pentagonal

Dec 17, 2018 - Saul H. Lapidus , Adora G. Graham , Christopher M Kareis , Casey G. Hawkins , Peter W. Stephens , and Joel S. Miller. J. Am. Chem. Soc...
1 downloads 0 Views 6MB Size
Subscriber access provided by YORK UNIV

Article

Anomalous Stoichiometry, 3-D Bridged Triangular/pentagonal Layered Structured Artificial Antiferromagnet for the Prussian Blue Analog A3MnII5(CN)13 (A = NMe4, NEtMe3). A Cation Adaptive Structure Saul H. Lapidus, Adora G. Graham, Christopher M Kareis, Casey G. Hawkins, Peter W. Stephens, and Joel S. Miller J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b10638 • Publication Date (Web): 17 Dec 2018 Downloaded from http://pubs.acs.org on December 17, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

Anomalous Stoichiometry, 3-D Bridged Triangular/pentagonal Layered Structured Artificial Antiferromagnet for the Prussian Blue Analog A3MnII5(CN)13 (A = NMe4, NEtMe3). A Cation Adaptive Structure Saul H. Lapidus,†‡ Adora G. Graham,§ Christopher M. Kareis,§ Casey G. Hawkins,§ Peter W. Stephens,*† Joel S. Miller*§ † Department

of Physics & Astronomy State, University of New York. Stony Brook, NY 11794-3800 USA

§

Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850 USA



Current Address: X-ray Science Division, Argonne National Laboratory, Lemont IL 60439

ABSTRACT: The shape of the organic cation dictates both the composition and the extended 3-D structure for hybrid organic/inorganic Prussian blue analogs (PBAs) of AaMnIIb(CN)a+2b (A = cation) stoichiometry. Alkali PBAs are typically cubic with both MC6 and

M'N6

octahedral

coordination sites, and the alkali cation content depends on the M and M' oxidation states.

The

reaction

of

MnII(O2CCH3)2 and A+CN- (A = NMe4, NEtMe3) forms a hydrated

material

A3MnII5(CN)13 A3MnII5(CN)13 complex,

3-D

of

composition. forms

a

extended

structural motif with octahedral and rarely observed square pyramidal and trigonal bipyramidal MnII sites with a single layer motif of three pentagonal and one triangular fused rings. A complex pattern of MnIICN chains bridge the layers. (NMe4)3MnII5(CN)13 possesses one low-spin octahedral and four high-spin pentacoordinate MnII sites, and orders as an antiferromagnet at 11 K due to the layers being bridged and antiferromagnetically coupled by the non-magnetic cyanides. These are rare examples of intrinsic, chemically prepared and controlled artificial antiferromagnets, and have the

1

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 30

advantage of having controlled uniform spacing between the layers as they are not physically prepared via deposition methods. A3Mn5(CN)13 (A = NMe4, NEtMe3) along with [NEt4]2MnII3(CN)8, [NEt4]MnII3(CN)7, and Mn(CN)2 form stoichiometrically related AaMnIIb(CN)a+2b (a = 0, b = 1; a = 2, b = 3; a = 1, b = 3; and a = 3, b = 5) series possessing an unprecedented stoichiometries and lattice motifs. This These unusual structures and stoichiometries are attributed to the very ionic nature of the high-spin N-bonded MnII ion that enables the maximization of the attractive van der Waals interactions via minimization of void space via a reduced ÐMnNC. This AaMnIIb(CN)a+2b family of compounds are referred to as being cation adaptive which size and shape dictates both the stoichiometry and structure. INTRODUCTION Several mixed-metal hexacyanometalates possessing the face centered cubic (fcc) (a ~ 10.5 Å) Prussian blue structural motif magnetically order with critical temperatures, Tc, as high as ~100 oC.1-3 The relatively high Tc’s are attributed to the strong superexchange via the conjugated -M'-NºC-M-CºN-M'- linkages.4 Albeit structurally related, Prussian blues

can

have

several

compositions,

e.g.

M'III4[MII(CN)6]3,

A+M'II[MIII(CN)6],

M'II3[MIII(CN)6]2, A+M'III[MII(CN)6], A+2M'II[MII(CN)6], and M'III[MIII(CN)6] (A+ = alkali cation) that are typically solvated. The canonical unit cell contains significant void space that can accommodate the A+ and/or water, and in some cases [M(CN)6]n- anions are missing. A2MnII[MnII(CN)6] (A = Na,5 K,6 Rb6), however, has the same framework topology, but a distorted lattice with nonlinear -M'-NºC- linkages with an average ÐM'-NºC 10 it is significant, as occurs for many compounds.26,33-35 The f values are n > 1.75)], and M2xO(16x-2)/3 (M = Mo, Ta) [= y M10O26 + z M22O58]. This is attributed to different and shifting crystallographic shear planes, or ordered stacking for the latter family. Alternatively, the structures of [NMe4]3Mn5(CN)13 and [NEtMe3]3Mn5(CN)13 may be viewed as "dimensional reduction" albeit with an increase in connectivity that is well known for monoatomic anionic oxides/sulfides and halides.40 Hence, it is extended to more complex anions as well as polyatomic cations. Zero dimensional (no extended

21

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 30

structure) is observed for both [MnII(CN)6]4- and [MnII(CN)4]2- with Mn:CN ratios of 1:6 and 1:4, respectively, while 2-D [NEt4]2MnII3(CN)8 has Mn:CN of 1:2.67, and 3-D K2MnII[MnII(CN)6], [NEt4]MnII3(CN)7, and [NMe4]3MnII5(CN)13 have Mn:CN of 1:3.0, 1:2.33, and 1:2.60, respectively. Such complex, but variable stoichiometries are observed for several transition metal oxides.40 CONCLUSIONS The structure of A3MnII5(CN)13 (A = NMe4, NEtMe3) has a complex (and in the case of NMe4+ a very disordered) structure with octahedral, and rare square pyramidal, and trigonal bipyramidal MnII sites. It has a layer motif based on three pentagons and one triangle

perpendicularly

interconnected

by

orientationally

disordered

cyanides.

A3MnII5(CN)13 is key member of AaMnIIb(CN)a+2b (a = 0, b = 1; a = 1, b = 3; a = 2, b = 3; and a = 3, b = 5) that form cation adaptive structures. These unusual stoichiometries and extended lattices are attributed to the highly ionic nature of the high-spin N-bonded MnII ion that enables the maximization of the attractive van der Waals interactions via a reduced ÐMnNC.

A3MnII5(CN)13 magnetically order as antiferromagnets, and are

minimally magnetically frustrated. The intrinsic antiferromagnetic ordering arises from the non-magnetic cyanide layer providing antiferromagnetic coupling between the ferrimagnetic layers that result, as occurs for artificial antiferromagnets used in spin valves. ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.XXXXXX. The powder X-ray crystallographic CIF files for 1•H O (295 and 22 K) and 2•H O 2

(CCDC1543750 -1543752). A movie showing the interlayer connectivity. AUTHOR INFORMATION Corresponding Authors * [email protected] * [email protected] 22

ACS Paragon Plus Environment

2

Page 23 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

DEDICATION Dedicated to the late Hugo Rietveld, on the fiftieth anniversary of the invention of the technique that bears his name, which has revolutionized the applicability of powder diffraction to crystallography ORCID Peter W. Stephens 0000-0002-8311-7305 Joel S Miller 0000-0001-5743-8327 Notes The authors declare no competing financial interest. ACKNOWLEDGMENTS We appreciate the insightful discussion on network structures with Prof. Lars Öhrström (Chalmers University of Technology), and spin frustration with Prof. Arthur P. Ramirez (University of California, Santa Cruz) and the initial support by the Department of Energy Division of Material Science (Grant No. DE-FG03-93ER45504) for the chemical synthesis and magnetic studies (C.M.K., C.G.H., and J.S.M.). Use of the National Synchrotron Light Source, Brookhaven National Laboratory for powder X-ray diffraction studies (S.H.L. and P.W.S.) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC0298CH10886. All authors contributed to writing of the manuscript. C.M.K. was also supported by the NSF MRSEC Grant # DMR-1121252 CFDA NO. 47.049. REFERENCES



(1)

a) Verdaguer, M.; Girolami, G. S. Magnetic Prussian Blue Analogs, in Magnetism - Molecules to Materials; Miller, J. S.; Drillon, M., Eds.; Wiley-VCH: Weinheim, 2005, Vol. 5, 283. b) Hashimoto, K. Ohkoshi, S.

Design of novel magnets using Prussian blue

analogues. Phil. Trans. R. Soc. Lond. A 1999, 357, 2977. c) Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.; Cartier, C.; Villain, F. Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry Coord. Chem. Rev. 1999, 190-192, 1023.

23

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(2)

a) Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P.; Verdaguer, M. A roomtemperature organometallic magnet based on Prussian blue. Nature 1995, 378, 701. b) Dujardin, E.; Ferlay, S.; Phan, X.; Desplanches, C.; Moulin, C. C. D.; Sainctavit, P.; Baudelet, F.; Dartyge, E.; Veillet, P.; Verdaguer, M. Synthesis and Magnetization of New Room-Temperature Molecule-Based Magnets: Effect of Stoichiometry on Local Magnetic Structure by X-ray Magnetic Circular Dichroism J. Am. Chem. Soc. 1998, 120, 11347. c) Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P.; Verdaguer, M. Inorg. Chem. 1999, 38, 229. d) Verdaguer, M.; Bleuzen, A.; Train, C.; Garde, R.; Fabrizi de Biani, F.; Desplanches, C. Chromium−Vanadyl Ferrimagnetic Molecule-Based Magnet: Structure, Magnetism, and Orbital Interpretation. Phil. Trans. R. Soc. Lond. A 1999, 357, 2959.

(3)

a) Holmes, S. M.; Girolami, G. S. Sol−Gel Synthesis of KVII[CrIII(CN)6]·2H2O:  A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C. J. Am. Chem. Soc. 1999, 121, 5593. b) Hatlevik, Ø.; Buschmann, W. E.; Zhang, J.; Manson, J. L.; Miller, J. S. Enhancement of the Magnetic Ordering Temperature (and Air Stability) of a Mixed Valent Vanadium Hexacyanochromate(III) Magnet to 99 oC (372 K). Adv. Mater. 1999, 11, 914.

(4)

a) Anderson, P. W. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 1950, 79, 350. b) Goodenough, J. B. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J. Phys. Chem. Solids, 1958, 6, 287. c) Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J Phys. Chem. Solids, 1959, 10, 87.

(5)

Kareis, C. M.; Lapidus, S. H.; Her, J.-H.; Stephens, P. W.; Miller, J. S. NonPrussian Blue Structures and Magnetic Ordering of Na2MnII[MnII(CN)6] and Na2MnII[MnII(CN)6]•2H2O. J. Amer. Chem. Soc. 2012, 134, 2246.

24

ACS Paragon Plus Environment

Page 24 of 30

Page 25 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

(6)

Her, J.-H.; Stephens. P. W.; Kareis, C. M.; Moore, J. G.; Min, K. S.; Park, J.-W.; Bali, G.; Kennon, B. S.; Miller, J. S. Anomalous Non-Prussian Blue Structure and Magnetic Ordering of K2MnII[MnII(CN)6] and Rb2MnII[MnII(CN)6], Inorg. Chem. 2010, 49, 1524.

(7)

Kareis C. M.; Her, J.-H.; Stephens, P. W.; Moore, J. G.; Miller, J. S. Structure and Magnetic

Ordering

of

the

Anomalous

Layered

(2-D)

Ferrimagnetic

[NEt4]2MnII3(CN)8 and 3-D Antiferromagnetic Bridged-Layered [NEt4]MnII3(CN)7 Prussian Blue Analogs. Chem. Eur.-J. 2012, 18, 9281. (8)

Kareis C. M.; Lapidus, S. H.; Stephens, P. W.; Miller, J. S. Interpenetrating ThreeDimensional Diamondoid Lattices and Antiferromagnetic Ordering (Tc = 73 K) of Mn(CN)2, Inorg. Chem. 2012, 51, 3046.

(9)

a)

Witzel,

M.;

Babel,

D.

Die

Schichtstruktur

des

hydratisierten

der

hydratisierten

Tetramethylammoniummangan(II)-hexacyanochromats(III), NMe4MnCr(CN)6•4H2O. Z. Naturforsch. 1985, 40b, 1344. b)

Henkel,

H.;

Babel,

D.

Die

Kettenstruktur

Tetramethylammoniummangan(II)-hexacyanometallate(III)

NMe4MnFe(CN)6•8

H2O und NMe4Mn2(CN)6-8H2O. Z. Naturforsch. 1984, 39b, 880. (10)

Brandon, E. J.; Rittenberg, D. K.; Arif, A. M.; Miller, J. S. The Ferrimagnetic Behavior

of

Multiple

Phases

and

Solvates

chlorophenyl)porphinato-manganese(III)

of

meso-Tetrakis(4-

Tetracyanoethenide,

[MnIIITClPP]+[TCNE].-. Enhancement of Magnetic Coupling by Thermal Annealing. Inorg. Chem. 1998, 37, 3376. (11)

Coelho, A. A. Topas Academic, Version 6 Technical Reference (2016). TOPASAcademic is available at http://topas-academic.net

(12)

a) Coelho, A. A. Whole-profile structure solution from powder diffraction data using simulated annealing. J. Appl. Cryst. 2000, 33, 899. b) Coelho, A. A. Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Cryst. 2003, 36, 86.

(13)

Use of MeOH lead to a different composition.

(14)

a) Franz, P.; Ambrus, C.; Hauser, A.; Chernyshov, D.; Hostettler, M.; Hauser, J.; Keller, L.; Krämer, K.; Stoeckli-Evans, H.; Pattison, P.; Bürgi, H.-B.; Decurtins, S. 25

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 30

Crystalline, Mixed-Valence Manganese Analogue of Prussian Blue:  Magnetic, Spectroscopic, X-ray and Neutron Diffraction Studies. J. Am. Chem. Soc. 2004, 126, 16472. b) Dong, W.; Zhu, L.-N.; Song, H.-B.; Liao, D.-Z.; Jiang, Z.-H.; Yan, S.-P.; Cheng, P.; Gao, S. A Prussian-Blue Type Ferrimagnet Na[MnCr(CN)6]:  Single Crystal Structure and Magnetic Properties. Inorg. Chem. 2004, 43, 2465. (15)

Ludi, A.; Güdel, H. U. Structural chemistry of polynuclear transition metal cyanides. Struct. Bonding (Berlin) 1973, 14, 1.

(16)

Frenz, B. A.; Enemark, J. H.; Ibers, J. A. Structure of nitrosyltetracarbonylmanganese(0), Mn(NO)(CO)4. Inorg. Chem. 1969, 8, 1288.

(17)

Nelson, K. J.; Giles, I. D.; Shum, W. W.; Arif, A. M.; Miller, J. S. The Myth of Cyanide Always Being a Strong Field Ligand. Synthesis and Structural Characterization of Homoleptic S = 2 Pentacyanochromate(II), [CrII(CN)5]3- and Nonacyanodichromate(II), [Cr2II(CN)9]5-. Angew. Chem. Internat. Ed. 2005, 44, 3129.

(18)

a) Tullberg, A.; Vannerberg, N. The Crystal Structures of Hexacyanomanganate Decahydrate,

Na4[Mn(CN)6].10H2O

and

Tetrasodium

Hexacyanoferrate

Decahydrate, Na4[Fe(CN)6].10H2O. Acta Chem. Scand. A, 1974, 28, 551. b) Tullberg, A.; Vannerberg, N.-G. The Crystal Structures of Na4Fe(CN)6•10H2O and Na4Mn(CN)6•10H2O. Acta Chem. Scand., 1971, 25, 343. c) Beall, G. W.; Milligan, W. O.; Korp, J.; Bernal, I. rystal structure of trimanganese bis(hexakis(cyano)cobaltate)

dodecahydrate

and

tricadmium

bis(hexakis(cyano)cobaltate) dodecahydrate by neutron and x-ray diffraction. Inorg. Chem. 1977, 16, 2715. (19)

Identical results were obtained from a second independently prepared sample.

(20)

A good fit is obtained for g = 5 for the ls Mn(II) site, but this is an unphysical value.6

(21)

Carlin, R. L. Magnetochemistry, Springer-Verlag, 1986. pp 121.

(22)

Kittel, C. Introduction to Solid State Physics, 5th ed., John Wiley and Sons, 1976. p. 479 ff.

26

ACS Paragon Plus Environment

Page 27 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

(23)

Morrish, A. H. The Principles of Magnetism, Krieger Publishing Co. 1980, p. 447 ff.

(24)

Blundell, S. Magnetism in Condensed Matter, Oxford University Press, 2001, p. 92 ff.

(25)

Fisher, M. E.

Relation between the specific heat and susceptibility of an

antiferromagnet. Philos. Mag. 1962, 7, 1731. (26)

Ashcroft, N. W.; Mermin, N. D. Solid State Physics, W. B. Saunders and Co., 1976, p. 701 ff.

(27)

Aharen, T.; Greedan, J. E.; Ning, F.; Imai, T.; Michaelis, V.; S.; Zhou, H.; Wiebe, C. R.; Cranswick, L. M. D. Magnetic properties of the S=3/2 geometrically frustrated double perovskites La2LiRuO6 and Ba2YRuO6. Phys. Rev. B 2009, 80, 134423.

(28)

Cage, B.; Nguyen, B.; Dalal, N. Three-dimensional antiferromagnetism in triamminodiperoxychromate, Cr(NH3)3(O2)2: a precursor to a new class of Cr(IV) magnets. Sol. State Commun, 2001, 119, 597.

(29)

DaSilva, J. G.; McConnell, A. C.; Fishman, R. S.; Miller, J. S. A Mean Field Analysis of the Exchange Coupling (J) for Non-cubic Prussian Blue Analogue Magnets. J. Phys. Chem. C 2012,116, 24752.

(30)

Smart, J. S.The Néel Theory of Ferrimagnetism. Am. J. Phys. 1955, 23, 356. White, R. M. Quantum Theory of Magnetism; Springer: Berlin, 2007; pp 149−153.

(31)

a) Ito, M.; Yasui, Y.; Kanada, M.; Harashina, H.; Yoshii, S.; Murata, K.; Sato, M.; Okumura, H.; Kakuri, K. Nature of spin freezing transition of geometrically frustrated pyrochlore system R2Ru2O7 (R=rare earth elements and Y). J. Phys. Chem. Sol. 2001, 62, 337. b) Miyoshi, K.; Nishimura, Y.; Honda, K.; Fujiwara, K.; Takeuchi, J. Successive Spin Freezing Behavior in a Pyrochlore Antiferromagnet Y 2Mo 2O 7 under Magnetic Fields J. Phys. Soc. Jpn. 2000, 69, 3517. Raju, N. P.; Gmelin, E.; Kremer, R. Magnetic-susceptibility and specific-heat studies of spin-glass-like ordering in the pyrochlore compounds R2Mo2O7 (R =Y, Sm, or Gd). Phys. Rev. B 1992, 46, 5405.

27

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

c) Gingras, M. J. P.; Stager, C. V.; Raju, N. P.; Gaulin, B. D.; Greedan, J. E. Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated Pyrochlore Antiferromagnet Y2Mo2O7. Phys. Rev. Lett. 1997, 78, 947. d) Gönen, Z. S.; Gopalakrishnan, J.; Eichhorn, B. W.; Greene, R. L. Static. Structurally Modulated Magnetic Properties in the A3MnRu2O9 Phases (A = Ba, Ca):  The Role of Metal−Metal Bonding in Perovskite-Related Oxides. Inorg. Chem. 2001, 40, 4996. e) Nocera, D. G.; Bartlett, B. M.; Grohol, D.; Papoutsakis, D.; Shores, M. P. Frustration in 2D Kagomé Lattices: A Problem for Inorganic Synthetic Chemistry. Chem. Eur. J. 2004, 10, 3850. (32)

McConnell, A. C.; Shurdha, E.; Bell, J. D.; Miller, J. S. Antiferromagnetic Ordering of MII(TCNE)[C4(CN)8]1/2 (M = Mn, Fe). J. Phys. Chem. C 2012, 116, 18952.

(33)

Ramirez, A. P. Strongly Geometrically Frustrated Magnets. Ann. Rev. Mater. Sci. 1994, 24, 453. Schiffer, P.; Ramirez, A. P. Recent experimental progress in the study of geometrical magnetic frustration. Comments. Cond. Mater. Phys. 1996, 18, 21.

(34)

Greedan, J. E. Geometrically frustrated magnetic materials. in Functional Oxides, D. W. Bruce, D. O'Hare, R. I. Walton, eds., J. Wiley and Sons, 2010, p41-117.

(35)

Hiro, Z.; Hanawa, M.; Kobayshi, N.; Takagi, H.; Kato, Y.; Takigawa, M. Spin-1/2 Kagome-Like Lattice in Volborthite Cu3V2O7(OH)2•2H2O. J. Phys. Soc. Japn. 2001, 70, 3377.

(36)

Mydosh, J. A. Spin Glasses: An Experimental Introduction, Taylor and Francis: London, 1993.

Chowdhury, D. Spin Glasses and other Frustrated Systems,

Princeton Series in Physics, Princeton University Press, 1986. Fischer, K. H.; Hertz, J. A. Spin Glasses, Cambridge University Press, 1991. Binder, K.; Young, A. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 1986, 58, 801. Huang, C. Y. Some experimental aspects of spin glasses: A review. J. Magn. Magn. Mat. 1985, 51, 1. (37)

Miller, J. S. Intrinsic Organic-based Synthetic/Artificial Antiferromagnets. Chem. Eur.-J. 2015, 21, 4506.

28

ACS Paragon Plus Environment

Page 28 of 30

Page 29 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

(38)

van den Berg, H.; Clemens, W.; Gieres, G.; Rupp, G.; Schelter, W.; Vieth, M. GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE Trans. Magn. 1996, 32, 4624.

(39)

Rao, C. N. R.; Gopalakrishnan, J. New directions in solid state chemistry, Cambridge, University Press, 1986, p247-248. Anderson, S. On the Description of Complex Inorganic Crystal Structures. Angew. Chem. Int. Ed. 1983, 22, 69.

(40)

Tulsky, E. G.; Long, J. R. Dimensional Reduction:  A Practical Formalism for Manipulating Solid Structures Chem. Mater. 2001, 13, 1149-1166. Mitzi, D. B. Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction. Adv. Mater. 2009, 21, 3141.

29

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ToC

Anomalous Stoichiometry, 3-D Bridged Triangular/pentagonal Layered Structured Artificial Antiferromagnet for the Prussian Blue Analog A3MnII5(CN)13 (A = NMe4, NEtMe3). A Cation Adaptive Structure Saul H. Lapidus, Peter W. Stephens, Christopher M. Kareis, Casey G. Hawkins, and Joel S. Miller Atypical of Prussian blue structured materials, MnII and A(CN) (A = NMe4, NEtMe3) react to form A3Mn5(CN)13 possessing layers of triangles and pentagons. These layers are bridged together in a complex manner, and form non-frustrated artificial antiferromagnets. Unusual square-pyramid and trigonal bipyramid coordination of MnII cyano coordination is observed in these materials.

30

ACS Paragon Plus Environment

Page 30 of 30