Chapter 8
Altering the Host Range of Mycoherbicides by Genetic Manipulation David C. Sands and R. Vincent Miller
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
Department of Plant Pathology, Montana State University, Bozeman, MT 59717
New strategies for the development of b i o l o g i c a l control agents of weeds with plant patho gens are discussed. The basic premise i s based on using highly virulent broad-host range path ogens that lack the h o s t - s p e c i f i c i t y currently thought necessary for bioherbicides. These pathogens could be rendered safe by conferring biological confinement via auxotrophy or reduced survival a b i l i t y . Additional discus sion i s on possible methods for genetically constructing h o s t - s p e c i f i c i t y based on root exudates that are unique to a target host similar to a "Zip code", or using the host i t s e l f as a source of s e l f destructive genes, which we refer to as the "Pogo theory" from a quote by the comic s t r i p character, "We have found the enemy and it is us". The most widespread and important methods of weed c o n t r o l c u r r e n t l y used are t i l l a g e and chemical h e r b i c i d e s ( 1 ) . The use o f h e r b i c i d e s with documented adverse a f f e c t s on groundwater q u a l i t y , mammalian t o x i c i t y , and human h e a l t h have l e d to* increased i n t e r e s t s i n a l t e r n a t i v e s such as the use o f b i o l o g i c a l c o n t r o l . Despite a few successes though, b i o l o g i c a l c o n t r o l as i t i s now p r a c t i c e d cannot be expected t o completely r e p l a c e the use o f chemical herbicides. Present b i o c o n t r o l agents, developed w i t h e i t h e r the c l a s s i c a l or mycoherbicide approach (2,3), must be h o s t - s p e c i f i c f o r reasons o f environmental s a f e t y and l i a b i l i t y . And t h e r e simply may not be ample p r o s p e c t i v e h o s t - s p e c i f i c b i o c o n t r o l agents f o r each problem weed. Further, economic c o n s t r a i n t s p r e c l u d e t h e use o f h o s t s p e c i f i c agents f o r many s i t e s with m u l t i p l e weed s p e c i e s . Thus, the j u s t i f i c a t i o n s t o attempt t o s h i f t from chemical herbicides t o b i o l o g i c a l control are neither entirely
0097-6156/93/0524-0101$06.00/0 © 1993 American Chemical Society Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
102
PEST CONTROL WITH ENHANCED ENVIRONMENTAL SAFETY
c l e a r nor c o n v i n c i n g . Probably the best j u s t i f i c a t i o n f o r b i o c o n t r o l involves the p o t e n t i a l marketing of "pesticide f r e e " c r o p s , b u t p r o d u c t i o n c o s t s w o u l d be h i g h e r , at l e a s t u n t i l b e t t e r b i o c o n t r o l agents are a v a i l a b l e f o r c o n t r o l o f i n s e c t s , w e e d s , a n d f u n g i . A m a r k e t may become e s t a b l i s h e d i f s u f f i c i e n t numbers o f c u s t o m e r s d e s i r e s u c h pesticide-free products.
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
B i o l o g i c a l Containment Systems I t seems l i k e l y t h a t , a s i n t h e c h e m i c a l h e r b i c i d e i n d u s try, one o r s e v e r a l p a r a d i g m s h i f t s w i l l be necessary b e f o r e any a d v a n c e s a r e made. T h e p r o p o s e d p a r a d i g m s h i f t i s away f r o m t h e c l a s s i c a l a p p r o a c h o f s c r e e n i n g only h o s t - s p e c i f i c e x o t i c o r n a t i v e p e s t s t o one e m p h a s i z i n g g e n e t i c m a n i p u l a t i o n and an e x t e n s i v e knowledge o f p h y s i o l o g y and b i o c h e m i s t r y of host/ p a r a s i t e i n t e r a c t i o n s . Our b a s i c p r o p o s a l i s t h a t c o n t a i n e d b r o a d - h o s t r a n g e p a t h o g e n s m i g h t b e t t e r compete w i t h b r o a d s p e c t r u m h e r b i c i d e s by v i r t u e o f t h e i r use a g a i n s t m u l t i p l e target weeds, r e d u c e d r e s i d u e r i s k , r e d u c e d l i a b i l i t y , r e p e a t e d s a l e s r e q u i r e m e n t s , and p o s s i b l y " p e r c e i v e d " a s p e c t s o f safety.
Broad-Host Range P l a n t Pathogens B r o a d - h o s t r a n g e p a t h o g e n s , w e l l known b y p l a n t p a t h o l o g i s t s , i n c l u d e Sclerotinia sclerotiorum, Pythium ultima,
Sclerotium
r o l f s i i , Phymatotrichum
omnivorum, a n d P s e u d o -
monas solanacearum (4,5). Often s o i l - b o r n e , these patho gens a r e c a p a b l e o f s u r v i v i n g i n the s o i l a f t e r k i l l i n g one p l a n t u n t i l t h e y a t t a c k a n o t h e r s u s c e p t i b l e p l a n t o f t h e same o r d i f f e r e n t s p e c i e s . T h e i r mode o f action i n v o l v e s r o o t o r crown i n v a s i o n , v a s c u l a r p l u g g i n g and wilting, and p r o d u c t i o n o f considerable biomass for survival (4,5). The g e n e t i c a l l y m a n i p u l a t a b l e a s p e c t s o f t h e s e pathogens are t h e i r host range, sexual s t r u c t u r e s , s u r v i v a l , a n d t h e i r a b i l i t y t o s y n t h e s i z e most i f n o t a l l v i t a m i n s , amino a c i d s , f a t t y a c i d s , p u r i n e s a n d p y r i m i dines. As w i t h o t h e r p l a n t pathogens, the mechanisms i n v o l v e d i n h o s t r a n g e r e s t r i c t i o n a r e unknown.
Sclerotinia
sclerotiorum
Model System
We h a v e d e v e l o p e d a s e r i e s o f m u t a n t s t r a i n s o f Sclerotinia sclerotiorum (6,7). T h i s pathogen n o r m a l l y a t t a c k s o v e r 300 g e n e r a o f p l a n t s i n c l u d i n g t h e o v e r 30 s p e c i e s o f weeds ( T a b l e I) ( 8 ) . T h e o b j e c t i v e o f t h i s r e s e a r c h was t o o b t a i n mutants o f t h i s b r o a d - h o s t range fungus t h a t e i t h e r h a v e a r e d u c e d h o s t r a n g e o r a r e i n some o t h e r way useful for genetic manipulation. T h i s fungus s e r v e s as a model system t o demonstrate t h a t b r o a d - h o s t range p a t h o g e n s i n g e n e r a l c a n be made more u s e f u l a s b i o l o g i c a l c o n t r o l agents. We o b t a i n e d a g r o u p o f a u x o t r o p h i c S.
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
8. SANDS & MILLER
Table I .
Altering Mycoherbicides by Genetic Manipulation
Common Weed-Hosts o f Sclerotinia
Common Name
S c i e n t i f i c Name Medicago lupulina
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
Brassica nigra B. rapa L.
sclerotiorum
Black Medic
L.
(L.) W.Koch
Black Field
Mustard Mustard
Orobanche sp. L.
Broomrape
Cirsium arvense L. (Scop.) C. vulgare (Savi) Ten.
Canada T h i s t l e Bull Thistle
Stellaria
Common Chickweed
media (L.) V i l l .
Xanthium strumarium L.
Cocklebur
Portulaca
Common Purslane
oleracea
Sonchus oleraceus
L.
Solidago
Common S o w t h i s t l e
L.
Taraxacum officinale
Wigg.
Goldenrods
sp. L.
Senecio
vulgaris
Cannabis
sativa
Dandelion
Common Groundsel
L. L.
Hemp
Centaurea maculosa L. C. repens L. C. s o l s t i t i a l i s L.
Spotted Knapweed Russian Knapweed Yellowstar T h i s t l e
Chenopodium album L.
Lambs-quarters
Lupinus
Lupines
Urtica
sp. L. dioica
Stinging Nettle
L.
Solanum nigrum L.
Common
Chrysanthemum leucanthemum L.
Oxeye Daisy
Thlaspi
Field
arvense L.
Nightshade
Pennycress
Amaranthus r e t r c f l e x u s L.
Redroot
Conium maculatum L.
Poison Hemlock
AmJbrosia
artemisiifolia
Capsella bursa-pastoris Medik Galinsoga
parviflora
Euphorbia
sp.
Rumex crispus
Pigweed
L.
Common Ragweed
L.
Shepherd's Purse
Cav.
Sma11-flowered Galinosoga Spurges
L.
C u r l y Dock
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
103
104
PEST CONTROL WITH ENHANCED ENVIRONMENTAL SAFETY
sclerotiorum mutants unable t o grow without c e r t a i n n u t r i t i o n a l supplements and a s e r i e s o f s t r a i n s w i t h v a r i o u s degrees o f v i r u l e n c e t h a t were unable t o make the s u r vival/sexual structures called s c l e r o t i a (Table II) . R e s u l t s obtained from f i e l d s i t e s e s t a b l i s h e d t h a t some o f these mutants a r e s t i l l v i r u l e n t , though l e s s so as compared t o t h e wild-type fungus (Figure 1 ) .
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
Table I I . Current Mutants o f Sclerotinia
Mutant
Phenotype
sclerotiorum
Parental Origin
Al-PYR
Cytosine r e q u i r e d f o r growth
KA2
A2-CYS
Methionine o r c y s t e i n e r e q u i r e d f o r growth
84. IB
A3-PYR
Cytosine r e q u i r e d f o r growth
A-169
A4-ARG
A r g i n i n e r e q u i r e d f o r growth
A-169
A5-LYS
Lysine r e q u i r e d f o r growth
A-169
A6-ARG
A r g i n i n e r e q u i r e d f o r growth
A-169
A8-LEU
Leucine r e q u i r e d f o r growth
A9-ISO/VAL
I s o l e u c i n e and v a l i n e r e q u i r e d f o r normal growth
A-169
A10-ADE
Adenosine r e q u i r e d f o r growth
CM813-2
All-CHOL
Choline r e q u i r e d f o r growth
CM813-2
A13-LYS
Lysine r e q u i r e d f o r growth
CM813-2
A14-ISO/VAL
I s o l e u c i n e and v a l i n e r e q u i r e d f o r normal growth
CM813-2
SL-1
S c l e r o t i a l e s s , low v i r u l e n c e
84. IB
SL-5
Sclerotialess, avirulent
A-9
SL-7
S c l e r o t i a l e s s , moderate virulence
A-169
In t h e f i e l d t r i a l i n Figure 1, the fungus was grown i n shake c u l t u r e s and homogenized mycelium used t o i n o c u l a t e s t e r i l e canola seed imbibed with a p p r o p r i a t e n u t r i e n t s o l u t i o n s . The i n f e s t e d canola was a p p l i e d a t 500, 1000 and 2000 l b / a c . A l b e i t high r a t e s o f a p p l i c a t i o n are used i n t h i s f i e l d t e s t , the r e s u l t s d r a m a t i c a l l y i l l u s t r a t e the p o t e n t i a l of u t i l i z i n g g e n e t i c a l l y d e l i m i t e d , but v i r u l e n t s t r a i n s of broad-host range pathogens i n b i o l o g i c a l c o n t r o l . P r e l i m i n a r y l a b o r a t o r y and greenhouse t e s t s
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
8. SANDS & MILLER
Altering Mycoherbicides by Genetic Manipulation
105
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
WEED TARGET
F i g u r e 1. E f f i c a c y of 5. sclerotiorum mutants compared t o t h e w i l d - t y p e s t r a i n on s i x t u r f weeds i n f i e l d t r i a l s conducted i n M i s s i s s i p p i . Treatments c o n s i s t e d o f 1000 l b / a c r e fungus i n f e s t e d c a n o l a seed imbibed with the one p e r c e n t t r y p t o n e , 10 mM sucrose, and f o r t h e auxotrophs, 50 a r g i n i n e o r l e u c i n e . Mean of t h r e e r e p l i c a t i o n s o f f i v e f o o t square p l o t s analyzed a f t e r 21 days.
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
106
PEST CONTROL WITH ENHANCED ENVIRONMENTAL SAFETY
i n d i c a t e t h a t formulations can s i g n i f i c a n t l y reduce necessary a p p l i c a t i o n r a t e s . Further, i t i s our contention t h a t these r a t e s a r e t o l e r a b l e as spot treatments i n c e r t a i n home and garden markets. S t r a i n Improvement v i a Mating Auxotrophs o f d i f f e r e n t parent s t r a i n s might be u s e f u l f o r s e v e r a l other reasons. For example, they could be crossed (lys" x arg") t o search f o r g e n e t i c recombinants ( a r g and l y s ) t h a t might have d i f f e r e n t u s e f u l t r a i t s . Secondly, auxotrophs can be t e s t e d f o r v i r u l e n c e i n t h e presence o r absence o f the appropriate n u t r i e n t . One example would be the c y t o s i n e minus s t r a i n s t h a t r e q u i r e e x t e r n a l c y t o s i n e f o r i n f e c t i o n (6) . T h i r d l y , auxotrophs can be used t o f a c i l i t a t e g e n e t i c m o d i f i c a t i o n . The c y t o s i n e p l u s gene can be added by transformation t o a c y t o s i n e minus s t r a i n but on a d i f f e r e n t promoter. I f the promoter only a c t i vates t r a n s c r i p t i o n i n t h e presence o f c e r t a i n p l a n t s , then t h e p r e v i o u s l y broad-host range pathogen would be rendered h o s t - s p e c i f i c . +
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
+
G e n e t i c a l l y Constructed H o s t - S p e c i f i c i t y The key s i g n a l s t h a t could be used t o a c t i v a t e modified pathogens would probably be compounds t h a t a r e unique t o the t a r g e t host. An example o f a t a r g e t s p e c i f i c compound might be t h e a l k a l o i d c n i c i n found i n and on knapweed leaves (9) . T h i s compound might serve as a s p e c i f i c inducer o f prototropy i n a g e n e t i c a l l y modified pathogen. For instance, without c n i c i n t h e pathogen would r e q u i r e c y t o s i n e whereas i n the presence o f c n i c i n c y t o s i n e would be synthesized. N a t u r a l chemical r e c o g n i t i o n systems may be a v a i l able from pathogens, epiphytes, i n s e c t s , nematodes, o r rhizosphere m i c r o f l o r a a s s o c i a t e d with the t a r g e t host, o r even from the host i t s e l f . For instance, c n i c i n u t i l i z i n g m i c r o f l o r a may be obtained from organisms i s o l a t e d from spotted knapweed i t s e l f , s o i l - b o r n e microorganisms, o r from t h e i n t e s t i n a l f l o r a o f i n s e c t s or nematodes t h a t feed on t h i s p l a n t . These promotor o r r e p r e s s o r systems can be cloned upstream t o the gene r e s t o r i n g prototropy and then i n s e r t e d i n t o t h e pathogen v i a t r a n s f o r m a t i o n . A Z i p Code System f o r Auxotrophy The r o o t exudates o f p l a n t s have been w e l l c h a r a c t e r i z e d and g e n e r a l l y c o n s i s t p r i m a r i l y of c e r t a i n amino a c i d s and sugars (20). P a t h o l o g i s t s have found l i t t l e r e l a t i o n s h i p between r o o t exudate content and h o s t / p a r a s i t e s p e c i f i c i t y (10) . However, as e a r l y as the mid 1950 s, Garber (11,12) demonstrated a r e l a t i o n s h i p between auxotrophic mutants and c u l t i v a r - l e v e l host s e l e c t i v i t y with Erwinia aroideae, precedence f o r a n u t r i t i o n a l l y - b a s e d system f o r c o n f e r r i n g f
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
8, SANDS & MILLER
Altering Mycoherbicides by Genetic Manipulation
107
h o s t - s p e c i f i c i t y . Other f a c t o r s t h a t have been i m p l i c a t e d i n h o s t - s p e c i f i c i t y i n c l u d e l e c t i n b i n d i n g , pathogens p e c i f i c and non-pathogen s p e c i f i c t o x i n s , spore a g g l u t i n a t i n g f a c t o r s , and n o n - s p e c i f i c defense mechanisms (13) . We can determine which f r e e amino a c i d s a r e i n high amounts i n t h e s u b s o i l crown of the t a r g e t p l a n t and, as might be expected, c e r t a i n amino a c i d s a r e not common i n a l l crowns o f a l l p l a n t s p e c i e s . A m u l t i p l e auxotroph c o u l d then be designed t o s p e c i f i c a l l y a t t a c k a c e r t a i n p l a n t based on i t s f r e e amino a c i d p r o f i l e . An example might be Centaurea maculosa, the spotted knapweed which has high amounts of f r e e asparagine, a l a n i n e , a s p a r t a t e , p r o l i n e , and threonine i n i t s crown (Table I I I ) • P r o l i n e i s h i g h l y v a r i a b l e i n p l a n t s p a r t i c u l a r l y i n response t o v a r i o u s s t r e s s e s such as senescence o r drought. But an auxotroph r e q u i r i n g t h e other four amino a c i d s might be able t o i n f e c t the crown of t h i s p l a n t whereas other nont a r g e t hosts might not provide s u f f i c i e n t l e v e l s o f these e s s e n t i a l amino a c i d s . Such " z i p coding" i s an a r t i f i c i a l system t h a t may enable development o f h o s t - s p e c i f i c i t y v i a auxotrophs. A General Strategy f o r F i n d i n g S p e c i f i c i t y or Virulence
Useful
Genes t o Enhance
B i o c o n t r o l agents are not always as s p e c i f i c o r v i r u l e n t ( l e t h a l ) as r e q u i r e d . One p o t e n t i a l source o f genes t o enhance b i o c o n t r o l agents i s from the t a r g e t host i t s e l f . The u n d e r l y i n g presumption i s t h a t most m u l t i c e l l u l a r organisms c o n t a i n numerous intermediary metabolites, hormones, and enzymes, t h a t i f overproduced o r produced a t the wrong time would be l e t h a l . We r e f e r t o t h i s general s t r a t e g y as t h e Pogo Strategy a f t e r t h e Walt K e l l y cartoon c h a r a c t e r who s a i d , "We have found t h e enemy and i t i s us." Examples might i n c l u d e molting hormones i n nematodes and i n s e c t s , i n s e c t egg hatching f a c t o r s , seed germination i n h i b i t o r s o r simulators, p l a n t growth hormones, a l k a l o i d s , o r p l a n t defenses such as p h y t o a l e x i n production (14,15,16,17,18) . The g e n e t i c approach t o t h i s s t r a t e g y would i n v o l v e using cDNA i n a expression v e c t o r and assaying t h e cloned gene products back on t h e host. A f t e r f i n d i n g a c t i v e compounds, these c o u l d be used d i r e c t l y o r t h e i r appropriate genes could be cloned i n t o an appropriate pathogen. Notably, many o f t h e f i n a l products l i s t e d a r e m u l t i g e n i c i n nature but a r e o f t e n under r e g u l a t o r y systems t h a t may be coded by a s i n g l e gene and thus a c c e s s i b l e t o manipulation. Conclusions We expect t o see s e v e r a l s h i f t s i n s t r a t e g y as b i o l o g i c a l c o n t r o l becomes l e s s a c l a s s i c a l hunting and g a t h e r i n g o p e r a t i o n and more i n v o l v e d with g e n e t i c manipulation. As
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
108
PEST CONTROL WITH ENHANCED ENVIRONMENTAL SAFETY
ways t o make broad-host range pathogens s a f e r a r e devised, we may see the use o f b i o l o g i c a l s analogous t o t h a t o f broad spectrum chemical h e r b i c i d e s .
Table I I I .
Amino A c i d P r o f i l e o f Spotted Knapweed 1
Mmol/ml
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
Amino A c i d Alanine
0.248
Arginine
0.652
Aspartic Acid
0.523
Cystine
0.039
Glutamic A c i d
0.340
Glycine
0.030
Histidine
0.150
Isoleucine
0.092
Leucine
0.041
Lysine
0.056
Methionine Phenylalanine
Not
Tested 0.024
Proline
1.520
Serine
0.342
Threonine
0.327
Tryptophan
0.061
Tyrosine
0.042
Valine
0.214
Asparagine
6.870
Glutamine
1.270
a-Aminobutyric A c i d
0.033
Ethanolamine
0.073
Sarcosine
0.047
/Ltmol/ml o f an e t h a n o l i c e x t r a c t o f crowns.
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.
8. SANDS & MILLER Altering Mycoherbicides by Genetic Manipulation 109
Literature Cited 1. 2. 3.
Downloaded by UNIV OF LEEDS on January 15, 2018 | http://pubs.acs.org Publication Date: March 12, 1993 | doi: 10.1021/bk-1993-0524.ch008
4. 5. 6. 7. 8.
9. 10. 11. 12. 13. 14. 15. 16. 17.
18.
Anderson, W. P. Weed Science: Principles, Second Edition; West Publishing Company, St. Paul, Minnesota, 1989, pp. 63-117. Watson, A. K. In Microbial Control of Weeds, TeBeest, D. O . , E d . ; Chapman and H a l l , New York, 1991, pp. 3-23. Charudattan, R. In Microbial Control of Weeds, TeBeest, D. O . , E d . ; Chapman and H a l l , New York, 1991, pp.24-57. Agrios, G. N. Plant Pathology, Third Edition; Academic Press, Inc., San Diego, California; 1988, pp. 293-313, 430-435, 487-496, 547-549. Lockwood, J . L . Annu. Rev. Phytopathol., 1988, 26,93-121. M i l l e r , R. V . , Ford, E . J., Zidack, N. J., and Sands, D. C. J. Gen. Microbiol. 1989, 135,20852091. M i l l e r , R. V . ; Ford, E. J.; Sands, D. C. Can. J. Microbiol. 1989, 35,517-520. Farr, D. F.; Bills, G. F.; Chamuris, G. P . ; Rossman, A. Y. Fungi on Plants and Plant Products in the United States; American Phytopathological Society, St. Paul, Minnesota, 1989, pp. 941. Locken, L . J.; Kelsey, R. G. Biochem. System. Ecol. 1987, 15,313-320. Schroth, M. N . ; Hildebrand, D. C. Annu. Rev. Phytopathol. 1964, 2,101-132. Garber, E . D. Proc. Nat. Acad. Sci. U.S. 1954, 40,1112-1118. Garber, E . D. Amer. Natural. 1956, 90,183-194. Daly, J. M. Annu. Rev. Phytopathol. 1984, 22,273307. Riddle, D. L.; Georgi, L. L. Annu. Rev. Phytopathol. 1990, 28,247-269. Mayer, A. M.; Poljakoff-Mayber, A. The Germination of Seeds, Second Edition; Pergamon Press, Oxford, England, 1977, pp. 126-151. Evans, M. L . In Encyclopedia of Plant Physiology, New Series, Vol. 10, Regulation of Development, 1980, pp. 23-79. Derlinger, D. L. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology; Kerkut, G. A . ; Gilbert, L . I. Eds.; Pergamon Press, Oxford, England, 1985, 8,353-412. Truman, J. W. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology; Kerkut, G. A . ; Gilbert, L . I . Eds.; Pergamon Press, Oxford, England, 1985, 8,413-440.
RECEIVED
November 23, 1992
Duke et al.; Pest Control with Enhanced Environmental Safety ACS Symposium Series; American Chemical Society: Washington, DC, 1993.