Performance Characteristics of a Continuum-Source Wavelength

56, NO. 1, JANUARY 1984 for most elements. Dynamic Range and Relative Sensitivities. The net intensity readings for concentrations ranging from 0.1 pp...
1 downloads 0 Views 96KB Size
122

ANALYTICAL CHEMISTRY, VOL. 56, NO. 1, JANUARY 1984

for most elements. Dynamic Range and Relative Sensitivities. The net intensity readings for concentrations ranging from 0.1 ppm to 30 ppm for the elements in the three mixtures were determined. Measurements beyond 10 ppm concentrations for group two were difficult due to apparent reaction between the elements or from anion/cation effects in the mixture which resulted in loss of analyte element, for example, through vaporization of molecular halide species (23). In addition, concentrations in excess of 10 ppm require extensive cleaning of the graphite atomizer between readings, necessitating several purgings which in turn will accelerate the decrease in the intensities of signals by aging the graphite tube. Measurements could be made over at least 2 orders of magnitude for all the elements. The correlation coefficient for signal vs. analyte concentration was 0.992 or better for all the elements tested in group two.

ACKNOWLEDGMENT The assistance and discussions of Steven Hartenstein are gratefully acknowledged. Registry No. Cd, 7440-43-9;Mn, 7439-96-5;Ni, 7440-02-0; Cr, 7440-47-3; Al, 7429-90-5; Zn, 7440-66-6; Pb, 7439-92-1; Sb, 7440-36-0; Si, 7440-21-3; Co, 7440-48-4;Fe, 7439-89-6; Ag, 744022-4; Cu, 7440-50-8; B a , 7440-39-3; Ca, 7440-70-2. LITERATURE CITED (1) Kniseley, R. N.; Fassel, V. A.; Butler, C. C. Clh. Chem. (Wlnston-Sa/em, N.C.)1973, 19, 807. (2) Subrarnanlan, K. S.;Meranger, J. C. Scl. Total Envlron. 1982, 24, 147.

Winge, R. K.; Fassel, V. A,; Kniseley, R. N.; DeKalb, E.; Hass. W. J., Jr. Spectrochlm. Acta, Part B 1977, 326,327. Dahlquist, R. L.; Knoll, J. W. Appl. Spectrosc. 1978, 32, 1. Barnes, R. M. “Application of Plasma Emlssion Spectroscopy”; Heyden & Son Inc.: Philadelphia, PA, 1979. Kleinmann, I.; Svoboda, V. Anal. Chem. 1989, 41, 1029. Nixon, D. E.; Fassel, V. A.; Kniseley, R. N. Anal. Chem. 1974, 46, 210. _ .

Human, H. G. C.; Scott, R. H.; Oakes, A. R.; West, C. D. Analyst(Lon-

don) 1978, 101, 265.

Gunn, A. M.; Millard, D. L.; Kirkbright, G. F. Analyst (London) 1978, 103.1066. Millard, D. L.; Shan, H. C.; Kirkbright, G. F. Analyst (London) 1980, 105, 502. Kirkbright, G. F.; Snook, R. D. Anal. Chem. 1979, 51, 1938. Salln, E. D.; Horllck, 0.Anal. Chem. 1979, 51, 2284. Mermet, J. M.; Hubert, J. Prog. Anal. At. Spectrosc. 1982, 5, 1. Kirkbright, G. F.; Walton, S. J. Analyst (London) 1982, 107,276. Crabi, G.;Cavalll, P.; Achilll, M.; Rossi, G.; Omenetto, N. At. Spectrosc. 1982, 3,81. Aziz, A.; Broekaert, J. A. C.; Leis, F. Spectrochim. Acta, Part6 1982, 3 7 6 . 369. Swaidan, H. M.; Christian, G. D. Can. J. Spectrosc., in press. Azlz, A.; Broekaert, J. A.; Leis, F. Spectrochim. Acta, Part 6 1982, 376,381. Grabau, F.; Fassel, V. A. “Book of Abstracts”; 184th National Meeting of the American Chemical Society, Kansas City, Sept 12-17, 1982; American Chemical Society: Washington, DC, 1982. Berman, S.S.; McLaren, J. W. Appl. Spectrosc. 1978, 32, 372. Slavin, W.; Manning, D. C.; Carnrick, G. R. At. Spectrosc. 1981, 2, 137. Blades, M. W.; Horlick, G. Spectrochlm. Acta, Part6 1981, 366, 861. Fuller, C. W. “Electrothermal Atomization for Atomic Absorption Spectrometry”, Billing & Sons Ltd.: Great Britain, 1977.

RECEIVED for review March 21, 1983. Resubmitted June 24, 1983. Accepted September 26, 1983. We appreciate the financial support of King Saud University and the Arabian American Oil Company for this research.

CORRECTION Performance Characteristics of a Continuum-Source Wavelength-Modulated Atomic Absorption Spectrometer

J. D. Messman, M. S. Epstein, T. C. Rains, and T. C. O’Haver (Anal. Chem. 1983,55, 1055-1058). There are several typographical errors in this paper. On page 1056, under “Instrumentation”, a R374 photodetector was used for WM-AAC measurements of potassium and sodium instead of a R372 photodetector. In Table I on page 1057, the WM-AAC detection limit for Cd should read 0.09 mg/L. In the same table, the wavelength for T1 should read 276.787 nm.