a t e d that at p H 7.0 p e n i c i l l i c a c i d s o l u t i o n r e a c t e d w i t h some p r i m a r y a m i n e s a n d a m i n o acids i n a m e d i u m k e p t at 37 ° C for s e v e r a l days. G e i g e r a n d C o n n (107)
f o u n d t h a t cysteine a n d t h i o g l y c o l a t e d i d
n o t g i v e a p o s i t i v e n i t r o p r u s s i d e r e a c t i o n w i t h a n excess of p a t u l i n o r p e n i c i l l i c a c i d . T h e s e r e a c t i o n p r o d u c t s h a d no o b s e r v e d t o x i c p r o p e r ties.
Thiosulfate inactivated patulin only.
Dickens and Cooke
(108)
r e p o r t e d t h a t p a t u l i n a n d p e n i c i l l i c a c i d r e a c t e d r a p i d l y w i t h cysteine. Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
G o o d m a n a n d H i a t t ( 1 0 9 ) a n d A n d r a u d et a l . (110)
f o u n d that e n z y m i c
S H groups reacted w i t h patulin. A s h o o r a n d C h u (111 ) f o u n d i n h i b i t i o n constants of a l c o h o l d e h y d r o genase f o r p a t u l i n at 5.0 X 1 0 " M a n d for p e n i c i l l i c a c i d at 1.1 X 1 0 " M 5
4
w h e r e n o n - c o m p e t i t i v e i n h i b i t i o n was o b s e r v e d a n d i n h i b i t i o n constants of l a c t i c d e h y d r o g e n a s e for p a t u l i n at 6.2 X 1 0 " M a n d p e n i c i l l i c a c i d at 6
7.2 X 1 0 " M w h e r e c o m p e t i t i v e i n h i b i t i o n w a s observed. 5
v e r s e d the effect o n l a c t i c d e h y d r o g e n a s e genase.
G o t t l i e b a n d S i n g h (112)
Cysteine re
but not on alcohol dehydro
o b s e r v e d succinate oxidase a n d d e
h y d r o g e n a s e i n h i b i t i o n at h i g h c o n c e n t r a t i o n of p a t u l i n , 5 X 1 0 " M . 2
C i e g l e r et al. ( 2 9 ) f o u n d t h a t a r g i n i n e , h i s t i d i n e , a n d lysine r e a c t e d w i t h p e n i c i l l i c acid. T h e reaction between lysine a n d histidine a n d p e n i c i l l i c a c i d w e n t t o c o m p e t i o n i n n i n e days at p H 7.0. T h e r e a c t i o n b e t w e e n p e n i c i l l i c a c i d a n d g l u t a t h i o n e or cysteine w a s essentially c o m p l e t e i n 7 hrs at p H 5, 6, or 7. T h e r e a c t i o n p r o d u c t s b e t w e e n g l u t a t h i o n e o r c y s t e i n e a n d p e n i c i l l i c a c i d w e r e i d e n t i f i e d as a n a d d i t i o n to the i s o l a t e d d o u b l e b o n d r a t h e r t h a n the c o n j u g a t e d d o u b l e b o n d ( F i g u r e 5 ) .
R Applied Microbiology
Figure 5. Reaction between penicillic acid and RSH when RSH is cysteine or glutathione (29) H o f m a n n et a l . (US)
o b s e r v e d faster r e a c t i o n rates w i t h p a t u l i n a n d
s u l f h y d r y l g r o u p s at p H 7.4 t h a n at p H 5.0.
T h e y postulated that the
a d d i t i o n of R S H c o u l d o c c u r i n s e v e r a l w a y s , b u t t h e r e a c t i o n p r o d u c t s w e r e n o t i s o l a t e d a n d i d e n t i f i e d . I f the a d d i t i o n w e r e at the 3 a n d 7
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
WILSON
Patulin
and Penicillic
99
Acid
p o s i t i o n w i t h a shift i n t h e d o u b l e b o n d , t h e l a c t o n e r i n g m i g h t b e less stable a n d m o r e l i a b l e to h y d r o l y s i s , e x p l a i n i n g t h e loss of b i o l o g i c a l
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
activity ( F i g u r e 6 ) .
Figure 6.
One possible reaction patulin and RSH
between
T h e r e a c t i o n of s u l f h y d r y l g r o u p s w i t h β-propiolactone w a s s t u d i e d b y D i c k e n s a n d Jones (114).
T h e y isolated S-2-carboxylethyl-L-cysteine
as t h e m a j o r p r o d u c t w h e n c y s t e i n e a n d β - p r o p i o l a c t o n e r e a c t e d i n n e u t r a l solution.
I n t h e presence o f β - p r o p i o l a c t o n e a n d h e a t - i n a c t i v a t e d l i v e r
supernatant, n o free a c i d w a s p r o d u c e d p r e s u m a b l y b e c a u s e t h e β - p r o p i o l a c t o n e r e a c t e d w i t h t h e d e n a t u r e d proteins
(115).
Compounds
with
α,β-unsaturation m a y r e a c t w i t h S H groups a t t a c h e d to p r i m a r y c a r b o n atoms b u t p r o b a b l y n o t w i t h those a t t a c h e d to t e r t i a r y c a r b o n ( 116).
Jones a n d Y o u n g (117)
(4-hydroxypent-2-enoic
atoms
f o u n d that t h e b i o l o g i c a l l y a c t i v e l a c t o n e
acid lactone)
r e a c t e d w i t h p r i m a r y amines to
y i e l d a n unstable M i c h a e l addition product whereas inactive
lactones
s u c h as 4 - h y d r o x y p e n t - 3 - e n o i c a c i d lactone gave rise to a m i d e d e r i v a t i v e s . F u r t h e r studies b y Jones a n d Y o u n g ( U S ) r e v e a l e d t h a t lactones s u c h as 4 - h y d r o x y p e n t - 2 - e n o i c
carcinogenic
a c i d lactone u n d e r w e n t M i c h a e l
a d d i t i o n w i t h R S H w h i c h t h e n gave rise to t h e S - a l k y l a t e d d e r i v a t i v e . T h e reactions o f p a t u l i n a n d p e n i c i l l i c a c i d w i t h s u l f h y d r y l a n d a m i n o g r o u p s n e e d to b e s t u d i e d i n m o r e d e t a i l , a n d t h e t o x i c i t y o f t h e d e r i v a t i v e s s h o u l d b e d e t e r m i n e d . I n 1961 D i c k e n s a n d Jones (114)
re
ported that patulin a n d penicillic a c i d produced malignant tumors w h e n a d m i n i s t e r e d s u b c u t a n e o u s l y to rats. A l l of t h e c a r c i n o g e n i c a l l y a c t i v e lactones possessed e i t h e r α,β-unsaturation, at p o s i t i o n 4, o r b o t h (119,120,121).
a n external unsaturated b o n d
Because both patulin a n d penicillic
a c i d are q u i t e r e a c t i v e , o r a l f e e d i n g
studies a r e n e e d e d
properly their potential health hazard.
to interpret
S i n c e t h e r e a c t i o n p r o d u c t of
β - p r o p i o l a c t o n e a n d cysteine, S - 2 - c a r b o x y e t h y l - L - c y s t e i n e , h a d w e a k c a r c i n o g e n i c properties, t h e r e a c t i o n p r o d u c t s o f p e n i c i l l i c a c i d a n d p a t u l i n w i t h R S H should b e evaluated for carcinogenic properties. S o m e o f p a t u l i n ' s other effects o n b i o l o g i c a l systems are i n t e r e s t i n g i n r e l a t i o n to d e f i n i n g p r i m a r y a n d s e c o n d a r y effects, b u t t h e list is n o t
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
100
MYCOTOXINS
i n t e n d e d to b e i n c l u s i v e .
These
i n c l u d e effects o n c a t i o n transfer i n
h u m a n erythrocytes where p a t u l i n i n h i b i t e d K A t h i g h concentrations
transfer at 1 0 " M
+
1 0 " M p a t u l i n i n h i b i t e d succinate
succinate dehydrogenase
(112).
W i t h e r s (123)
3.5 X 1 0 " M i n d u c e d a b n o r m a l metaphases a c i d o n m i t o s i s , G o r i n i et a l . (124)
oxidase a n d
f o u n d t h a t p a t u l i n at
a n d a h i g h percentage
6
p o l y p l o i d cells i n h u m a n c h r o m o s o m e s .
(122).
3
2
of
S t u d y i n g t h e effect o f p e n i c i l l i c
c o n c l u d e d that p e n i c i l l i c a c i d not only
h a d a s t a t m o k i n e t i c a c t i o n b u t also a p a r t i a l i n t e r k i n e t i c b l o c k i n g a c t i o n i n t h e megaloblasts of c h i c k e n e m b r y o s .
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
1 4
N o t o x i c i t y w a s associated w i t h
C a c t i v i t y i n eggs l a i d b y hens f e d p a t u l i n
1 4
C ( 1 2 5 , 126).
A u s t i n et a l .
(127, J 2 8 ) r e p o r t e d t h a t p a t u l i n i n d u c e d s e r o t y p i c t r a n s f o r m a t i o n s i n Paramecium
aurelia
t h a t m a y i n fact b e m u t a t i o n s .
P e t i t e m u t a n t s o f Saccharomyces
cerevisiae
were induced b y patulin.
E x p o s u r e d u r i n g t h e e x p o n e n t i a l phase p r o d u c e d a h i g h e r m u t a t i o n f r e quency
t h a n d u r i n g t h e s t a t i o n a r y phase
f o u n d t h a t S. cerevisiae
(129).
H a r w i g et a l .
(130)
fermentation of apple juice was not i n h i b i t e d b y
s i m i l a r concentrations of p a t u l i n a n d t h a t t h e p a t u l i n d i s a p p e a r e d d u r i n g t h e f e r m e n t a t i o n process. T h e difference i n the p H of t h e m e d i u m a n d of t h e a p p l e j u i c e m a y b e i m p o r t a n t i n these different
observations.
U s i n g c e l l c u l t u r e systems U m e d a ( 9 8 ) d e m o n s t r a t e d t h a t s i m i l a r concentrations of p a t u l i n o r p e n i c l l i c a c i d d a m a g e d l i v e r , k i d n e y , l u n g , a n d H e L a cells. lin.
In HeLa
H o w e v e r p e n i c i l l i c a c i d w a s less c y t o t o x i c t h a n p a t u
cells p e n i c i l l i c a c i d a c t e d
s l o w l y , a n d a c c u m u l a t i o n of
m e t a p h a s i c cells w a s p r o m i n e n t . P a t u l i n a c t e d r a p i d l y a n d d i r e c t l y , stop p i n g t h e w h o l e c e l l c y c l e ( 9 9 ) . A t 100 f t g / m l o f p e n i c i l l i c a c i d a n d 3.2 / A g / m l of p a t u l i n , D N A synthesis w a s almost e n t i r e l y depressed, R N A a n d p r o t e i n synthesis w a s o n l y p a r t i a l l y depressed. (131)
but
Schaeffer et a l .
f o u n d a depression of R N A synthesis w i t h i n 2 0 m i n a n d a d e p r e s
s i o n o f p r o t e i n synthesis w i t h i n 60 m i n i n C h a n g l i v e r cells t r e a t e d w i t h 2.5 pg/ml o f p a t u l i n .
T h e r R N A species w e r e m o r e i n h i b i t e d t h a n t h e
n o n m e t h y l a t e d species; h o w e v e r
b o t h synthesis a n d m a t u r a t i o n o f t h e
R N A p r e c u r s o r species o c c u r r e d .
T h i s leads t o t h e s p e c u l a t i o n t h a t t h e
i n h i b i t i o n i n R N A biosynthesis m o s t l i k e l y o c c u r r e d at t r a n s c r i p t i o n f r o m D N A r a t h e r t h a n at m a t u r a t i o n f r o m p r e c u r s o r species (131).
Recovery
o c c u r r e d after 6 h r of t r e a t m e n t of H e L a cells w i t h p e n i c i l l i c a c i d , b u t n o r e c o v e r y w a s o b s e r v e d after 1 h r w i t h p a t u l i n ( 9 9 ) . C h a n g l i v e r cells d i d n o t r e c o v e r after a 2 0 m i n t r e a t m e n t w i t h 2.5 f i g / m l o f p a t u l i n P r i o r to these observations H e w i t t et a l . (132)
(131).
observed a decrease i n
R N A content i n p a t u l i n t r e a t e d c a u l i f l o w e r l e a f tissue. P a t u l i n a n d p e n i c i l l i c a c i d at h i g h concentrations i n d u c e d b r e a k s i n H e L a c e l l D N A after a 1-hr i n c u b a t i o n i n b o t h a l k a l i n e a n d n e u t r a l sucrose g r a d i e n t s
(133).
P a t u l i n a n d p e n i c i l l i c a c i d are b o t h capable of interacting w i t h S H g r o u p s o f e n z y m e s a n d a r e m o r e i n h i b i t o r y to s o m e t h i o l e n z y m e s t h a n
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
W I L S O N
others.
Patulin and Penicillic
101
Acid
H o w e v e r w i t h the exception of the w o r k b y Ashoor a n d C h u t h e effective c o n c e n t r a t i o n s are p r o b a b l y too h i g h to b e p r i m a r y
(111) effects.
T h e i n h i b i t i o n of p r o t e i n , R N A , a n d D N A syntheses occurs s o o n
after i n t o x i c a t i o n o f c e l l c u l t u r e s , i n d i c a t i n g a p r i m a r y effect. R e s p i r a t i o n seems to b e i n h i b i t e d o n l y at h i g h c o n c e n t r a t i o n s , a n d t h e effects o n r e s p i r a t i o n are p r o b a b l y s e c o n d a r y .
T h e p r e c i s e m o d e o f a c t i o n is s t i l l
n o t c e r t a i n ; i n d e e d p a t u l i n a n d p e n i c i l l i c a c i d m a y h a v e m u l t i p l e effects
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
i n the cytoplasm.
Analysis P a t u l i n . P a t u l i n has b e e n d e t e c t e d i n s e v e r a l w a y s i n c l u d i n g p a p e r , t h i n l a y e r , gas, a n d l i q u i d c h r o m a t o g r a p h y . P a t u l i n w a s d e t e c t e d o n p a p e r c h r o m a t o g r a m s b y s p r a y i n g w i t h p h e n y l h y d r a z i n e a n d a l k a l i (101).
The
y e l l o w spot v i s i b l e after r e a c t i o n w i t h p h e n y l h y d r a z i n e h a s b e e n u s e d f o r p a t u l i n detection i n thin layer chromatography
(45, 104).
Scott
(44)
d i s c u s s e d i n d e t a i l t h e solvent systems a n d s p r a y reagents t h a t h a v e b e e n u s e d to detect p a t u l i n o n p a p e r a n d t h i n l a y e r c h r o m a t o g r a m s . T h i n l a y e r c h r o m a t o g r a p h y has b e e n u s e d extensively to estimate p a t u l i n i n foods a n d feeds.
Scott a n d Somers
(104)
extracted patulin
w i t h e t h y l acetate, d r i e d the extract w i t h c a l c i u m sulfate, a n d e l u t e d t h e p a t u l i n f r o m a s i l i c a g e l c o l u m n w i t h e t h y l acetate.
T h e patulin was
d e t e c t e d after s p r a y i n g w i t h a m m o n i a a n d p h e n y l h y d r a z i n e h y d r o c h l o r i d e a n d h e a t i n g ; t h e d e t e c t i o n l i m i t w a s 0.02-0.05 fig p a t u l i n (39).
Using
a p - a n i s a l d e h y d e s p r a y reagent c o n t a i n i n g e t h a n o l , acetic a c i d , a n d H S 0 , 2
the d e t c t i o n l i m i t w a s 0.1 μg p a t u l i n (134).
4
Reiss (135, 136) u s e d o - d i -
a n i s i d i n e ( s a t u r a t e d i n g l a c i a l a c e t i c a c i d ) to detect 0.02 μg o f p a t u l i n and N-methylbenzthiazolone-2-hydrazone
(Besthorns hydrazone)
to d e
tect 0.06 μ% p a t u l i n . A c e t o n i t r i l e - h e x a n e ( 4 + 1) w a s u s e d to extract p a t u l i n f r o m c o r n , w h e a t , r y e , oats, a n d s o r g h u m .
T h e a c e t o n i t r i l e phase w a s e v a p o r a t e d ,
and preparative T L C was used for preliminary purification. T h e patulin c o n c e n t r a t i o n w a s e s t i m a t e d u s i n g T L C plates c o n t a i n i n g a 254 n m fluo rescent i n d i c a t o r . T h e l i m i t o f d e t e c t i o n i n c o r n w a s a b o u t 4 0 f t g / k g ( 3 8 ) . A c e t o n i t r i l e - h e x a n e ( 1 0 0 : 4 5 ) w a s u s e d to extract p a t u l i n f r o m m e a t a n d m e a t p r o d u c t s (137). celite 545 column.
T h e acetonitrile phase was passed through a
T h e p a t u l i n content w a s e s t i m a t e d u s i n g d i p h e n y l -
b o r ( i n ) i c a c i d g i v i n g a d e t e c t i o n l i m i t o f 500 jug/kg. A s i m i l a r d e t e c t i o n l i m i t , 4 0 0 - 1 0 0 0 /xg/kg of p a t u l i n i n grains, w a s r e p o r t e d b y Stoloff et a l . (138)
using a multimycotoxin detection method.
E t h y l acetate w a s a n efficient solvent o f p a t u l i n i n a p p l e j u i c e ( 3 9 , 139). acetate
T h e a p p l e j u i c e w a s e x t r a c t e d w i t h e t h y l acetate, t h e d r i e d e t h y l was passed
through a silicagel column
using
benzene-ethyl
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
102
MYCOTOXINS
acetate ( 7 5 + 2 5 ) as t h e e l u t i n g solvent. P a t u l i n w a s d e t e c t e d b y T L C w i t h 3 - m e t h y l - 2 - b e n z o t h i a z o l i n o n e h y d r o c h l o r i d e as a s p r a y r e a g e n t ; t h e d e t e c t i o n l i m i t w a s 0.01 tig p a t u l i n . P a t u l i n w a s d e t e c t e d i n a p p l e juice u s i n g gas c h r o m a t o g r a p h y after a n i n i t i a l p r e p a r a t i v e T L C p u r i f i c a t i o n ( 4 5 ) . P o h l a n d et a l . (140)
pre
p a r e d t h e s i l y l ether, actate, a n d chloroacetate d e r i v a t i v e o f p a t u l i n a n d u s e d G L C analysis of the chloroacetate d e r i v a t i v e to detect 0.7 f i g / m l of p a t u l i n i n a p p l e juice. S u z u k i et a l . (141), P e r o et a l . (14S)
Pero and Harvan (142), and
d e v e l o p e d m e t h o d s f o r G L C analysis of t h e s i l y l ether
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
a n d trimethylsilyl derivatives of patulin. O n e l i q u i d c h r o m a t o g r a p h i c m e t h o d to d e t e r m i n e p a t u l i n i n a p p l e j u i c e has b e e n r e p o r t e d ( 1 4 4 ) . T h e i n i t i a l e x t r a c t i o n a n d c o l u m n c l e a n u p w e r e essentially t h e same as that u s e d b y Scott (139).
T h e p a t u l i n eluate
w a s e v a p o r a t e d to dryness a n d i m m e d i a t e l y d i s s o l v e d i n a s m a l l v o l u m e o f e t h y l acetate c o n t a i n i n g ^ - m e t h y l u m b e l l i f e r o n e as a n i n t e r n a l s t a n d a r d . T h e patulin was separated using isooctane/methylene c h l o r i d e / m e t h a n o l ( 8 4 + 15 + 1 ) o n Z o r b a x - s i l s i l i c a w i t h a flow of ca. 0.5 m l / m i n . T h e p e a k w a s c o l l e c t e d f o r T L C c o n f i r m a t i o n or G C - M S
d e t e r m i n a t i o n of t h e
acetate d e r i v a t i v e . T h e m a j o r p r o b l e m w i t h a n y m e t h o d t h a t estimates p a t u l i n o r p e n i c i l l i c a c i d is n o t h o w to extract i t b u t w h e n to extract i t . F o r e x a m p l e i n c a n n e d a p p l e j u i c e a n i n t e r f e r r i n g substance w a s r a p i d l y f o r m e d w h e n e x p o s e d to a i r (139);
i n f r e s h l y pressed, u n c l a r i f i e d j u i c e o n l y 5 0 - 6 0 %
o f t h e p a t u l i n w a s r e c o v e r e d after o v e r n i g h t storage i n a r e f r i g e r a t o r (145).
I n m e a t a n d b r e a d p a t u l i n occurs o n l y t e m p o r a r i l y d u r i n g f e r
m e n t a t i o n or m o l d i n g Penicillic A c i d .
(146,147). P e n i c i l l i c a c i d has b e e n d e t e c t e d u s i n g bioassay,
c o l o r i m e t r i c , t h i n l a y e r c h r o m a t o g r a p h i c , a n d gas c h r o m a t o g r a p h i c m e t h ods.
P e n i c i l l i c a c i d w a s n o n - t o x i c to z e b r a fish l a r v a e at 5 / * g / m l
(148),
a n d b r i n e s h r i m p l a r v a e w e r e m o d e r a t e l y sensitive to 10-20/xg/disc ( 1 4 9 ) . B e t i n a (150)
detected p e n i c i l l i c a c i d on paper chromatograms b y noting
t h e t o x i c i t y to Bacillus
subtillis
o n the chromatogram.
H y d r o x y l a m i n e r e a c t e d w i t h p e n i c i l l i c a c i d to g i v e a r e d c o l o r . A t 530 n m , Beers l a w h e l d t r u e f o r 8 0 - 1 0 0 0 m g / m l o f p e n i c i l l i c a c i d
(151).
A n o t h e r c o l o r i m e t r i c m e t h o d u s e d t h e r e d d i s h - p u r p l e c o m p l e x of a m m o n i a w i t h p e n i c i l l i c a c i d (81). (7:1)
(141),
E t h y l acetate (104),
chloroform-methanol
ethyl acetate-water
(90:10) (59), chloroform-methanol
( 7 0 : 3 0 ) ( 3 6 ) , a n d c h l o r o f o r m ( 2 9 , 152)
have extracted p e n i c i l l i c acid
f r o m v a r i o u s substances. S e v e r a l m e t h o d s h a v e b e e n u s e d f o r p r e l i m i n a r y p u r i f i c a t i o n . Scott a n d Somers (104)
d r i e d t h e e t h y l acetate extract w i t h c a l c i u m sulfate
a n d e l u t e d t h e p e n c i l l i c a c i d w i t h e t h y l acetate b y p a s s i n g i t t h r o u g h a s i l i c a g e l c o l u m n . P e r o et a l . (143)
used preparative thin layer chroma-
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
Patulin and Penicillic
W I L S O N
103
Acid
tography for preliminary purification. T h o r p e a n d Johnson (153) parti tioned the penicillic acid w i t h 3 % s o d i u m bicarbonate followed b y acidi fication
a n d e x t r a c t i o n w i t h e t h y l acetate.
T h e penicillic a c i d solution
was passed through a silica g e l c o l u m n u s i n g h e x a n e - e t h y l acetate-formic a c i d ( 7 5 0 + 2 5 0 + 1 ) as t h e e l u t i n g s o l v e n t . P e n i c i l l i c a c i d has b e e n d e t e c t e d o n t h i n l a y e r c h r o m a t o g r a m s b e cause i t
fluoresces
fluorescence
after exposure t o a m m o n i a ( 5 9 ) ; i t gives a y e l l o w
w i t h a m m o n i a a n d p h e n y l h y d r a z i n e (104)
w i t h p-anisaldehyde
a n d a green c o l o r
(134).
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
T h e t r i m e t h y l s i l y l e t h e r o f p e n c i l l i c a c i d w a s p r e f e r r e d f o r gas c h r o m a t o g r a p h y b y S u z u k i et a l . (141)
o v e r t h e acetate w h i c h f o r m e d
s l o w l y a n d t h e trifluoroacetate w h i c h a l w a y s gave t w o peaks. P e r o et a l . (143) a n d P e r o a n d H a r v a n (142)
d e s c r i b e d c o n d i t i o n s f o r gas c h r o m a t o
g r a p h i c d e t e c t i o n of p e n i c i l l i c a c i d a n d t h e t r i m e t h y l s i l y l ether.
The
t r i m e t h y l s i l y l ether w a s u s e d to d e t e c t p e n i c i l l i c a c i d i n m o l d y t o b a c c o (152).
T h o r p e a n d Johnson (153) successfully obtained t h e trifluoro
acetate of p e n i c i l l i c a c i d f o r gas c h r o m a t o g r a p h i c d e t e c t i o n i n c o r n a n d beans a n d p r e s e n t e d a c o n f i r m a t i o n m e t h o d u s i n g gas c h r o m a t o g r a p h y mass spectrometry. Natural
Occurrence
P a t u l i n . P a t u l i n w a s i m p l i c a t e d i n t h e mass deaths o f o v e r 100 c o w s that w e r e i n t o x i c a t e d b y d r y m a l t f e e d . Pénicillium
urticae
Patulin was obtained
from
that was subsequently isolated from the feed
(86).
P a t u l i n m a y h a v e b e e n e i t h e r t h e cause o f t h e i n t o x i c a t i o n , or i t m a y h a v e b e e n present i n s u b l e t h a l a m o u n t s t h a t a c t e d i n association w i t h other t o x i c substances. M a l e c u l m s i n t o x i c a t i o n o f c a t t l e associated w i t h m o l d y f e e d m a y b e c a u s e d b y p a t u l i n s i n c e t h e disease is associated w i t h A . clavatus
i n v a s i o n of t h e f e e d . A p p a r e n t l y t h e toxic p r i n c i p a l has n o t b e e n
identified
(87).
Pénicillium
expansum
causes a storage r o t of apples, pears, a n d c h e r
ries. B r i a n et a l . ( 154)
i d e n t i f i e d p a t u l i n i n d e c a y e d a p p l e j u i c e b y its
antimicrobial spectrum.
W a l k e r (155)
u s e d p a p e r c h r o m a t o g r a p h y to
detect p a t u l i n i n a p p l e j u i c e b y i t s u l t r a v i o l e t q u e n c h i n g at 254 n m . P a t u l i n was f o u n d i n commercially available apple juice i n C a n a d a a n d the U n i t e d States b y Scott et a l . ( 4 5 ) a n d W i l s o n a n d N u o v o (145).
A
l i m i t e d s u r v e y of c i d e r m i l l s ( 1 4 5 ) r e v e a l e d that p a t u l i n c o n t a m i n a t i o n depended on the proportion of decayed apples used i n m a k i n g fresh apple cider.
B e e r (156)
f o u n d t h a t p a t u l i n w a s present i n f r e s h c i d e r f r o m
u n s o u n d f r u i t ; p a t u l i n w a s n o t d e t e c t e d i n fresh c i d e r m a d e f r o m u n d e c a y e d apples. A f t e r i n o c u l a t i n g a p p l e s w i t h P . expansum (157)
H a r w i g et al.
f o u n d u p to 250 / x g / m l p a t u l i n p e r d e c a y e d a p p l e i n t h e expressed
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
104
MYCOTOXINS
j u i c e , a n d W i l s o n a n d N u o v o (145)
f o u n d u p to 146 tig p a t u l i n / m l e x
p r e s s e d juice. L e s s t h a n 1 1 % o f t h e isolates of P . expansum
produced
o v e r 100 j u g / m l of expressed j u i c e i n i n o c u l a t e d apples (145).
Similar
concentrations of p a t u l i n w e r e f o u n d i n lesions of pears a n d stone f r u i t s d e c a y e d b y P . expansum
(158).
P a t u l i n has b e e n r e p o r t e d i n spontaneously m o l d e d b r e a d
(147,159)
a n d w a s t e m p o r a r i l y present d u r i n g t h e r i p e n i n g o f f e r m e n t e d
sausage
T h e s t a b i l i t y of p a t u l i n at different t e m p e r a t u r e s a n d c o n d i t i o n s
(146).
should be studied i n more detail.
T h i s is e v i d e n t w h e n o n e c o m p a r e s
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
t h e studies o n p e n i c i l l i c a c i d p r o d u c t i o n i n c o r n w i t h t h e f e w studies o n p a t u l i n p r o d u c t i o n i n v a r i o u s c o m m o d i t i e s . P a t u l i n has also b e e n i s o l a t e d f r o m s o i l a n d w h e a t s t r a w residues w h e r e t h e r e is a p h y t o t o x i c p r o b l e m associated w i t h s t u b b l e m u l c h i n g (160).
T h e levels o f p a t u l i n r e c o v e r e d
are h i g h e n o u g h to l e a v e l i t t l e d o u b t t h a t p a t u l i n is a f a c t o r i n this phytotoxicity. Penicillic A c i d .
P e n i c i l l i c a c i d has b e e n f o u n d i n m o l d y t o b a c c o
f r o m c o m m e r c i a l storage
(152)
K u r t z m a n a n d C i e g l e r (59)
a n d i n m o l d y c o r n a n d beans
r e p o r t e d t h a t P . martensii
(153).
molded
high-
m o i s t u r e c o r n at 1 ° C . T h e y i s o l a t e d h i g h levels o f p e n i c i l l i c a c i d f r o m a r t i f i c i a l l y i n o c u l a t e d c o r n i n c u b a t e d at t e m p e r a t u r e s b e t w e e n
1° a n d
15 ° C . T h e p e n i c i l l i c a c i d d i s a p p e a r e d w i t h i n 4 5 days a t h i g h e r t e m p e r a tures. S e v e r a l other species of Pénicillium
that cause b l u e - e y e d
disease
of c o r n w e r e c a p a b l e of p e n i c i l l i c a c i d synthesis o n s e v e r a l c o m m o d i t i e s . P e a n u t s , soybeans, a n d cottonseeds d i d n o t a c c u m u l a t e p e n i c i l l i c a c i d w h e n i n o c u l a t e d w i t h f u n g i c a p a b l e of p e n i c i l l i c a c i d synthesis L i l l e h o j et a l . (161)
(30).
f o u n d t h a t atmospheres e n r i c h e d w i t h 6 0 % C 0
2
r e d u c e d p e n i c i l l i c a c i d a c c u m u l a t i o n b e l o w d e t e c t a b l e levels w h e n h i g h m o i s t u r e c o r n w a s i n o c u l a t e d w i t h P . martensii
a n d w a s s t o r e d at 5 ° C .
A c o m b i n a t i o n of l o w temperatures ( 1 5 ° or 2 2 ° C ) a n d l o w m o i s t u r e favored the production of penicillic a c i d i n autoclaved poultry i n o c u l a t e d w i t h A . ochraceus (163)
(162).
feed
C i e g l e r et a l . ( 2 9 ) a n d F i e l d e r
d i d n o t find p e n i c i l l i c a c i d i n m e a t p r o d u c t s o v e r g r o w n
with
Penicillia. Outlook B o t h p a t u l i n a n d p e n i c i l l i c a c i d s h o u l d b e c o n s i d e r e d as p o t e n t i a l l y d a n g e r o u s m y c o t o x i n s since b o t h are toxic a n d b o t h h a v e b e e n i m p l i c a t e d i n carcinogenesis.
P a t u l i n also causes m u t a t i o n s i n yeast. T h e c a r c i n o
g e n i c p r o p e r t i e s a n d other c h r o n i c effects n e e d f u r t h e r e v a l u a t i o n to assess p r o p e r l y t h e i r i m p o r t a n c e w h e n i n g e s t e d o r a l l y . B o t h mycotoxins are p r o b a b l y prevalent i n the environment a n d are p r o d u c e d b y s e v e r a l f u n g i c a p a b l e of d e c a y i n g f o o d o r f e e d . T h e n a t u r a l
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
6.
Patulin
WILSON
and Penicillic
Acid
105
o c c u r r e n c e a n d s t a b i l i t y o f either c o m p o u n d i n foods a n d feeds a t differ ent m o i s t u r e levels a n d t e m p e r a t u r e s h a v e n o t b e e n w e l l s t u d i e d ; w e c a n o n l y assume t h e i r presence a n d s t a b i l i t y i n m o l d y foods i f a f u n g u s t h a t p r o d u c e s either m y c o t o x i n is associated w i t h t h e d e c a y . T h e reactions a n d b i o l o g i c a l a c t i v i t y o f a d d u c t s o f p a t u l i n a n d p e n i c i l l i c a c i d w i t h S H groups a n d N H
2
groups n e e d f u r t h e r s t u d y f o r us t o
u n d e r s t a n d h o w d e t o x i f i c a t i o n occurs a n d i f t h e presence o f t h e a d d u c t s i n f o o d a n d f e e d s h o u l d cause c o n c e r n .
T h e question of t h e tautomerism
of p e n i c i l l i c a c i d is i n t e r e s t i n g a n d c o u l d b e better u n d e r s t o o d .
Both
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
p a t u l i n a n d p e n i c i l l i c a c i d m a y b e u s e f u l as m o d e l s o f a n t i - v i r a l c o m pounds.
P e r h a p s s u i t a b l e d e r i v a t i v e s c a n b e m a d e t h a t w i l l h e l p us
u n d e r s t a n d o r h e l p us c o n t r o l v i r u s - c a u s e d disorders.
Acknowledgments T h e assistance o f M a r t h a G i r a r d e a u , W i l l i a m T a b o r , a n d T h e o d o s i a F l o w e r s i n the literature retrieval is acknowledged w i t h gratitude. Literature
Cited
1. Boyd, Ε. M., Can. Med. Assoc. J. (1944) 50, 159. 2. Stansfield, J. M., Francis, A. E., Stuart-Harris, C. H., Lancet (1944) 2, 370. 3. Woodward, R. B., Singh, G., J. Amer. Chem. Soc. (1949) 71, 758. 4. Woodward, R. B., Singh, G., Experientia (1950) 6, 238. 5. Singh, J., Patulin, in "Antibiotics I., Mechanism of Action," Gottleib, D. and Shaw, P. D., Eds., pp. 621-630, Springer-Verlag, Berlin, 1967. 6. Kent, J., Heatley, N. G., Nature (1945) 156, 295. 7. Birkinshaw, J. H., Michael, S. E., Braken, Α., Raistrick, H., Lancet (1943) 245, 625. 8. Simonart, P., de Lathouwer, R., Zentralbl. Bacteriol. Parasitent. Abt II (1956-57) 110, 107. 10. Umezawa, H., Mizuhara, Y., Uekane, K., Hagiwara, M., Jap. Med. J. (1948) 1, 97. 11. Barta, J., Mĕciř, R., Experientia (1948) 4, 277. 12. Karchenko, S. M., Mikrobiol. Zh. Akad.-Nauk Ukr. (1970) 32, 115. 13. Chain, E., Florey, H . W., Jennings, Μ. Α., Brit. J. Exp. Pathol. (1942) 23, 202. 14. Abraham, E. P., Florey, H . W., "Substances Produced by Fungi Imperfecti and Ascomycetes," in "Antibiotics," Vol. I, Florey, H . W., Chain, E., Heatley, N . G., Jennings, Μ. Α., Sanders, A. G., Abraham, E. P., and Florey, M. E., Eds., pp. 273-355, Oxford University, London, 1949. 15. Efimenko, Ο. M., Yakimov, P. Α., Trudy Leningrad. Khim-Farmakol Inst. (1960) 9, 88. 16. Myrchink, T. G., Antibiotiki (USSR) (1967) 12, 762. 17. Waksman, S. Α., Horning, E. S., Spencer, E. L., Science (1942) 96, 202. 18. Florey, H . W., Jennings, Μ. Α., Philpot, F. J., Nature (1944) 153, 139. 19. Kuehn, Η.Ή., Mycologia (1958) 50, 417. 20. Karow, E. O., Foster, J. W., Science (1944) 99, 265.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
106
MYCOTOXINS
21. Alsberg, C. L., Black, O. F., U.S. Dept. Agr., Bur. Plant Ind. Bull, 270, 1913. 22. Birkinshaw, J. H., Oxford, A. E., Raistrick, H., Biochem. J. (1936) 30, 394. 23. Gorbach, von G., Friedrich, W., Osterr. Chem.-Ztg. (1949) 50, 93. 24. Betina, V., Gašparíkovâ, E., Nemec, P., Biologia (1969) 24, 482. 25. Karow, E. O., Woodruff, H . B., Foster, J. W., Arch. Biochem. Biophys. (1944) 5, 279. 26. Wirth, J. C., Gilmore, T. E., Noval, J. J., Arch. Biochem. Biophys. (1956) 63, 452. 27. Van Eijk, G. W., Antonie van Leeuwenhoek, J. Microbiol. Serol. (1969) 35, 497. 28. Wirth, J., Klosek, R., Phytochemistry (1972) 11, 2615. 29. Ciegler, Α., Mintzlaff, H . J., Weisleder, D., Leistner, L., Appl. Microbiol. (1972) 24, 114. 30. Ciegler, Α., Kurtzman, C. P., Appl. Microbiol. (1970) 20, 761. 31. Burton, H . S., Brit. J. Exp. Pathol. (1949) 30, 151. 32. Birkinshaw, J. H., Gowland, Α., Biochem. J. (1962) 84, 342. 33. Kobayashi, H., Tsunoda, H., Tatsuno, T., Chem. Pharmacol. Bull. (Tokyo) (1971) 19, 839 34. Gill-Carey, D., Brit. J. Exp. Pathol. (1949) 30, 119. 35. Burton, H . S., Nature (1950) 165, 274. 36. Ciegler, Α., Can. J. Microbiol. (1972) 18, 631. 37. Chain, E., Florey, H. W., Jennings, Μ. Α., Crowfoot, D., Low, B., Lancet (1944) I, 112. 38. Pohland, A. E., Allen, R , J. Assoc. Offic. Anal. Chem. (1970) 53, 686. 39. Scott, P. M., Kennedy, B. P. C., J. Assoc. Offic. Anal. Chem. (1973) 56, 813. 40. Grove, J. F., J. Chem. Soc. (1951) 883. 41. Lalau-Keraly, F., Nivière, P., Tronche, P., C.R. (1965) 261, 4028. 42. Schepartz, A. I., Fleischman, R. Α., Cisle, J. H., J. Chromatogr. (1972) 69, 411. 43. Katzman, P. Α., Hays, Ε. E., Cain, C. K., van Wyk, J. J., Reithel, F. J., Thayer, S. Α., Doisy, Ε. Α., Gaby, W. L., Carroll, C. J., Muir, R. D., Jones, L. R., Wade, N. J., J. Biol. Chem. (1944) 154, 475. 44. Scott, P. M., Patulin in "Mycotoxins," I. F. H . Purchase, Ed., Elsevier Sci. Pub. Co., Amsterdam, in press. 45. Scott, P. M., Miles, W. F., Tóft, P., Dubé, J. G., J. Agr. Food Chem. (1972) 20, 450. 46. Scott, A. I., Yalpani, M., Chem. Commun. (J. Chem. Soc., Sect. D) (1967) 18, 945. 47. Raistrick, H., Birkinshaw, J. H., Braken, Α., Michael, S. E., Lancet (1943) 625. 48. Bergel, F., Morrison, A. L., Moss, A. R., Klein, R., Rinderknecht, H., Ward, J. L., Nature (1943) 152, 750. 49. Suzuki, T., Takeda, M., Tanabe, H., Chem. Pharm. Bull. (Tokyo) (1971) 19, 1786 50. Scott, P. M., Kennedy, B., van Walbeek, W., Experientia (1972) 28, 1252. 51. Woodward, R. B., Singh, G., J. Amer. Chem. Soc. (1950) 72, 1428. 52. Serratosa, F., Tetrahedron (1961) 16, 185. 53. Korzybski, T., Kowszyk-Gindifer, Z., Kurylowicz, W., "Antibiotics Origin, Nature and Properties," Vol. II, pp. 1223-1230, Pergamon, New York, 1967. 54. Page, J. E., Robinson, F. Α., J. Chem. Soc. (1943) 133. 55. Raphael, R. Α., J. Chem. Soc. (1947) 805. 56. Kovac, S., Solcaniova, E., Eglinton, G., Tetrahedron (1969) 25, 3617.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
6.
WILSON
Patulin
and Penicillic
Acid
107
57. Sassa, T., Hayakara, S., Ikeda, M., Miura, Y., Agr. Biol. Chem. (Tokyo) (1971) 35, 2130. 58. Ciegler, Α., Kurtzman, C. P., J. Chromatogr. (1970) 51, 511. 59. Kurtzman, C. P., Ciegler, Α., Appl. Microbiol. (1970) 20, 204. 60. Suzuki, S., Kimura, T., Saito, F., Ando, K., Agr. Biol. Chem. (1971) 35, 287. 61. Ford, J. H., Johnson, A. R., Hinman, J. W., J. Amer. Chem. Soc. (1950) 72, 4529. 62. Shaw, E., J. Amer. Chem. Soc. (1946) 68, 2510. 63. Szilágyi, L, Vályi-Nagy, T., Galambos, G., Microchim. Ichnoanal. Acta (1963) 5-6, 864. 64. Raphael, R. Α., J. Chem. Soc. (1948) 1508. 65. Raphael, R. Α., Roy. Inst. Chem. Lectures. Monographs and Reports (1950) 3, 18. 66. Bu'Lock, J. D., Hamilton, D., Hulme, Μ. Α., Powell, A. J., Smalley, Η. M., Shepherd, D., Smith, G. N., Can. J. Microbiol. (1965) 11, 765. 67. Bassett, E. W., Tanenbaum, S. W., Experientia (1958) 14, 38. 68. Tanenbaum, S. W., Bassett, E. W., Biochim. Biophys. Acta (1958) 28, 21. 69. Tanenbaum, S. W., Bassett, E. W., J. Biol. Chem. (1959) 234, 1861. 70. Bu'Lock, J. D., Ryan, A. J., Proc. Chem. Soc. (1958) 222. 71. Bassett, E. W., Tanenbaum, S. W., Biochim. Biophys. Acta (1960) 40, 535. 72. Bu'Lock, J. D., Smalley, Η. M., Proc. Chem. Soc. (1961) 209. 73. BuLock, J. D., Shepherd, D., Winstanley, D. J., Can. J. Microbiol. (1969) 15, 279. 74. Light, R. J., Biochim. Biophys. Acta (1969) 191, 430. 75. Forrester, P. I., Gaucher, G. M., Biochemistry (1972) 11, 1108. 76. Arihood, S., Light, R. J., Nature (1966) 210, 629. 77. Forrester, P. I., Gaucher, G. M., Biochemistry (1972) 11, 1102. 78. Scott, A. I., Zamir, L., Phillips, G. T., Yalpani, M., Bioorg. Chem. (1973) 2, 124. 79. Birch, A. J., Blance, G. Ε., Smith, Η., Proc. Chem. Soc. (1958) 4582. 80. Mosbach, K., Acta Chem. Scand. (1960) 14, 457. 81. Bentley, R., Keil, J. G., J. Biol. Chem. (1962) 237, 867. 82. Bentley, R., Keil, J. G., Proc. Chem. Soc. (1961) 111. 83. Ciegler, Α., Detroy, R. W., Lillehoj, Ε. B., "Patulin, Penicillic Acid and Other Carcinogenic Lactones," in "Microbial Toxins," Vol. 6, Ciegler, Α., Kadis, S., Ajl, S. J., Eds., pp. 409-434, Academic, New York, 1971. 84. Enomoto, M., Saito, M., Annu. Rev. Microbiol. (1972) 26, 279. 85. Broom, W. Α., Bülbring, E., Chapman, C. J., Hampton, J. W. F., Thomson, A. M., Ungar, J., Wein, R., Woolfe, G., Brit. J. Exp. Pathol. (1944) 25, 195. 86. Ukai, T., Yamamoto, Y., Yamamoto, T., J. Pharm. Soc. Japan (1954) 74, 450. 87. Schultz, V. J., Motz, R., Monatsh. Veterinaermed. (1973) 28, 790. 88. Lovett, J., Poultry Sci. (1972) 51, 2097. 89. McCalla, T. M., Guenzi, W. D., Norstadt, F. Α., Ζ. Allg. Mikrobiol. (1963) 3, 202. 90. Borner, H., Phytopathol. Ζ. (1963) 49, 1. 91. Oxford, A. E., Chem. Ind. (1942) 48. 92. Oxford, A. E., Raistrick, H., Smith, G., Chem. Ind. (1942) 22. 93. Oxford, A. E., Biochem. J. (1942) 36, 438. 94. Murnaghan, M. F., J. Pharmacol. (1946) 88, 119. 95. Zeller, Α., Matthes, T., Deut. Gesuntheitsw. (Berlin) (1946) 1, 499. 96. Hall, Ε. Α., Kavanagh, F., Asheshov, I. N., Antibiot. Chemother. (1951) 1, 369.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
108
MYCOTOXINS
97. Natori, S., Sakaki, S., Kurata, H., Udagawa, S., Ichinoe, M., Saito, M., Umeda, M., Chem. Pharm. Bull. (Tokyo) (1970) 18, 2259. 98. Umeda, M., Jap. J. Exp. Med. (1971) 41, 195. 99. Kawasaki, I., Oki, T., Umeda, M., Saito, M., Jap. J. Exp. Med. (1972) 42, 327. 100. Heatley, N. G., Philpot, F. J., J. Gen. Microbiol. (1947) 1, 232. 101. Yamamoto, T., J. Pharm. Soc, Jap. (1956) 76, 1419. 102. Jeffreys, E. G., J. Gen. Microbiol. (1952) 7,295. 103. Lovett, J., Peeler, J. T., J. Food Sci. (1973) 38, 1094. 104. Scott, P. M., Somers, E., J. Agr. Food Chem. (1968) 16, 483. 105. Pohland, A. E., Allen, R., J. Ass. Off. Anal. Chem. (1970) 53, 688. 106. Proc Intern. Botan. Congr., Stockholm, 1950, 7, 448 (1954). 107. Geiger, W. B., Conn, J. E., J. Amer. Chem. Soc. (1945) 67, 112. 108. Dickens, F., Cooke, J., Brit. J. Cancer (1965) 19, 404. 109. Goodman, I., Hiatt, R. B., Biochem. Pharmacol. (1964) 13, 871. 110. Andraud, G., Couquelet, J., Tronche, P., Dorel, M., Ann. Biol. Clin. (Paris) (1966) 24, 469. 111. Ashoor, S. H., Chu, F. S., Food Cosmet. Toxicol. (1973) 11, 617. 112. Gottlieb, D., Singh, J., Riv. Patol. Veg. (1964) 4, 455. 113. Hofman, K., Mintzlaff, H . J., Alperden, I., Leistner, L., Fleischwirtschaft (1971) 51, 1534. 114. Dickens, F., Jones, Η. Ε. H., Brit. J. Cancer (1961) 15, 85. 115. Al-Kassab, S., Davis, W., Boyland, E., Brit. Emp. Cancer Campgn., 40th Annual Report (1962) 59. 116. Friedman, M., Cavins, J. F., Wall, J. S., J. Amer. Chem. Soc. (1965) 87, 3672. 117. Jones, J. B., Young, J. M., Can. J. Chem. (1966) 44, 1059. 118. Jones, J. B., Young, J. M., J. Med. Chem. (1968) 11, 1176. 119. Dickens, F., Essays Exp. Biol (1962) 107. 120. Dickens, F., Jones, Η. Ε. H., Brit. J. Cancer (1963) 17, 100. 121. Dickens, F., Jones, Η. Ε. H., Brit. J. Cancer (1965) 19, 392. 122. Kahn, Jr., J. B., J. Pharmacol. Exp. Ther. (1957) 121, 234. 123. Withers, R. F. J., "Mech. Mutat. Inducing Factors, Proc. Symp. (1966) 359. 124. Gorini, P., Rondanelli, R., Moratti, R., Gerna, G., Dionisi, D., Giorn. Ital. Chemioterap. (1967) 14, 7. 125. Lovett, J., Bacteriol. Proc, A (1970) 92. 126. Lovett, J., Abs. Annu. Meetg. Amer. Soc. Microbiol. (1972), Ε 99, 17. 127. Austin, M . L., Pasternak, J., Rudman, Β. M., Exp. Cell Res. (1967) 45, 289. 128. Austin, M . L., Pasternak, J., Rudman, Β. M., Exp. Cell Res. (1967) 45, 306. 129. Mayer, V. W., Legator, M. S., J. Agr. Food Chem. (1969) 17, 454. 130. Harwig, J., Scott, P. M., Kennedy, B. P. C., Chen, Y. K., Can. Inst. Food Technol J. (1973) 6, 45. 131. Schaeffer, W. I., Smith, Ν. E., Payne, P. Α., Wilson, D. M., in press. 132. Hewitt, E. J., Notion, Β. Α., Afridi, M . M. R. K., Plant Cell Physiol. (Tokyo) (1967) 8, 385. 133. Umeda, M., Yamamoto, T., Saito, M., Jap. J. Exp. Med. (1972) 42, 527. 134. Scott, P. M., Lawrence, J. W., van Walbeek, W., Appl. Microbiol. (1970) 20, 839. 135. Reiss, J., Chromatographia (1971) 4, 576. 136. Reiss, J., J. Chromatogr. (1973) 86, 190. 137. Tauchmann, F., Tóth, L., Leistner, L., Fleischwirtschaft (1971) 51, 1079. 138. Stoloff, L., Nesheim, S., Yin, L., Rodricks, J. V., Stack, M., Campbell, A. D., J. Ass. Off. Anal. Chem. (1971) 54, 91.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF GUELPH LIBRARY on July 25, 2012 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch006
6.
WILSON
Patulin
and Penicillic
Acid
109
139. Scott, P. M., J. Ass. Off. Anal. Chem. (1974) 57, 621. 140. Pohland, A. E., Sanders, K., Thorpe, C. W., J. Ass. Off. Anal. Chem. (1970) 53, 692. 141. Suzuki, T., Takeda, M., Tanabe, H., Shokuhin Eiseigaku Zasshi (1971) 12, 495. 142. Pero, R. W., Harvan, D., J. Chromatogr. (1973) 80, 255. 143. Pero, R. W., Harvan, D., Owens, R. G., Snow, J. P., J. Chromatogr. (1972) 65, 501. 144. Ware, G. M., Thorpe, C. W., Pohland, A. E., J. Ass. Off. Anal. Chem. (1974) 57, 1113. 145. Wilson, D. M., Nuovo, G. J., Appl. Microbiol. (1973) 26, 124. 146. Alperden, I., Mintzlaff, H . J., Tauchmann, F., Leistner, L., Fleischwirtschaft (1973) 53, 566. 147. Reiss, J., Chem. Mikrobiol., Technol. Lebensm. (1973) 2, 171. 148. Abedi, Ζ. H., Scott, P. M., J. Ass. Off. Anal. Chem. (1969) 52, 963. 149. Harwig, J., Scott, P. M., Appl. Microbiol. (1971) 21, 1011. 150. Betina, V., J. Chromatogr. (1964) 15, 379. 151. Sternberg, M., Acad. Rep. Pop. Rom. Studii Cer. Chim. (1956) 4, 315. 152. Snow, J. P., Lucas, G. Β., Harvan, D., Pero, R. W., Owens, R. G., Appl. Microbiol. (1972) 24, 34. 153. Thorpe, C. W., Johnson, R. L., J. Ass. Off. Anal. Chem. (1974) 57, 861. 154. Brian, P. W., Elson, G. W., Lowe, D., Nature (1956) 178, 263. 155. Walker, J. R. L., Photochemistry (1969) 8, 561. 156. Beer, S. V., Proc. Ν.Y. St. Hort. Soc. (1974) 119, 165. 157. Harwig, J., Chen, Y. K., Kennedy, B. P. C., Scott, P. M., Can. Inst. Food Technol. J. (1973) 6, 22. 158. Buchanan, J. R., Sommer, N . F., Fortlage, R. J., Maxie, Ε. C., Mitchell, F. G., Hseih, D. P. H., J. Amer. Soc. Hort. Sci. (1974) 99, 262. 159. Reiss, J., Naturwissenschaften (1972) 59, 37. 160. Norstadt, F. Α., McCalla, T. M., Soil Sci. (1969) 107, 188. 161. Lillehoj, Ε. B., Milburn, M . S., Ciegler, Α., Appl. Microbiol. (1972) 24, 198. 162. Bacon, C. W., Sweeney, J. G., Robbins, J. D., Burdick, D., Appl. Micro biol. (1973) 26, 155. 163. Fiedler, von H., Arch. Lebensmittelhyg. (1973) 8, 180. RECEIVED November 8, 1974.
In Mycotoxins and Other Fungal Related Food Problems; Rodricks, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.