Pd-Catalyzed Asymmetric Dearomative Cycloaddition for Construction

Feb 19, 2018 - (6) In 2014,(7) Awata and Arai developed the first catalytic, ... (10) In 2017, Hyland et al. reported Pd(0)/BPhen complex-catalyzed [3...
0 downloads 0 Views 2MB Size
Article Cite This: J. Org. Chem. XXXX, XXX, XXX−XXX

pubs.acs.org/joc

Pd-Catalyzed Asymmetric Dearomative Cycloaddition for Construction of Optically Active Pyrroloindoline and Cyclopentaindoline Derivatives: Access to 3a-Aminopyrroloindolines Jun-Qi Zhang, Feifei Tong, Bing-Bing Sun, Wei-Tai Fan, Jun-Bo Chen, Dandan Hu, and Xing-Wang Wang* Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China S Supporting Information *

ABSTRACT: Asymmetric dearomative [3 + 2] cycloaddition reactions of 3-nitroindoles with vinyl aziridine and vinyl cyclopropanes have been respectively successfully developed in the presence of a chiral box/Pd(0) complex. A series of enantiomerically enriched 3a-nitro-hexahydropyrrolo[2,3-b]indole and 8b-nitrohexahydrocyclopenta[b]indole derivatives containing three contiguous chiral centers are smoothly obtained in high yields with satisfactory regio-, chemo-, and enantioselectivity. Remarkably, the synthetic utility of this process was demonstrated through direct reductive amination and functionalization of the carbon−carbon double bond of the desired products.



INTRODUCTION Chiral indoline derivatives are one type of privileged and significant nitrogen-containing molecular scaffolds1 that are widely present in natural products and pharmacological compounds.2 In particular, the synthesis of 3a-aminopyrroloindolines and their corresponding derivatives, as the key intermediates for some natural and man-made alkaloid products, has attracted tremendous attention from synthetic and medicinal chemists (Figure 1).3 However, to the best of

our knowledge, the formation of the pyrroloindoline motif with a 3a-amino group in a catalytic asymmetric strategy generally remains a formidable challenge in organic chemistry. Only limited methodologies have been developed by employing catalytic asymmetric strategies to form the key pyrroloindoline substructures.4 In 2012, Antilla and co-workers first reported a chiral phosphoric acid-catalyzed enantioselective dearomatization reaction, furnishing enantiomerically enriched 3a-aminopyrroloindoline derivatives (Scheme 1a).4a Then Toste et al. reported a highly effective and reliable approach for the synthesis of C3-diazenated pyrroloindolines from simple tryptamines and aryldiazonium tetrafluoroborates (Scheme 1b).4b Subsequently, the desired 3a-aminohexahydropyrrolo[2,3-b]indole scaffolds were established through a reduction reaction (Scheme 1b).5 Later, You and co-workers4c developed an elegant dearomative amination of tryptamines, providing efficient access to chiral 3a-aminopyrroloindolines (Scheme 1c). Despite advances made thus far, the development of direct access to optically active 3a-aminopyrroloindoline derivatives remains a challenging topic. Recently, 3-nitroindoles, a class of potentially promising electrophilic alkenes of a new type, have emerged as powerful and versatile precursors for the construction of polycyclic indole structures.6 In 2014,7 Awata and Arai developed the first catalytic, enantioselective dearomative [3 + 2] cycloadditions of electrophilic indoles

Figure 1. Representative 3a-aminopyrroloindoline-containing natural products. © XXXX American Chemical Society

Received: January 8, 2018

A

DOI: 10.1021/acs.joc.8b00046 J. Org. Chem. XXXX, XXX, XXX−XXX

Article

The Journal of Organic Chemistry Table 1. Optimization of the Reaction Conditionsa

Scheme 1. Strategies for Building 3a-Aminopyrroloindolines

with imino esters. Some related studies have also documented the stereoselective construction of structurally diverse polycyclic indoles.8 In addition, vinyl aziridines, offering a unique combination of reactivity, synthetic flexibility, and atom economy, are multifaceted building blocks for the construction of a number of nitrogen heterocyclics,9 but few successful examples are known for formation of pyrroloindoline derivatives.10 In 2017, Hyland et al. reported Pd(0)/BPhen complex-catalyzed [3 + 2] cycloaddition for diastereoselective synthesis of racemic 3a-nitropyrroloindolines and cyclopenta[b]indolines in high yields.11 Furthermore, the Pd-catalyzed ring opening of vinyl aziridines or vinyl cyclopropanes can convert racemic starting materials to enantioenriched products through a dynamic kinetic asymmetric transformation (DYKAT).12 In contrast to a kinetic resolution, the DYKAT process has provided an access to synthetic efficiency and atom economy of a reaction by the use of all the starting material.13 On the basis of our long-standing interest in construction of chiral indole derivatives,14 we designed a Pd-catalyzed dearomative cycloaddition process for enantioselective and diastereoselective construction of optically active 3anitrohexahydropyrrolo[2,3-b]indole and 8bnitrohexahydrocyclopenta[b]indole derivatives by the reactions of 3-nitroindoles with vinyl aziridine or vinyl cyclopropanes, which can facilely convert to 3a-aminopyrroloindoline derivatives through sequential reduction amination.

entry

M

L

yield (%)b

drc

ee (%)d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd2(dba)3·CHCl3 Pd(dba)2 Pd2(dba)3 Pd(PPh3)4

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L11 L11 L11

nr nr 32 75 99:1 dr, 94% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (80:20) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 19.59, t (minor) = 14.77; 1 [α]20 D = 112.1 (c 1, CHCl3); H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.39 (dd, J = 8.2, 3.5 Hz, 3H), 7.17 (s, 1H), 7.10 (dd, J = 8.3, 2.0 Hz, 1H), 5.59 (ddd, J = 17.7, 10.4, 7.9 Hz, 1H), 5.40 (d, J = 10.4 Hz, 1H), 5.27 (d, J = 17.1 Hz, 1H), 4.12−4.03 (m, 1H), 3.79 (s, 3H), 3.42 (dt, J = 12.1, 7.2 Hz, 1H), 3.01 (t, J = 12.4 Hz, 1H), 2.50 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.8, 144.0, 138.1, 136.2, 129.4, 129.3, 129.2, 127.8, 126.7, 122.9, 122.0, 118.0, 115.3, 100.2, 82.7, 53.0, 52.8, 51.5, 21.1. IR (neat, cm−1): 2922, 1718, 1698, 1665, 1479, 1314, 1297, 1156, 1056. HRMS (ESI): calcd for C21H20ClN3O6SNa+ [M + Na] + 500.0654; found: 500.0659. (3S,3aS,8aR)-Methyl 6-Bromo-3a-nitro-1-tosyl-3-vinyl-1,3,3a,8atetrahydropyrrolo[2,3-b]indole-8(2H)-carboxylate (3l). 45.3 mg, 87% yield, white solid, mp 177−178 °C; 98:2 dr, 93% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (70:30) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 10.83, t (minor) = 7.57; [α]20 D = 154 (c 1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.08 (s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.2 Hz, 1H), 7.22 (dd, J = 8.3, 1.7 Hz, 1H), 7.11 (s, 0H), 5.61−5.47 (m, 1H), 5.35 (d, J = 10.3 Hz, 1H), 5.22 (d, J = 17.1 Hz, 1H), 4.07−3.96 (m, 1H), 3.75 (s, 3H), 3.37 (dt, J = 12.0, 7.2 Hz, 1H), 2.96 (t, J = 12.4 Hz, 1H), 2.46 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.8, 144.04, 143.96, 136.2, 129.4, 129.2, 128.0, 126.7, 126.4, 125.9, 122.0, 118.5, 118.2, 100.2, 82.6, 52.9, 52.8, 51.5, 21.1. IR (neat, cm−1): 2922, 1723, 1707, 1597, 1480, 1380, 1295, 1241, 1119, 1027. HRMS (ESI): calcd for C21H20BrN3O6SNa+ [M + Na] + 544.0148; found: 544.0158. F

DOI: 10.1021/acs.joc.8b00046 J. Org. Chem. XXXX, XXX, XXX−XXX

Article

The Journal of Organic Chemistry (3S,3aS,8aR)-Dimethyl 3a-Nitro-1-tosyl-3-vinyl-1,3,3a,8atetrahydropyrrolo[2,3-b]indole-7,8(2H)-dicarboxylate (3m). 41.1 mg, 82% yield, white solid, mp 170−171 °C; >99:1 dr, 83% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak OD-H with hexane/iPrOH (70:30) as the eluent, flow: 1.0 mL·min−1, λ= 254 nm]: major diastereoisomer t (major) = 10.45, t (minor) = 9.14; [α]20 D = −38.9 (c 1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 8.6 Hz, 1H), 8.10 (s, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.81 (d, J = 7.9 Hz, 2H), 7.39 (d, J = 7.9 Hz, 2H), 7.19 (s, 1H), 5.61 (ddd, J = 17.7, 10.3, 7.8 Hz, 1H), 5.42 (d, J = 10.3 Hz, 1H), 5.26 (d, J = 17.1 Hz, 1H), 4.06 (dd, J = 12.8, 6.7 Hz, 1H), 3.93 (s, 3H), 3.80 (s, 3H), 3.43 (dt, J = 13.8, 7.3 Hz, 1H), 2.99 (t, J = 12.5 Hz, 1H), 2.49 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 165.3, 151.8, 146.6, 144.0, 136.1, 133.7, 129.5, 129.0, 128.6, 126.7, 124.7, 122.1, 119.8, 114.4, 100.1, 82.9, 52.88, 52.86, 51.8, 51.4, 21.1. IR (neat, cm−1): 2921, 1716, 1555, 1496, 1379, 1283, 1188, 1103. HRMS (ESI): calcd for C23H23N3O8SNa+ [M + Na] + 524.1098; found: 524.1090. (3S,3aS,8aR)-Dimethyl 3a-Nitro-1-tosyl-3-vinyl-1,3,3a,8atetrahydropyrrolo[2,3-b]indole-4,8(2H)-dicarboxylate (3n). 33.1 mg, 66% yield, white solid, mp 172−173 °C; 92:8 dr, 21% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (70:30) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 34.95, t (minor) = 24.80; 1 [α]20 D = 20.8 (c 1, CHCl3); H NMR (400 MHz, CDCl3) δ 7.98 (dd, J = 8.2, 1.2 Hz, 1H), 7.72 (s, 1H), 7.70 (s, 1H), 7.65 (dd, J = 7.8, 1.1 Hz, 1H), 7.55−7.46 (m, 1H), 7.34 (s, 1H), 7.32 (s, 1H), 6.81 (s, 1H), 5.92 (ddd, J = 16.9, 10.1, 9.4 Hz, 1H), 5.35 (d, J = 16.2 Hz, 1H), 5.22 (dd, J = 10.2, 1.4 Hz, 1H), 4.41 (dd, J = 9.2, 5.0 Hz, 1H), 3.95 (d, J = 12.4 Hz, 1H), 3.92 (s, 3H), 3.62 (s, 3H), 3.45 (dd, J = 11.3, 5.0 Hz, 1H), 2.44 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 166.1, 151.9, 143.4, 143.3, 137.0, 132.5, 131.6, 130.2, 129.2, 126.1, 125.9, 122.7, 119.5, 119.4, 102.9, 80.5, 53.6, 52.8, 52.3, 51.4, 21.1. IR (neat, cm−1): 2922, 1719, 1683, 1501, 1452, 1321, 1298, 1127, 1021, 1011. HRMS (ESI): calcd for C23H23N3O8SNa+ [M + Na] + 524.1098; found: 524.1099. Typical Experimental Procedure for Reaction of 3-Nitroindole and Vinyl Cyclopropane. Under N2 atmosphere, Pd(dba)2 (0.005 mmol, 5 mol %) and L8 (0.006 mmol, 6 mol %) were charged into a flame-dried vessel, and PhF (1 mL) was added via syringe. The resulting mixture was stirred at room temperature for 0.5 h. Then the substrates 1 (0.1 mmol) and 2b (0.12 mmol, 1.2 equiv) were introduced into the vessel. The reaction mixture was stirred at 25 °C until the reactant 1 was consumed (detected by TLC). Upon completion as determined by TLC analysis, the solvent was removed under reduced pressure. The reaction mixture was directly loaded onto a silica gel column and purified by flash column chromatography to afford the desired cycloadduct. The racemic samples described in this work were synthesized according to the above procedure, which was catalyzed by Pd(dba)2 with mixed L8 and ent-L8 as ligands. 3,3-Dibenzyl 4-Ethyl (1R,3aR,8bS)-8b-Nitro-1-vinyl-1,2,3a,8btetrahydrocyclopenta[b]indole-3,3,4-tricarboxylate (4a/4a′). 51.3 mg, 90% yield, white solid, mp 80−81 °C; 2:1 dr, 91% and 65% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (90:10) as the eluent, flow: 1.0 mL·min−1, λ= 254 nm]: major diastereoisomer t (major) = 21.38, t (minor) = 1 13.66; [α]20 D = 103.2; H NMR (400 MHz, CDCl3) 4a δ 7.85 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.39 (s, 8H), 7.28 (s, 1H), 7.19 (t, J = 5.8 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.53 (s, 1H), 6.00 (ddd, J = 17.5, 10.3, 7.3 Hz, 1H), 5.44−5.37 (m, 1H), 5.34 (s, 2H), 5.27 (d, J = 17.2 Hz, 1H), 5.16 (t, J = 13.3 Hz, 1H), 5.07 (t, J = 12.6 Hz, 1H), 4.23−4.15 (m, 1H), 3.95 (s, 1H), 3.48 (dt, J = 13.6, 6.5 Hz, 1H), 2.63 (dd, J = 13.4, 5.6 Hz, 1H), 2.33 (t, J = 13.6 Hz, 1H), 1.27−1.12 (m, 3H). 4a′ (selected peaks) δ 7.66 (d, J = 7.7 Hz, 1H), 7.29 (s, 1H), 5.71 (dt, J = 17.7, 9.2 Hz, 1H), 5.31 (s, 1H), 4.88 (d, J = 11.9 Hz, 1H), 4.08−4.02 (m, 1H), 3.55 (d, J = 8.6 Hz, 1H), 2.79 (dd, J = 13.2, 6.2 Hz, 1H), 2.51 (t, J = 11.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) 4a/4a′ δ 168.9, 168.8, 167.1, 166.7, 151.8, 144.2, 141.8, 134.6, 134.4, 134.2, 134.0, 132.3, 132.1, 131.5, 131.2, 128.4, 128.2, 128.1, 128.0, 127.8, 127.8, 127.3, 125.8, 125.5, 123.3, 122.5, 122.0, 120.8, 120.0, 115.6, 115.1, 100.3, 72.3, 71.7, 67.9, 67.8,

67.6, 67.5, 63.6, 62.6, 62.1, 61.8, 53.7, 49.5, 40.3, 37.9, 13.6. IR (neat, cm−1): 2931, 1717, 1698, 1541, 1472, 1389, 1246, 1111, 1045. HRMS (ESI): calcd for C32H30N2O8Na+ [M + Na] + 593.1894; found: 593.1903. Dibenzyl (1R,3aR,8bS)-8b-Nitro-4-tosyl-1-vinyl-1,3a,4,8btetrahydrocyclopenta[b]indole-3,3(2H)-dicarboxylate (4b/4b′). 56.1 mg, 86% yield, white solid, mp 145−146 °C; 1.1:1 dr, 83% and 82% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak IA-H with hexane/iPrOH (90:10) as the eluent, flow: 0.8 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 17.67, t 1 (minor) = 30.52; [α]20 D = 11.4 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 4b/4b′ δ 7.75 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.52−7.48 (m, 2H), 7.48−7.45 (m, 2H), 7.44−7.39 (m, 3H), 7.39− 7.36 (m, 3H), 7.35−7.31 (m, 8H), 7.31−7.26 (m, 8H), 7.23 (dt, J = 6.1, 1.8 Hz, 2H), 7.23−7.10 (m, 2H), 7.09 (s, 1H), 7.07 (s, 2H), 7.05 (s, 1H), 6.40 (s, 1H), 6.34 (s, 1H), 5.74 (ddd, J = 17.5, 10.4, 7.4 Hz, 1H), 5.45 (d, J = 8.9 Hz, 1H), 5.43−5.38 (m, 1H), 5.31−5.22 (m, 3H), 5.21 (d, J = 2.5 Hz, 3H), 5.19 (d, J = 3.3 Hz, 2H), 5.14 (d, J = 2.7 Hz, 1H), 5.10 (d, J = 2.6 Hz, 1H), 5.07 (dd, J = 3.9, 1.2 Hz, 1H), 3.40 (q, J = 7.5 Hz, 1H), 3.25 (dt, J = 14.1, 6.7 Hz, 1H), 2.59 (dd, J = 13.7, 6.5 Hz, 1H), 2.43 (dd, J = 13.6, 5.5 Hz, 1H), 2.34 (d, J = 7.4 Hz, 1H), 2.31 (s, 3H), 2.30 (s, 3H), 2.24 (d, J = 13.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) 4b/4b′ δ 168.9, 168.9, 167.1, 65.9, 44.6, 44.4, 143.9, 42.0, 134.7, 134.6, 134.4, 134.2, 132.3, 132.1, 132.0, 131.7, 131.6, 131.5, 129.2, 128.1, 128.1, 128.1, 128.0, 128.0, 128.0, 128.0, 128.9, 128.8, 127.2, 127.1, 125.8, 125.5, 124.6, 123.9, 120.5, 120.2, 117.6, 117.3, 102.1, 100.7, 73.3, 72.9, 68.1, 67.9, 67.9, 67.7, 64.6, 63.8, 53.2, 49.9, 39.2 37.1, 21.1, 21.1. IR (neat, cm−1): 2920, 2360, 1771, 1635, 1541, 1497, 1374, 1261, 1026. HRMS (ESI): calcd for C36H32N2O8SNa+ [M + Na] + 675.1772; found: 675.1780. 3,3-Dibenzyl 4-Methyl (1R,3aR,8bS)-8b-Nitro-1-vinyl-1,2,3a,8btetrahydrocyclopenta[b]indole-3,3,4-tricarboxylate (4c/4c′). 46.1 mg, 83% yield, white solid, mp 84−85 °C; 2:1 dr, 92% and 51% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (70:30) as the eluent, flow: 0.8 mL min−1, λ = 254 nm]: major diastereoisomer t (major) = 21.33, t (minor) = 1 25.45; [α]20 D = 24.2 (c 1, CHCl3); H NMR (400 MHz, CDCl3) δ 7.69 (s, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 2.0 Hz, 7H), 7.15−7.09 (m, 2H), 7.05−7.00 (m, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.35 (s, 1H), 5.84 (ddd, J = 17.5, 10.4, 7.3 Hz, 1H), 5.25− 5.20 (m, 1H), 5.17−5.18(m, 1H), 5.14−5.12 (m, 1H), 5.00 (d, J = 12.3 Hz, 1H), 4.91 (d, J = 12.4 Hz, 1H), 3.44 (s, 3H), 3.32−3.23 (m, 2H), 2.46 (ddd, J = 13.4, 5.6, 1.6 Hz, 1H), 2.18 (t, J = 13.7 Hz, 1H). 4c′ (selected peaks) δ 7.49 (d, J = 7.7 Hz, 1H), 7.29 (s, 1H), 7.22− 7.18 (m, 7H), 6.33 (s, 1H), 5.62−5.48 (m, 1H), 5.16 (s, 2H), 5.11− 5.08 (m, 1H), 4.70 (d, J = 11.9 Hz, 1H), 3.40−3.32 (m, 2H), 2.64 (dd, J = 13.1, 6.2 Hz, 1H), 2.37 (dd, J = 13.1, 10.8 Hz, 1H). 13C NMR (101 MHz, CDCl3) 4c/4c′ δ 169.0, 168.9, 167.0, 166.6, 152.2, 144.2, 134.6, 134.4, 134.2, 133.9, 132.2, 132.1, 131.6, 131.3, 128.5, 128.2, 128.2, 128.1, 128.1, 128.1, 128.0, 127.9, 127.8, 127.3, 125.9, 125.5, 123.1, 122.7, 122.1, 120.8, 120 115.6, 115.0, 101.6, 100.3, 72.6, 71.6, 67.9, 67.9, 67.6, 67.5, 63.4, 62.5, 53.7, 52.5, 52.1, 49.3, 40.2, 37.8. IR (neat, cm−1): 2954, 1718, 1602, 1548, 1481, 1382, 1319, 1196, 1058. HRMS (ESI): calcd for C31H28N2O8Na+ [M + Na] + 579.1738; found: 579.1731. 3,3-Dibenzyl 4-(tert-Butyl) (1R,3aR,8bS)-8b-Nitro-1-vinyl1,2,3a,8b-tetrahydrocyclopenta[b]indole-3,3,4-tricarboxylate (4d/ 4d′). 47.2 mg, 79% yield, colorless oily liquid; 2.4:1 dr, 87% and 48% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (98:2) as the eluent, flow: 0.5 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 44.17, t 1 (minor) = 68.24; [α]20 D = 48.0 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 4d δ 7.69 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.38 (dd, J = 7.3, 1.3 Hz, 1H), 7.31 (dd, J = 5.5, 2.4 Hz, 6H), 7.23 (ddd, J = 7.0, 4.7, 2.1 Hz, 3H), 7.09 (ddd, J = 8.1, 3.6, 1.4 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.45 (s, 1H), 5.89 (ddd, J = 17.5, 10.4, 7.4 Hz, 1H), 5.32−5.27 (m, 1H), 5.24 (dd, J = 9.5, 2.5 Hz, 3H), 5.19 (s, 1H), 4.98 (d, J = 12.4 Hz, 1H), 3.39−3.30 (m, 1H), 2.55 (dd, J = 13.3, 5.5 Hz, 1H), 2.20 (t, J = 13.7 Hz, 1H), 1.48 (s, 9H). 4d′ (selected peaks) δ 7.57 (dd, J = 7.7, 1.3 Hz, 1H), 7.35 (t, J = 1.7 Hz, 1H), 7.29−7.26 (m, G

DOI: 10.1021/acs.joc.8b00046 J. Org. Chem. XXXX, XXX, XXX−XXX

Article

The Journal of Organic Chemistry 7H), 6.47 (s, 1H), 5.61 (ddd, J = 16.9, 10.1, 8.5 Hz, 1H), 5.15 (s, 1H), 5.08 (d, J = 12.1 Hz, 1H), 4.82 (d, J = 12.1 Hz, 1H), 3.46 (d, J = 8.2 Hz, 1H), 2.67 (dd, J = 13.2, 6.3 Hz, 1H), 2.41 (t, J = 11.5 Hz, 1H), 1.42 (s, 9H). 13C NMR (101 MHz, CDCl3) 4d/4d′ δ 168.9, 167.2, 166.8, 150.9, 134.5, 134.3, 132.4, 132.3, 131.3, 131.1, 128.1, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 127.6, 127.2, 123.0, 122.1, 120.6, 119.8, 115.7, 115.4, 82.4, 82.3, 71.9, 67.9, 67.6, 67.4, 62.7, 53.3, 49.6, 40.4, 37.9, 27.6. IR (neat, cm−1): 2923, 1726, 1661, 1547, 1497, 1346, 1268, 1124, 1152, 1002. HRMS (ESI): calcd for C34H34N2O8Na+ [M + Na] + 621.2207; found: 621.2213. Dibenzyl (1R,3aR,8bS)-4-Benzoyl-8b-nitro-1-vinyl-1,3a,4,8btetrahydrocyclopenta[b]indole-3,3(2H)-dicarboxylate (4e/4e′). 31.9 mg, 53% yield, white solid, mp 86−87 °C; 2.6:1 dr, 93% and 61% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak IAH with hexane/iPrOH (70:30) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 6.67, t (minor) = 22.08; 1 [α]20 D = 10.3 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 4e δ 7.46− 7.40 (m, 1H), 7.39−7.35 (m, 3H), 7.35−7.29 (m, 2H), 7.27−7.23 (m, 2H), 7.23−7.19 (m, 6H), 7.15 (dt, J = 7.6, 3.2 Hz, 4H), 6.98−6.92 (m, 1H), 6.66 (s, 1H), 5.87 (ddd, J = 17.4, 10.4, 7.1 Hz, 1H), 5.29−5.21 (m, 1H), 5.12 (d, J = 2.5 Hz, 1H), 5.08 (d, J = 2.5 Hz, 3H), 4.88 (d, J = 12.3 Hz, 1H), 3.43−3.32 (m, 1H), 2.45 (dd, J = 13.4, 5.8 Hz, 1H), 2.25 (d, J = 13.7 Hz, 1H). 4e′ (selected peaks) δ 7.55 (d, J = 6.9 Hz, 1H), 7.06 (dd, J = 17.5, 9.4 Hz, 4H), 6.60 (s, 1H), 5.51 (dt, J = 17.8, 9.4 Hz, 1H), 5.19−5.16 (m, 2H), 5.02 (d, J = 12.1 Hz, 1H), 4.68 (d, J = 12.1 Hz, 1H), 2.67 (dd, J = 13.4, 6.3 Hz, 1H). 13C NMR (101 MHz, CDCl3) 4e/4e′ δ 168.8, 166.8, 144.4, 134.9, 134.5, 134.3, 134.3, 132.3, 132.3, 131.0, 130.5, 130.4, 128.2, 128.2, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 127.3, 127.2, 123.6, 123.2, 120.6, 120.0, 115.4, 99.3, 72.20, 67.9, 67.7, 62.2, 48.6, 39.8, 37.8. IR (neat, cm−1): 2923, 1727, 1660, 1547, 1464, 1345, 1267, 1223, 1176, 1080. HRMS (ESI): calcd for C36H30N2O7Na+ [M + Na] + 625.1945; found: 625.1945. 3,3-Dibenzyl 4-Ethyl (1R,3aR,8bS)-7-Bromo-8b-nitro-1-vinyl1,2,3a,8b-tetrahydrocyclopenta[b]indole-3,3,4-tricarboxylate (4f/ 4f′). 62.9 mg, 97% yield, white solid, mp 84−85 °C; 2:1 dr, 86% and 26% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak IA-H with hexane/iPrOH (95:5) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 18.46, t 1 (minor) = 34.27; [α]20 D = 44.3 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 4f δ 7.65 (d, J = 2.0 Hz, 2H), 7.50 (dd, J = 8.8, 2.1 Hz, 1H), 7.37−7.30 (m, 8H), 7.20 (dd, J = 6.6, 2.9 Hz, 2H), 6.43 (s, 1H), 6.42 (s, 1H), 5.90 (ddd, J = 17.5, 10.4, 7.3 Hz, 1H), 5.38 (d, J = 10.4 Hz, 1H), 5.27 (s, 1H), 5.24 (d, J = 1.5 Hz, 1H), 5.09 (d, J = 12.2 Hz, 1H), 4.97 (d, J = 12.2 Hz, 1H), 4.10 (ddd, J = 14.2, 8.8, 5.2 Hz, 1H), 3.48− 3.27 (m, 2H), 2.59 (ddd, J = 13.5, 5.7, 1.5 Hz, 1H), 2.25 (t, J = 13.7 Hz, 1H), 1.12 (t, J = 7.8 Hz, 3H). 4f′ (selected peaks) δ 7.58 (d, J = 2.0 Hz, 2H), 7.47 (dd, J = 8.8, 2.1 Hz, 1H), 7.33−7.24 (m, 4H), 7.09 (dt, J = 6.6, 1.6 Hz, 2H), 5.59 (ddd, J = 16.9, 10.1, 8.3 Hz, 1H), 5.35− 5.29 (m, 1H), 5.29 (s, 1H), 5.20 (s, 1H), 5.05 (d, J = 11.9 Hz, 1H), 4.83 (d, J = 11.8 Hz, 1H), 3.97 (dq, J = 10.5, 7.1 Hz, 1H), 3.85 (s, 2H), 2.71 (dd, J = 13.1, 6.2 Hz, 1H), 2.42 (dd, J = 13.2, 11.0 Hz, 1H), 1.07 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) 4f/4f′ δ 168.6, 168.6, 166.9, 166.6, 134.5, 134.3, 134.2, 134.0, 133.8, 131.6, 131.5, 130.2, 128.7, 128.4, 128.2, 128.2, 128.1, 128.1, 128.1, 128.1, 127.9, 127.7, 121.3, 120.7, 116.9, 116.5, 115.5, 114.9, 99.7, 71.9, 68.0, 67.7, 67.5, 62.6, 62.2, 62.0, 53.8, 49.5, 40.2, 38.0, 13.5. IR (neat, cm−1): 2925, 1719, 1550, 1400, 1302, 1198, 1155, 1067. HRMS (ESI): calcd for C32H29N2O8BrNa+ [M + Na] + 671.0999; found: 671.0987. 3,3-Dibenzyl 4-Ethyl (1R,3aR,8bS)-6-Bromo-8b-nitro-1-vinyl1,2,3a,8b-tetrahydrocyclopenta[b]indole-3,3,4-tricarboxylate (4g/ 4g′). 64.2 mg, 99% yield, white solid, mp 89−90 °C; 2:1 dr, 86% and 23% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (98:2) as the eluent, flow: 0.5 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 71.54, t 1 (minor) = 94.60; [α]20 D = 36.0 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 4g δ 7.96 (s, 1H), 7.34 (dd, J = 4.6, 2.6 Hz, 8H), 7.31−7.28 (m, 1H), 7.22 (dd, J = 5.3, 2.0 Hz, 1H), 7.21−7.19 (m, 1H), 7.12 (d, J = 6.2 Hz, 1H), 6.43 (s, 1H), 5.88 (ddd, J = 17.5, 10.4, 7.3 Hz, 1H), 5.27 (s, 3H), 5.24−5.20 (m, 1H), 5.10 (d, J = 12.2 Hz, 1H), 4.97 (d, J = 12.2 Hz, 1H), 4.11 (ddd, J = 14.3, 8.9, 5.3 Hz, 1H), 3.48−3.32 (m,

2H), 2.59 (dd, J = 13.4, 5.6 Hz, 1H), 2.23 (t, J = 13.7 Hz, 1H), 1.13 (t, J = 8.2 Hz, 3H). 4g′ (selected peaks) δ 7.40 (d, J = 8.2 Hz, 1H), 7.32 (s, 8H), 7.25 (s, 1H), 7.18 (d, J = 1.8 Hz, 1H), 6.40 (s, 1H), 5.59 (ddd, J = 16.9, 10.1, 8.3 Hz, 1H), 5.37−5.30 (m, 3H), 5.17 (s, 1H), 5.04 (d, J = 11.8 Hz, 1H), 4.87 (d, J = 11.8 Hz, 1H), 3.97 (dt, J = 10.6, 7.2 Hz, 1H), 3.87 (s, 1H), 2.71 (dd, J = 13.1, 6.2 Hz, 1H), 2.48−2.37 (m, 1H), 1.07 (d, J = 6.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) 4g/4g′ δ 168.6, 168.6, 167.0, 166.6, 151.4, 145.2, 134.5, 134.3, 134.0, 133.7, 131.7, 131.7, 128.6, 128.5, 128.3, 128.2, 128.2, 128.1, 128.1, 128.1, 128.1, 127.9, 127.8, 126.9, 126.4, 126.0, 125.7, 125.8, 121.1, 120.9, 120.4, 118.8, 118.3, 99.8, 72.0, 68.0, 67.8, 67.5, 62.6, 62.3, 62.1, 53.9, 49.5, 40.3, 37.9, 13.6, 13.5. IR (neat, cm−1): 2923, 1723, 1595, 1480, 1378, 1259, 1193, 1093. HRMS (ESI): calcd for C32H29N2O8BrNa+ [M + Na] + 671.0999; found: 671.0990. 3,3-Dibenzyl 4-Ethyl (1R,3aR,8bS)-5-Methyl-8b-nitro-1-vinyl1,2,3a,8b-tetrahydrocyclopenta[b]indole-3,3,4-tricarboxylate (4h/ 4h′). 33.9 mg, 58% yield, white solid, mp 98−99 °C; 3:1 dr, 86% and 59% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak IA-H with hexane/iPrOH (90:10) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: major diastereoisomer t (major) = 9.89, t 1 (minor) = 14.88; [α]20 D = 46.5 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 4h δ 7.28−7.21 (m, 9H), 7.15 (td, J = 7.9, 3.1 Hz, 3H), 7.00 (t, J = 7.7 Hz, 1H), 6.41 (s, 1H), 5.96 (ddd, J = 17.3, 10.4, 6.8 Hz, 1H), 5.27−5.19 (m, 2H), 5.12 (d, J = 11.8 Hz, 2H), 5.02 (s, 1H), 5.01−4.97 (m, 1H), 4.93 (d, J = 1.5 Hz, 1H), 4.06 (dq, J = 10.6, 7.1 Hz, 1H), 3.78 (dq, J = 10.6, 7.1 Hz, 1H), 3.39 (dt, J = 14.3, 6.0 Hz, 1H), 2.28−2.18 (m, 1H), 2.08 (d, J = 9.7 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H). 4h′ (selected peaks) δ 7.39 (d, J = 6.9 Hz, 1H), 7.21 (d, J = 2.6 Hz, 9H), 7.12−7.05 (m, 3H), 6.75 (s, 1H), 5.48 (ddd, J = 16.9, 10.2, 8.9 Hz, 1H), 5.19−5.15 (m, 2H), 5.10−5.07 (m, 2H), 4.96 (s, 2H), 4.19−4.12 (m, 1H), 3.94−3.87 (m, 1H), 2.45 (dd, J = 13.9, 6.4 Hz, 1H), 2.12 (d, J = 13.9 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) 4h/4h′ δ 169.7, 169.4, 166.5, 166.4, 153.5, 143.8, 142.0, 134.4, 134.3, 133.8, 133.6, 132.6, 132.3, 129.0, 128.7, 128.2, 128.1, 128.1, 128.1, 128.0, 128.0, 127.9, 127.9, 127.6, 125.7, 125.3, 124.5, 123.6, 121.5, 120.0, 119.7, 101.8, 99.4, 72.7, 70.8, 67.8, 67.7, 67.4, 67., 63.5, 62.3, 62.2, 50.8, 47.5, 38.5, 36.7, 19.3, 19.2, 13.7, 13.6. IR (neat, cm−1): 2920, 1726, 1544, 1456, 1394, 1247, 1156, 1050. HRMS (ESI): calcd for C33H32N2O8Na+ [M + Na] + 607.2051; found: 607.2063. Synthetic Transformation of 3a. (3S,3aS,8aS)-1,8-Ditosyl-3vinyl-2,3,8,8a-tetrahydropyrrolo[2,3-b]indol-3a(1H)-amine (4aa). Zinc powder (137.3 mg, 2.1 mmol, 21 equiv) was added portionwise during 10 min to a solution of 3a (53.0 mg, 0.10 mmol, 1 equiv) and trimethylsilyl chloride (0.17 mL, 2 mmol, 20 equiv) in methanol (4 mL) at 0 °C. The reaction was stirred at 0 °C and monitored by TLC for completion. Upon consumption of the starting material, the suspension was filtered and washed with methanol (2 × 3 mL) and then dichloromethane (2 × 3 mL). The filtrate was washed with brine (10 mL), dried over MgSO4, filtered, and concentrated, and the residue was purified by flash chromatography on silica gel to yield the pure product 4aa as a white solid (50.4 mg) in 99% yield. mp 181− 182 °C; 98:2 dr, 92% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (70:30) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: t (major) = 19.78, t (minor) 1 = 14.65; [α]20 D = 40.0 (c 1, CHCl3); H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.2 Hz, 1H), 7.36−7.28 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 7.0 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 6.47 (s, 1H), 5.49−5.34 (m, 1H), 5.14 (dd, J = 21.6, 13.7 Hz, 2H), 4.90 (s, 1H), 4.09 (s, 1H),3.79 (dd, J = 11.4, 6.8 Hz, 1H), 3.19−3.02 (m, 1H), 2.76 (t, J = 11.8 Hz, 1H), 2.43 (s, 3H), 2.32 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 144.0, 143.2, 142.8, 136.7, 133.9, 132.2, 129.8, 129.1, 129.0, 127.4 127.1, 126.3 123.6, 119.1, 115.7, 81.5, 79.9, 50.1, 48.4, 21.1, 21.1. IR (neat, cm−1): 3511, 3501, 1663, 1542, 1375, 1162, 1090. HRMS (ESI): calcd for C26H27N3O4S2Na+ [M + Na] + 532.1335; found: 532.1344. 2-((3S,3aS,8aS)-3a-Nitro-1,8-ditosyl-1,2,3,3a,8,8ahexahydropyrrolo[2,3-b]indol-3-yl)ethan-1-ol (5aa). In a 25 mL of Schlenk tube equipped with a magnetic stirring bar, 9-BBN dimer (40.5 mg, 0.15 mmol) was dissolved in anhydrous THF (2 mL), and H

DOI: 10.1021/acs.joc.8b00046 J. Org. Chem. XXXX, XXX, XXX−XXX

The Journal of Organic Chemistry



the resulting solution was cooled to 0 °C. After the mixture was stirred for 5 min, a solution of 3a (53 mg, 0.10 mmol) in THF (1 mL) was added to the reaction flask at 0 °C and stirred for about 12 h until the substrate was consumed. Then NaBO3 (200 mg) in water (3 mL) was added to the reaction flask, and the resulting mixture was stirred at ambient temperature for 6 h. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with the saturated aqueous NaCl solution, dried over Na2SO4, and finally evaporated under reduced pressure. Purified by flash chromatography on silica gel with petroleum ether/ ethyl acetate (3:1) as the solvent to give the pure product 5aa as a white solid (47.3 mg) in 85% yield. mp 172−173 °C; >99 dr, 91% ee. The dr and ee values were determined by HPLC [Daicel Chiralpak AD-H with hexane/iPrOH (80:20) as the eluent, flow: 1.0 mL·min−1, λ = 254 nm]: t (major) = 43.61, t (minor) = 26.36; [α]20 D = 18.8 (c 1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.42 (dd, J = 15.4, 7.9 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.04 (s, 1H), 4.10 (dd, J = 12.4, 6.6 Hz, 1H), 3.61 (t, J = 6.0 Hz, 1H), 2.94 (ddd, J = 10.5, 8.6, 3.4 Hz, 1H), 2.58 (dd, J = 31.4, 19.1 Hz, 1H), 2.42 (s, 2H), 2.34 (s, 2H), 2.24−2.12 (m, 1H), 2.02 (s, 1H), 1.29 (ddd, J = 16.2, 11.7, 5.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 144.7, 143.8, 142.9, 136.0, 132.8, 131.8, 129.5, 129.3, 127.4, 127.1, 126.9, 124.1, 121.5, 115.9, 101.5, 84.0, 60.1, 52.0, 47.9, 30.2, 21.1. IR (neat, cm−1): 3413 2971, 2901, 1772, 1698, 1541, 1489, 1396, 1110. HRMS (ESI): calcd for C26H28N3O7S2+ [M + H] + 558.1363; found: 558.1360. (S)-1-((3S,3aS,8aS)-3a-Nitro-1,8-ditosyl-1,2,3,3a,8,8ahexahydropyrrolo[2,3-b]indol-3-yl)ethane-1,2-diol (6aa/6aa′). To a solution of 3a (53 mg, 0.1 mmol, 1.0 equiv) in a mixture of acetone/ water (10:1, 2 mL) was added potassium osmate dihydrate (8.3 mg, 0.02 mmol, 2 equiv), then N-methylmorpholine N-oxide (60.0 mg, 0.5 mmol, 5.0 equiv) was added in several portions to the solution at room temperature. After the mixture was stirred for 24 h at room temperature, saturated aqueous sodium sulfite (5 mL) was added and stirred for 30 min. The solvent was evaporated in vacuo, and the residue was diluted with water (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, concentrated, and purified by silica gel column chromatography with petroleum ether/ethyl acetate (1:1) to give 6aa as a colorless thick liquid (54.4 mg) in 95%. 1:1 dr, the product was 1 not resolved by chiral HPLC; [α]20 D = 180.0 (c 1, CHCl3); H NMR (400 MHz, CDCl3) 6aa/6aa′ δ 8.01 (dd, J = 10.6, 8.1 Hz, 4H), 7.84 (d, J = 8.4 Hz, 1H), 7.76 (dt, J = 12.2, 7.4 Hz, 4H), 7.56 (d, J = 8.1 Hz, 2H), 7.51 (td, J = 8.1, 3.9 Hz, 2H), 7.46 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.0 Hz, 4H), 7.29 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 7.8 Hz, 1H), 7.23 (s, 1H), 7.20 (s, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.11 (s, 1H), 6.69 (s, 1H), 4.35−4.28 (m, 1H), 3.97 (td, J = 13.2, 6.2 Hz, 2H), 3.75 (dd, J = 11.1, 3.6 Hz, 1H), 3.66 (d, J = 10.6 Hz, 1H), 3.61−3.41 (m, 4H), 3.22 (t, J = 12.4 Hz, 1H), 3.02 (ddd, J = 12.0, 7.2, 3.7 Hz, 2H), 2.63 (t, J = 9.0 Hz, 2H), 2.49 (s, 6H), 2.41 (d, J = 8.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) 6aa/6aa′ δ 144.9, 144.0, 143.9, 143.4, 142.6, 135.9, 135.6, 132.6, 132.4, 132.0, 131.8, 129.5, 129.5, 129.3, 129.3, 129.0, 127.5, 127.3, 127.2, 126.8, 125.1, 124.5, 121.8, 121.3, 116.6, 115.7, 101.3, 100.9, 85.6, 84.4, 68.7, 67.3, 65.2, 64.1, 51.7, 51.6, 48.6, 47.8, 21.2, 21.1. IR (neat, cm−1): 3436, 2928, 1772, 1615, 1481, 1294, 1025. HRMS (ESI): calcd for C26H28N3O8S2+ [M + H] + 574.1312; found: 574.1319.



Article

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Xing-Wang Wang: 0000-0002-6004-8458 Author Contributions

All authors have given approval to the final version of the manuscript. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We are grateful for financial support from the National Natural Science Foundation of China (21572150), the Program for New Century Excellent Talents in University (NCET-120743), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).



REFERENCES

(1) (a) Bosch, J.; Bennasar, M. L. Synlett 1995, 1995, 587−596. (b) Somei, M.; Yamada. Nat. Prod. Rep. 2004, 21, 278−311. (c) Bonjoch, J.; Solé, D. Chem. Rev. 2000, 100, 3455−3482. (d) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489−4497. (2) (a) Matsuda, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008, 10, 125−128. (b) Coste, A.; Toumi, M.; Wright, K.; Razafimahaleo, V.; Couty, F.; Marrot, J.; Evano, G. Org. Lett. 2008, 10, 3841−3844. (c) Beaumont, S.; Pons, V.; Retailleau, P.; Dodd, R. H.; Dauban, P. Angew. Chem., Int. Ed. 2010, 49, 1634−1637. (d) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Alvarez, M. Chem. - Eur. J. 2011, 17, 1388− 1408. (e) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314− 12320. (f) Araki, T.; Ozawa, T.; Yokoe, H.; Kanematsu, M.; Yoshida, M.; Shishido, K. Org. Lett. 2013, 15, 200−203. (g) Sun, D.; Xing, C.; Wang, X.; Su, Z.; Li, C. Org. Chem. Front. 2014, 1, 956−960. (h) Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2014, 12, 298−306. (3) (a) Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H. Org. Lett. 2004, 6, 2945−2948. (b) Benkovics, T.; Guzei, I. A.; Yoon, T. P. Angew. Chem., Int. Ed. 2010, 49, 9153−9157. (c) Li, X. N.; Zhang, Y.; Cai, X. H.; Feng, T.; Liu, Y. P.; Li, Y.; Ren, J.; Zhu, H. J.; Luo, X. D. Org. Lett. 2011, 13, 5896−5899. (d) Lathrop, S. P.; Movassaghi, M. Chem. Sci. 2014, 5, 333−340. (e) Shen, Z.; Xia, Z.; Zhao, H.; Hu, J.; Wan, X.; Lai, Y.; Zhu, C.; Xie, W. Org. Biomol. Chem. 2015, 13, 5381−5384. (4) (a) Zhang, Z.; Antilla, J. C. Angew. Chem., Int. Ed. 2012, 51, 11778−11782. (b) Nelson, H. M.; Reisberg, S. H.; Shunatona, H. P.; Patel, J. S.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 5600−5603. (c) Liu, C.; Yi, J. C.; Zheng, Z. B.; Tang, Y.; Dai, L. X.; You, S. L. Angew. Chem., Int. Ed. 2016, 55, 751−754. (d) Lian, X. L.; Meng, J.; Han, Z. Y. Org. Lett. 2016, 18, 4270−4273. (5) Li, Q.; Xia, T.; Yao, L.; Deng, H.; Liao, X. Chem. Sci. 2015, 6, 3599−3605. (6) Biolatto, B.; Kneeteman, M. a.; Mancini, P. Tetrahedron Lett. 1999, 40, 3343−3346. (7) Awata, A.; Arai, T. Angew. Chem., Int. Ed. 2014, 53, 10462− 10465. (8) (a) Chataigner, I.; Piettre, S. R. Org. Lett. 2007, 9, 4159−4162. (b) Lee, S.; Diab, S.; Queval, P.; Sebban, M.; Chataigner, I.; Piettre, S. R. Chem. - Eur. J. 2013, 19, 7181−7192. (c) Zhao, J. Q.; Zhou, M. Q.; Wu, Z. J.; Wang, Z. H.; Yue, D. F.; Xu, X. Y.; Zhang, X. M.; Yuan, W. C. Org. Lett. 2015, 17, 2238−41. (d) Gerten, A. L.; Stanley, L. M. Org. Chem. Front. 2016, 3, 339−343. (e) Liu, X.; Yang, D.; Wang, K.; Zhang, J.; Wang, R. Green Chem. 2017, 19, 82−87. (f) Santhini, P. V.; Babu, S. A.; Krishnan, R. A.; Suresh, E.; John, J. Org. Lett. 2017, 19,

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b00046. Screening of catalysts and condition optimization, NMR (1H and 13C) spectra for all new compounds, and X-ray crystallographic data for compound 3g (PDF) Crystallographic data for 3g (CIF) I

DOI: 10.1021/acs.joc.8b00046 J. Org. Chem. XXXX, XXX, XXX−XXX

Article

The Journal of Organic Chemistry 2458−2461. (g) You, S.; Cheng, Q.; Zhang, F.; Cai, Y.; Guo, Y. L. Angew. Chem., Int. Ed. 2018, 57, 2134−2138. (9) (a) Brichacek, M.; Lee, D. E.; Njardarson, J. T. Org. Lett. 2008, 10, 5023−5026. (b) Xu, C. F.; Zheng, B. H.; Suo, J. J.; Ding, C. H.; Hou, X. L. Angew. Chem., Int. Ed. 2015, 54, 1604−1607. (c) Li, T. R.; Cheng, B. Y.; Fan, S. Q.; Wang, Y. N.; Lu, L. Q.; Xiao, W. J. Chem. Eur. J. 2016, 22, 6243−6247. (d) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370−3373. (e) Naesborg, L.; Tur, F.; Meazza, M.; Blom, J.; Halskov, K. S.; Jorgensen, K. A. Chem. - Eur. J. 2017, 23, 268−272. (f) Zhu, C. Z.; Feng, J. J.; Zhang, J. Angew. Chem., Int. Ed. 2017, 56, 1351−1355. (10) Wang, Y. N.; Li, T. R.; Zhang, M. M.; Cheng, B. Y.; Lu, L. Q.; Xiao, W. J. J. Org. Chem. 2016, 81, 10491−10498. (11) (1) Gee, Y. S.; Rivinoja, D. J.; Wales, S. M.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. J. Org. Chem. 2017, 82, 13517−13529. (2) Rivinoja, D. J.; Gee, Y. S.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. ACS Catal. 2017, 7, 1053−1056. (12) For reviews, see (a) Trost, B. M.; Fandrick, D. R. Aldrichim. Acta 2007, 40, 59−72. (b) Rachwalski, M.; Vermue, N.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2013, 42, 9268−9283. (c) Wencel-Delord, J.; Colobert, F. Synthesis 2016, 48, 2981−2996. Recently representative metal-catalyzed asymmetric dearomative reactions: For papers please see (d) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662−12686. (e) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558−2573. (f) Zheng, C.; You, S.-L. Chem. 2016, 1, 830−857. For papers, see (g) Cheng, Q.; Zhang, H.-J.; Yue, W.-J.; You, S.-L. Chem. 2017, 3, 428. (h) Laugeois, M.; Ling, J.; Ferard, C.; Michelet, V.; Ratovelomanana-Vidal, V.; Vitale, M. R. Org. Lett. 2017, 19, 2266. (13) (a) Trost, B. M. Science 1991, 254, 1471−1477. (b) Kumagai, N.; Shibasaki, M. Chem. - Eur. J. 2016, 22, 15192−15200. (14) (a) Wang, B. L.; Li, N.-K.; Zhang, J. X.; Liu, G. G.; Liu, T.; Shen, Q.; Wang, X.-W. Org. Biomol. Chem. 2011, 9, 2614−2617. (b) Chen, J.; Geng, Z. C.; Li, N.; Huang, X. F.; Pan, F. F.; Wang, X.-W. J. Org. Chem. 2013, 78, 2362−2372. (c) Li, N.-K.; Kong, L.-P.; Qi, Z.-H.; Yin, S.-J.; Zhang, J.-Q.; Wu, B.; Wang, X.-W. Adv. Synth. Catal. 2016, 358, 3100−3112. (d) Li, N.-K.; Zhang, J. Q.; Sun, B. B.; Li, H. Y.; Wang, X.W. Org. Lett. 2017, 19, 1954−1957. (15) CCDC 1558517 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.

J

DOI: 10.1021/acs.joc.8b00046 J. Org. Chem. XXXX, XXX, XXX−XXX