13
Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 10, 2018 at 20:06:54 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Modeling Aquatic Ecosystems for Metabolic Studies ALLAN R. ISENSEE, PHILIP C. KEARNEY, and GERALD E. JONES U.S. Department of Agriculture, SEA, AR, Agricultural Environmental Quality Institute, Pesticide Degradation Laboratory, Beltsville, MD 20705
M o d e l e c o s y s t e m s have b e e n u s e d f o r a b o u t 8 y e a r s t o meas ure t h e d i s t r i b u t i o n and f a t e o f p e s t i c i d e s i n t h e a q u a t i c e n v i r o n m e n t . Over t h a t p e r i o d o f t i m e numerous d e s i g n c h a n g e s have e v o l v e d t h a t h a v e i n c r e a s e d t h e v e r s a t i l i t y o f t h e e c o s y s tem a n d i m p r o v e d s i m u l a t i o n o f e n v i r o n m e n t a l c o n d i t i o n s . I n o u r l a b o r a t o r y , we have u s e d t h e s t a t i c model e c o s y s t e m p r i m a r i l y t o model t h e pond o r s m a l l l a k e e n v i r o n m e n t , a n d t o s i m u l a t e t h e l i k e l y r a t e s a n d modes o f p e s t i c i d e e n t r y ( 1 ) . More r e c e n t l y , we have d e v e l o p e d l a r g e r s y s t e m s c a p a b l e o f p r o v i d i n g s u f f i c i e n t biomass f o r a c c u m u l a t i o n and d i s s i p a t i o n r a t e d e t e r m i n a t i o n s (2) and f o r m e t a b o l i c s t u d i e s ( 3 ) . The p r i m a r y p u r p o s e o f t h i s p r o j e c t was t o d e m o n s t r a t e t h a t a q u a t i c model e c o s y s t e m s c o u l d b e f u r t h e r s c a l e d up i n s i z e t o p r o v i d e g r e a t e r amounts o f t h e components ( b i o m a s s , s o i l a n d water) t o s a t i s f a c t o r i l y study metabolism k i n e t i c s . We u s e d t r i f l u r a l i n , a d i n i t r o a n i l i n e herbicide, since i t s metabolic p a t h w a y s a r e w e l l known a n d t h e m e t a b o l i t e s were r e a d i l y a v a i l able. Methods and M a t e r i a l s C h e m i c a l s a n d E x p e r i m e n t a l Chambers The c h e m i c a l name a n d s t r u c t u r e o f t r i f l u r a l i n a n d t h e e i g h t m e t a b o l i t e s used i n t h i s study are g i v e n i n T a b l e I . A l l n i n e compounds h a d a c h e m i c a l p u r i t y g r e a t e r t h a n 98.7% a n d t h e [ B e r i n g ] t r i f l u r a l i n ( s p e c i f i c a c t i v i t y 45.25 yCi/mg) h a d a r a d i o p u r i t y g r e a t e r than 97%. F o u r t e e n k g o f M a t a p e a k e s i l t loam (pH 5.3, 1.5% O.M.; s a n d , s i l t , a n d c l a y c o n t e n t s o f 38.4, 49.4, a n d 12.7% r e s p e c t i v e l y ) were t r e a t e d w i t h [ - ^ c ] t r i f l u r a l i n a t t h e r a t e o f 10 ppm a n d i n t r o d u c e d i n t o t h e e c o s y s t e m t a n k s a s d e s c r i b e d b e l o w . The c o n t r o l tank contained f o u r t e e n kg o f u n t r e a t e d s o i l . G l a s s a q u a r i a , m e a s u r i n g 75 χ 29 χ 45 cm, were u s e d a s t h e e c o s y s t e m chambers ( F i g u r e s 1 a n d 2 ) . T w e n t y - f o u r s o i l s a m p l i n g
This chapter not subject to U.S. copyright. Published 1979 American Chemical Society Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Compound No.
3
C
N0
NH
α,α,α-Trifluoro-2,6-dinitro-N(3h y d r o x y p r o p y l ) -p_- t o l u i d i n e
a,a,a-Trifluoro-N ,N -dipropyltoluene 3,4,5-triamine
4
N0
a,a,a-Trifluoro-2,6-dinitro-N(2h y d r o x y p r o p y 1 ) -p_- t o l u i d i n e
4
N0
2-Ethyl-7-nitro-l-peopyl-5(trifluoromethyl)-benzimidazole
2
2
2
2
2
7
:
2
NH 3
2
^-(C H )
2
2
N0
N0
3
HN-CH CH CH OH
HN-CH CHOHCH
and i t s M e t a b o l i t e s .
N0
Name
F
I. Trifluralin
2-Ethyl-4-nitro-6-(trifluoromethyl benzimidazole
Table
2
13.
isENSEE E T A L .
x
CM
ΓΜ
o
2
Modeling
Χ
2
(N
2
U
to
I
I
χ
CM ο
CM
/—\
/—\
υ
Χ to
Χ to U
2
2
ν—'
2
(Ν
CM
S 2
Ecosystems
2
(Ν
Χ
Aquatic
(Ν
Q 2
ο 2
21
^
21
I
0
Ζ|·Η
ô •Η G I LO I ο
i I
% · to I ω u c ο ο
T3
c
•H
r-H ΜΗ •Η μ Ει
δ*
r—(
Ο
4-> ΓΗ
Χ
ΡΗ
ο
?Η
ο +->
•Η Ρ! •Η Τ3 I (D νΟ •Η (Ν Ό I •Η
Ο u ι-Η ο Ο +->
ι-Η ΜΗ a i •Η I ι-Η ι
ΡΗ
Ο
rH
ΡΗ
δ
ιι ° 2| I c •Η
lit g 2| ι ^3 ι •Η ο Π3 ΓΗ I 4-> ^ · •Η to ι I LQ ω I
Ο u
ο r—(
ι-Η ΜΗ •Η rH Ε ι
δ
Ο
-Ρ ι—ι >% ΡΗ
Ο
ΡΗ
·\ Ό•Η
2| I ι
Ο •Η •Η Τ3 I •Η \Ω Τ3 ·> •Η CM 3 I ι-Η ο Ο
u ο
ι-Η ΜΗ •Η rH Ε Ι
+->
pj ι rH Χ ΡΗ
Ο
rH
a ΡΗ •Η δ Ό ·\ δ
c
8
•8 E-
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
197
198
PESTICIDE A N D XENOBIOTIC M E T A B O L I S M I N AQUATIC ORGANISMS
Figure 1.
Side view of ecosystem chamber detailing rehtive proportion and distribution of ecosystem components
REFERENCE ,··* ELECTRODE
REDOX
ELECTRODES
END VIEW Figure 2.
End view of ecosystem chamber showing detail of daphnid chamber and positioning of redox electrodes
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
13.
ISENSEE E T A L .
Modeling
Aquatic
Ecosystems
199
t u b e s (2.5 cm. d i a χ 4 cm h i g h ; F i g u r e 1) w e r e r a n d o m l y l o c a t e d on t h e b o t t o m o f t h e t a n k s . A n aluminum w i r e hoop was cemented ( s i l i c o n s e a l a n t ) t o each t u b e t o a i d sample r e t r i e v a l . A t one end o f t h e c o n t r o l t a n k ( F i g u r e 2) t h r e e h o l e s were d r i l l e d , 1, 2, a n d 3 cm f r o m t h e b o t t o m a n d 2 cm a p a r t ( h o r i z o n t a l l y ) . Two p l a t i n u m d i s c ( t o p and bottom h o l e s ) and one c a l o m e l r e f e r e n c e ( c e n t e r h o l e ) e l e c t r o d e s were cemented i n p l a c e ( s i l i c o n r u b b e r sealant). T h e s e e l e c t r o d e s were u s e d t o measure t h e Eh o f t h e soil. The s o i l ( t r e a t e d o r u n t r e a t e d ) was u n i f o r m l y d i s t r i b u t e d over the bottom o f the tanks and i n the sampling tubes. Only t h e hoop o n t h e s a m p l i n g t u b e s p r o t r u d e d f r o m t h e d i s t r i b u t e d soil. The t h r e e t a n k s were t h e n f i l l e d w i t h 84 l i t e r s o f w a t e r . One day a f t e r f l o o d i n g , 75 b l u e g i l l f i s h (Lepomis m a c r o c h i n u s ) , 60 s n a i l s ( H e l i s o m a s p . ) , 2 grams a l g a e (Oedogonium c a r d i a cum) a n d s e v e r a l h u n d r e d d a p h n i d s ( D a p h n i a magna) w e r e added t o t h e chambers. The d a p h n i d s were p l a c e d i n a s p e c i a l g l a s s t a n k (25 χ 20 χ 15 cm) s u s p e n d e d n e a r t h e w a t e r s u r f a c e i n t h e l a r g e t a n k ( F i g u r e 2 ) . An o p e n i n g i n t h e t a n k b o t t o m was c o v e r e d w i t h a s t a i n l e s s s t e e l s c r e e n w i t h a mesh s u f f i c i e n t l y s m a l l (0.38 mm) t o r e s t r i c t t h e p a s s a g e o f d a p h n i a . A p e r c o l a t o r w a t e r pump c o n t i n u o u s l y pumped w a t e r i n t o t h e d a p h n i d t a n k , e n s u r i n g u n i f o r m m i x i n g o f t h e w a t e r a n d t r a n s p o r t o f f o o d t o d a p h n i d s . The e x p e r i m e n t was c o n d u c t e d i n t h e g r e e n h o u s e u s i n g n a t u r a l l i g h t a t a n a v e r a g e t e m p e r a t u r e o f 27 ί 3 C. S a m p l i n g and A n a l y s i s . W a t e r s a m p l e s ( t r i p l i c a t e 1 ml) w e r e t a k e n a t 2-day i n t e r v a l s a n d a n a l y z e d b y s t a n d a r d l i q u i d s c i n t i l l a t i o n (LS) methods f o r t o t a l C ; 100 m l samples were t a k e n 2, 5, 9, 15, 2 2 , 3 0 , 4 3 , 4 8 , a n d 58 days a f t e r t h e s t a r t o f t h e e x p e r i m e n t , ; t h e s e were e x t r a c t e d t w i c e w i t h 50 m l o f e t h y l a c e t a t e : h e x a n e (7:3 v / v ) a n d t h e e x t r a c t s were r e d u c e d t o 20 m l and a n a l y z e d b y LS a n d T L C . Two s o i l s a m p l i n g t u b e s were removed f r o m e a c h t a n k 2, 5, 9, 15, 27, 3 0 , 4 3 , a n d 58, a n d 72 days a f t e r t h e s t a r t o f t h e e x p e r iment, then f r o z e n and s t o r e d f o r l a t e r a n a l y s e s . For a n a l y s e s , t h e f r o z e n s o i l c o r e s were removed f r o m t h e g l a s s t u b e s (by b r i e f i m m e r s i o n i n h o t w a t e r ) , t h e n s e c t i o n e d i n t o f o u r 1-cm c y l i n d e r s r e p r e s e n t i n g 0-1, 1-2, 2-3, a n d 3-4 cm s o i l d e p t h s . Samples f r o m each d e p t h were s h a k e - e x t r a c t e d w i t h 100 ml e t h y l a c e t a t e : h e x a n e o v e r n i g h t , a n d a g a i n w i t h 100 m l m e t h a n o l o v e r n i g h t . Extracts w e r e f i l t e r e d , c o n c e n t r a t e d t o 20 m l a n d a n a l y z e d b y LS a n d TLC as d e s c r i b e d b e l o w . Samples o f o r g a n i s m s (7 f i s h , 6 s n a i l s , 0.5 g a l g a e , a n d 0.5 t o 1.5 g d a p h n i d s ) were t a k e n a f t e r 2, 5, 9, 1 5 , 2 2 , a n d 30 d a y s . A l l r e m a i n i n g o r g a n i s m s were removed a f t e r 42 d a y s a n d a d d i t i o n a l o r g a n i s m s were a d d e d (27 f i s h , 30 s n a i l s , 2 g a l g a e , a n d s e v e r a l h u n d r e d d a p h n i d s ) t h e same day. Samples o f o r g a n i s m s were a g a i n t a k e n o n Days 44, 4 8 , 58 a n d 72. A l l s a m p l e s w e r e w e i g h e d , t h e n f r o z e n f o r l a t e r p r o c e s s i n g . A l g a e s a m p l e s were o x i d i z e d t o de t e r m i n e t o t a l l ^ C . F i s h , s n a i l s , and daphnids were homogenized i n m e t h a n o l a n d a n a l y z e d b y LS a n d T L C . 1 4
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
200
PESTICIDE AND XENOBIOTIC M E T A B O L I S M IN AQUATIC ORGANISMS
The i d e n t i t y o f t r i f l u r a l i n and compounds 1-8 were d e t e r m i n e d by c o - c h r o m o t o g r a p h y as f o l l o w s . E x t r a c t s f r o m s o i l , w a t e r , and o r g a n i s m s were r e d u c e d ( u n d e r N ) t o 0.1 m l , c o m b i n e d w i t h 10 t o 20 u l e a c h o f compounds 1-9; t h e n s p o t t e d on s i l i c a g e l TLC p l a t e s (20 χ 20 cm FG-254, E. M e r c k , D a r m s t a d t ) . The p l a t e s were d e v e l oped two d i m e n s i o n a l l y , f i r s t i n b e n z e n e f o r 15 cm, t h e n i n b e n zene: e t h y l a c e t a t e : a c e t i c a c i d (60:40:1). Spots c o r r e s p o n d i n g t o t h e n i n e compounds were l o c a t e d v i s i b l y and by UV l i g h t , t h e n s c r a p e d and a n a l y z e d by LS. I n a d d i t i o n , t h e o r i g i n and a d i f f u s e zone b e t w e e n t h e o r i g i n and compound 1 were s c r a p e d and a r e t e r m e d " p o l a r " and " n o n p o l a r " m e t a b o l i t e s , r e s p e c t i v e l y ( F i g u r e 3 ) . 2
R e s u l t s and
Discussion
A l l o r g a n i s m s t h r i v e d i n t h e s y s t e m s w i t h no l o s s o f f i s h or s n a i l s . Numerous egg c l u s t e r s and s m a l l s n a i l s were e v i d e n t i n a l l t a n k s by Day 42 (when t h e r e m a i n i n g o r g a n i s m s were h a r v e s ted). T h e s e egg c l u s t e r s and s m a l l s n a i l s were n o t removed s i n c e t h e s e c o n d s e t o f s n a i l s was s u f f i c i e n t l y l a r g e t h a t i d e n t i t y a t h a r v e s t was n o t a p r o b l e m . The a l g a e w e i g h t i n c r e a s e d f r o m 2 g ( i n i t i a l ) t o an a v e r a g e o f 9.4 g i n t h e t r e a t m e n t t a n k s and 26.3 g i n the c o n t r o l . However, f o r t h e s e c o n d s e t o f a l g a e , t h e r e was no g r o w t h d i f f e r e n c e d u r i n g t h e e x p o s u r e p e r i o d (Days 42 - 7 2 ) . The c o n c e n t r a t i o n o f t r i f l u r a l i n i n w a t e r d e c r e a s e d r a p i d l y w i t h t i m e ( w h i c h w i l l be d i s c u s s e d i n d e t a i l l a t e r i n t h i s p a p e r ) . Thus any i n i t i a l e f f e c t o f r e d u c i n g a l g a e g r o w t h was l o s t w i t h time. D a p h n i d s r e p r o d u c e d ( i n b o t h t r e a t m e n t and c o n t r o l t a n k s ) q u i c k l y i n c r e a s i n g t h e i r mass a t l e a s t 10 t i m e s i n 15 days and t h e n m a i n t a i n e d t h i s d e n s i t y f o r up t o 42 d a y s . The s e c o n d s e t of daphnids behaved s i m i l a r i l y . D e g r a d a t i o n o f T r i f l u r a l i n i n Submerged S o i l . The r e d o x p o t e n t i a l o f t h e s o i l became n e g a t i v e a f t e r o n l y 3 days and r e a c h e d a low o f -450 mv a f t e r 32 days ( T a b l e I I ) . T h e r e was l i t t l e d i f f e r e n c e i n t h e measurements between t h e 1 and 3 cm s o i l d e p t h s . We t h e r e f o r e assume t h a t a l l s o i l s a m p l e s ( e x c e p t p o s s i b l y a t Day 2) were a n a e r o b i c . O n l y a b o u t 6% o f t h e o r i g i n a l C a p p l i e d t o s o i l as Ct r i f l u r a l i n was l o s t a f t e r 72 d a y s ( F i g u r e 4 ) . A l s o , t h e a c e t a t e : hexane and m e t h a n o l e x t r a c t s ) s t e a d i l y d e c r e a s e d w i t h t i m e t o a low o f a b o u t 58% a f t e r 72 d a y s . ( V a l u e s shown i n F i g u r e 4 a r e t h e a v e r a g e o f t h e f o u r d e p t h s s i n c e t h e r e was no s i g n i f i c a n t d i f f e r e n c e i n t h e C c o n t e n t b e t w e e n t h e m ) . T h e s e r e s u l t s show t h a t t h e d i f f u s i o n o f t r i f l u r a l i n a n d / o r i t s m e t a b o l i t e s f r o m a submer ged s o i l i s a s l o w p r o c e s s , w h i l e a t t h e same t i m e , c o n v e r s i o n t o t h e "bound" o r n o n e x t r a c t a b l e form (35 t o 40% a t 72 d a y s ) o c c u r s . P r o b s t e t a l . (4) f o u n d more r a p i d c o n v e r s i o n t o bound r e s i d u e s : n e a r l y 60% o f t h e t o t a l C f r o m a submerged s o i l was u n e x t r a c t a b l e a f t e r o n l y 14 d a y s . The a n a l y s i s o f t h e s o i l e x t r a c t s by TLC i s shown i n T a b l e III. (The p e r c e n t a g e v a l u e s a r e b a s e d on t h e d i s t r i b u t i o n o f C 1 4
1 4
1 4
1 4
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
13.
ISENSEE E T A L .
Modeling
Aquatic
201
Ecosystems
15
t II Benzene
60
Et A c
40
HOAc
1
H O
h5 1 Non
Polar
Polar
jjjjjjjjj
Metabolites
iijjSj:
Metabolites
''l''
w
LQ
Benzene
-ι—ι 10
15
Figure 3.
ι 5
I 0
TLC system used to separate trifluralin and metabolites extracted from ecosystem components
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
PESTICIDE A N D XENOBIOTIC M E T A B O L I S M I N AQUATIC ORGANISMS
202
T a b l e I I . Redox p o t e n t i a l s ( e x p r e s s e d i n m i l l i v o l t s ) a t two d e p t h s i n a f l o o d e d s o i l .
Soil
depth
a
Days
1 cm
3 cm
0
+300
+300
1
+205
+220
2
+ 15
+40
5
-210
-80
6
-260
-140
7
-290
-250
8
-320
-270
9
-340
-300
12
-360
-320
16
-380
-350
19
-405
-370
22
-430
-395
25
-450
-420
30
-460
-440
Measurements t a k e n 1 a n d 3 cm b e l o w s o i l
surface.
Days a f t e r s t a r t o f e x p e r i m e n t .
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ISENSEE ET AL.
Modeling
Aquatic
203
Ecosystems
50"
4
0
10
20
30
40
50
60
70
DAYS Figure 4.
Residual and extractable C from C-trifluralin-treated 14
14
anaerobic soil
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
0
0.3 3.4 0.3 1.1 1.1 0.5 0.1 2.1 0.1 89.4
0.4
1.2
.9 5.0 0.5 0.6 3.6 0.6 0.2 1.8 2.8 78.9
3.0
2.1
i 4
2.1 2.5 0.9 0.9 2.2 2.0 0.2 7.4 13.3 47.9
15.0
5.6
4.2 1.6 1.0 1.0 2.0 4.6 0.3 2.7 13.0 44.8
18.0
6.8
4
Values represent percent o f t o t a l C recovered from s o i l a c e t a t e : h e x a n e a n d m e t h a n o l ) b y TLC m e t h o d s . 1 C r e c o v e r e d from t h e o r g i n . 14c r e c o v e r e d i n a zone b e t w e e n o r g i n a n d compound 1. 14c r e c o v e r e d b e t w e e n compounds 1 a n d 2.
0
P o l a r metabolites Nonpolar metabolites 1 Unknown^ 2 3 4 5 6 7 8 Trifluralin
extracts
16.4 1.6 1.0 1.2 2.2 6.2 0.4 3.0 7.9 40.4
11.7
8.0
(ethyl
14.3 1.2 1.0 1.3 2.5 5.9 0.3 4.5 1.3 39.3
10.6
17.8
Table I I I . Degradation o f [ C ] t r i f l u r a l i n i n a f l o o d e d s o i l (expressed as percent of extracted r a d i o a c t i v i t y ) . Days a f t e r s t a r t o f e x p e r i m e n t 9 22 30 42 71 Compounds 2
ISENSEE E T A L .
13.
Modeling
Aquatic
205
Ecosystems 4
r e c o v e r e d f r o m t h e i n d i v i d u a l TLC p l a t e s , r e p r e s e n t i n g t h e ^ C i n the e x t r a c t s , not thet o t a l s o i l ) . T r i f l u r a l i n appeared t o deg r a d e b o t h b y s e q u e n t i a l r e d u c t i o n o f t h e n i t r o g r o u p s (Compounds 8 a n d 5) a n d b y d e a l k y l a t i o n (Compound 7 ) , T a b l e I I I , F i g u r e 3. These a r e a l l r e c o g n i z e d d e c o m p o s i t i o n p r o d u c t s i n the a n a e r o b i c d e g r a d a t i o n p a t h w a y a s p r o p o s e d b y P r o b s t £t a l _ ( 4 ) . The i n t e r m e d i a t e s i n t h e f o r m a t i o n o f Compound 1 i n o u r s y s t e m a r e unknown, s i n c e i t c o u l d form e i t h e r from t r i f l u r a l i n d i r e c t l y ( v i a s e v e r a l i n t e r m e d i a t o r s ) o r f r o m Compound 7 ( F i g u r e 5 ) . However, o u r r e c o v e r y o f Compound 1 s u p p o r t s a p r e v i o u s o b s e r v a t i o n (5) t h a t i t forms under a n a e r o b i c c o n d i t i o n s , b u t p r o b a b l y i s a minor pathway. The a c c u m u l a t i o n o f p o l a r a n d n o n p o l a r m e t a b o l i t e s a l s o agreed w i t h p r e v i o u s s t u d i e s . Compounds 2, 3, 4, a n d 6 w e r e p r o b a b l y n o t p r e s e n t i n o u r system as i n d i c a t e d b y t h e low r e c o v e r y of C (1 t o 3 . 6 % ) . The l e v e l o f C was t o o l o w t o c o n f i r m t h e p r e s e n c e o f t h e s e compounds b y T L C . In g e n e r a l , t h e d e g r a d a t i o n p r o d u c t s we o b t a i n e d f r o m t h e submerged s o i l o f o u r e c o s y s t e m w e r e v e r y s i m i l a r t o t h o s e r e p o r t ed b y p r e v i o u s i n v e s t i g a t o r s ( 4 , 6 ) . However, t h e r a t e o f t r i f l u r a l i n d e g r a d a t i o n was much s l o w e r . F o r e x a m p l e , a b o u t 8% o f t h e total C i n t h e s o i l was t r i f l u r a l i n a f t e r 58 d a y s ( c o n f i r m e d by e l e c t r o n c a p t u r e g a s c h r o m a t o g r a p h y ) a s compared t o a b o u t 6% a f t e r 14 d a y s b y P r o b s t et_ a l _ . (4) . S o i l o r g a n i c m a t t e r may h a v e been responsible f o r thedegradation rates. P a r r a n d S m i t h (6) m e a s u r ed t h e e x t e n t o f t r i f l u r a l i n d e g r a d a t i o n i n a s i l t loam, amended and unamended w i t h 1% a l f a l f a m e a l , u n d e r a n a e r o b i c c o n d i t i o n s . A f t e r 20 d a y s , t h e amount o f t r i f l u r a l i n r e c o v e r e d was 1% a n d 6 8 % i n t h e amended a n d unamended s o i l s , r e s p e c t i v e l y . The o r g a n i c m a t t e r i n o u r s o i l may n o t h a v e p r o m o t e d r a p i d m i c r o b i a l d e g r a d a t i o n and t h e r e f o r e r e s u l t e d i n a slower r a t e o f d e g r a d a t i o n . 1 4
1 4
%
1 4
1 4
D e g r a d a t i o n o f T r i f l u r a l i n i n W a t e r . The amount o f C r e c o v e r e d from w a t e r w i t h t i m e i s shown i n T a b l e I V . A b o u t h a l f of t h e t o t a l C ( d i r e c t c o u n t a n a l y s i s ) i n w a t e r was r e c o v e r e d by e x t r a c t i n g t w i c e w i t h e t h y l a c e t a t e : h e x a n e ( 7 : 3 ) , i n d i c a t i n g t h a t p o l a r m e t a b o l i t e s r a p i d l y formed. A l s o , t h e c o n c e n t r a t i o n of C i n w a t e r i n c r e a s e d most r a p i d l y d u r i n g t h e f i r s t 22 d a y s , a f t e r which t h e r a t e decreased. A n a l y s i s o f t h e water e x t r a c t s by TLC i s shown i n T a b l e V. T r i f l u r a l i n d i s a p p e a r e d v e r y r a p i d l y , d e c r e a s i n g t o n o n d e t e c t a b l e l e v e l s b e t w e e n 9 a n d 22 d a y s . Even as e a r l y as 2 d a y s o n l y 4 6 % o f t h e r e c o v e r e d C was t r i f l u r a l i n . A s e q u e n c i a l r e d u c t i o n o f t h e n i t r o group (decrease i n t h e concent r a t i o n o f Compound 8 w i t h t i m e f o l l o w e d by a n a c c u m u l a t i o n o f Compound 5) i s i n d i c a t e d b y t h e r e s u l t s ( F i g u r e 6 ) . Compound 1 a l s o i n c r e a s e d r a p i d l y i n c o n c e n t r a t i o n e a r l y i n t h e experiment t h e n m a i n t a i n e d a l o w e r b u t c o n s t a n t c o n c e n t r a t i o n b e t w e e n Days 22 and 5 8 . P o l a r m e t a b o l i t e s r a p i d l y i n c r e a s e d t o 5 2 % o f t h e t o t a l r e c o v e r e d C b y Day 9, t h e n g r a d u a l l y d e c r e a s e d w h i l e t h e c o n c e n t r a t i o n o f nonpolar metabolites continuously increased w i t h time. 1 4
i 4
1 4
1 4
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
PESTICIDE AND XENOBIOTIC M E T A B O L I S M I N AQUATIC ORGANISMS
206
N(C,H ) 7
° S N(C H ) 3
7
2 N
CF,
2
l^vjUCompound 8 CF
2
N 0
rîï ' k^Trifluralin \
\^
\
H-N-C3H7
\
LJJCompound 7 \
3
N(C,H ), 7
CF
3
« NO
2
Compound 1
^Compound 5 CF
1
3
I
Polar and Non Polar Metabolites Figure 5.
Postulated pathway of trifluralin degradation in an anaerobic soil from a model ecosystem
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
isENSEE E T A L .
Table IV.
Days
a
Modeling
Aquatic
207
Ecosystems
Concentration of C i n ecosystem water (expressed on ppb p a r e n t compound).
D i r e c t count ^
Extraction
2
4.7
2.8
5
7.5
3.5
9
11.0
5.4
15
19.1
11.0
22
27.5
9.9
30
29.9
13.6
43
34.8
15.4
48
36.2
14.7
58
38.1
-
72
37.3
-
c
Days a f t e r s t a r t o f e x p e r i m e n t l ^ c r e c o v e r e d f r o m 1 ml w a t e r 1 4
samples.
C r e c o v e r e d from water e x t r a c t e d 2 times w i t h acetate:hexane (7:3).
ethyl
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
PESTICIDE AND XENOBIOTIC M E T A B O L I S M I N AQUATIC ORGANISMS
rj- r f
oo
•
LQ
· O
O
O
00
·O
O
O
O
CN
vO •M
00 rf
CD
tO
to vO • · o to m
00 o o · o vo
CM rH
\D LO • · o rH LO
o
CM
00 CTi "3LO • · · o o « o o o o LO Vû
o
o
o
-M υ cd rH +->
CD •Η
U ω
o
CM « o o o o 00
X
CD
rH
CD
+->
& CD
ο| +-> rH cd
PH
B o υ
rH vO 00 O tO 00 CM • · · o · · · o 00 LO rH 00 rH
U
CD
rH
o
cd
O υ
CD
bû CM rH ο τ3
u u CJ>tOOvOCJ*CMrH\OCMrH o CM rH CM LO vO CM rH
+J
MH -H •H >
CM
LO
CD cd
cd +-> · O w ο
00 vO vO to LO to to • • • •o • • • • • rr 00 rf CM O CM CM rH
CM
• 00 rH
• 00
ΜΗ
Λ
o +-> CD
+c-> e CD CJ
O J rH F-
1 o rO cd «P (D SrO 0
1 u
rH cd rH O O.
LO CM LO to rH rH
o
• o rH
CD
+-> -H rH
CM rH O
o
vO
CM to
O
\D CM rf
o CD
u cd •H rH rH O O P O rH CM to rf L0 vO 1 cd c -M r * o ω 1 2 e
G •H rH cd rH 00 rH > > rH O O O υ υ υ CD CD CD t/) rH U U 0 3 rH CD U u u cd o r f r f rf > Cd rH rH rH CD
cd
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
13.
iSENSEE E T A L .
Modeling
Aquatic
N(CH ) 7
^ ^ ET N(CH ) 7
0
t
N
rîî
N
H
Ecosystems
F
Trifluralin
CF, \
T
2
*
L j J C o m p o u n d 8\ CF,
\
'
\
N(C,H ) 7
2
^/Compound 5
NO,
Compound 1
CF,^>^-
N
CF,
i
ι
Polar a n d Non Polar Metabolites Figure 6.
Postulated pathway of trifluralin degradation in water from a model ecosystem
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
209
210
PESTICIDE AND XENOBIOTIC M E T A B O L I S M IN AQUATIC ORGANISMS
T r i f l u r a l i n i s known t o u n d e r g o r a p i d p h o t o d e c o m p o s i t i o n on p h y s i c a l s u r f a c e s (7) and d e g r a d e s r a p i d l y i n s h a l l o w w a t e r e x p o s ed t o s u n l i g h t ( 8 ) . The r e c o v e r y o f o n l y 46% o f t h e t o t a l C as t r i f l u r a l i n a f t e r 2 days s u g g e s t s t h a t p h o t o d e g r a d a t i o n s i g n i f i c a n t l y c o n t r i b u t e d t o t r i f l u r a l i n d e g r a d a t i o n i n our ecosystem. The d a t a s u p p o r t s t h i s c o n c l u s i o n s i n c e Compound 1, a known p h o t o p r o d u c t o f t r i f l u r a l i n ( 9 ) , r e p r e s e n t s a s u b s t a n t i a l amount o f t h e t o t a l ^ C d u r i n g the f i r s t 9 days o f the experiment ( c o r r e s p o n d i n g to the h i g h e s t c o n c e n t r a t i o n o f t r i f l u r a l i n ) . D e g r a d a t i o n o f T r i f l u r a l i n i n A q u a t i c O r g a n i s m s . The r a p i d degradation of t r i f l u r a l i n i n water s i g n i f i c a n t l y a f f e c t e d the t y p e and amount o f m e t a b o l i t e s r e c o v e r e d from f i s h , s n a i l s , daphn i d s and a l g a e ( T a b l e s V I - I X ) . I n g e n e r a l , t h e amount o f t r i f l u r a l i n r e c o v e r e d was h i g h e s t f o r t h e i n i t i a l s a m p l i n g p e r i o d s , t h e n d e c r e a s e d t o n o n d e t e c t a b l e l e v e l s between 22 and 42 d a y s . This trend c l o s e l y f o l l o w s the t r i f l u r a l i n c o n c e n t r a t i o n i n water, where t r i f l u r a l i n a c c o u n t e d f o r a b o u t 25% o f t h e t o t a l (1.3 ppb) on Day 2. T h i s may a l s o e x p l a i n why p o l a r m e t a b o l i t e s a c counted f o r the h i g h e s t p r o p o r t i o n of the r e c o v e r e d , even f o r t h e f i r s t s a m p l i n g p e r i o d s . Compound 1 was t h e n e x t most p r e v a l e n t p r o d u c t r e c o v e r e d from organisms. The 14c d i s t r i b u t i o n was more c o m p l e x i n d a p h n i d s ( T a b l e V I I I ) t h a n f o r f i s h , s n a i l s , o r a l g a e , where compounds 8, 2 and n o n p o l a r m e t a b o l i t e s were a l s o detected. (No d a t a was shown i n T a b l e V I I I b e f o r e Day 15 s i n c e f o r TLC a n a l y s i s was i n s u f f i c i e n t ) . I n t e r p r e t a t i o n of the a q u a t i c o r g a n i s m d a t a i s d i f f i c u l t s i n c e we c o u l d n o t d e t e r m i n e w h e t h e r s p e c i f i c compounds ( p r i m a r i l y t h e p o l a r m e t a b o l i t e s ) w e r e f o r m e d i n t h e o r g a n i s m o r were a b s o r b e d f r o m w a t e r . However, w a t e r was p r o b a b l y t h e m a j o r s o u r c e o f t h e r e c o v e r e d compounds s i n c e l i t t l e d i f f e r e n c e was n o t e d b e t w e e n o r g a n i s m s a n a l y z e d on Day 42 and 44, r e p r e s e n t i n g e x p o s u r e t i m e s o f 42 v s . 2 d a y s , r e spectively. ( A l l o r g a n i s m s were removed from t h e t a n k s on Day 42 and r e p l a c e d w i t h a new s e t t h e same d a y ) . F a r more t r i f l u r a l i n was i n i t i a l l y r e c o v e r e d (Days 2 and 5) f r o m a l g a e t h a n any o f t h e o t h e r o r g a n i s m s ( T a b l e I X ) . However, a f t e r 30 days t h e p o l a r and n o n p o l a r m e t a b o l i t e s a c c o u n t e d f o r 75% o r more o f t h e r e c o v e r e d i n d i c a t i n g t h a t t h e a l g a e were a l s o r e s p o n d i n g t o t h e r a p i d l o s s o f t r i f l u r a l i n from w a t e r . The i n i t i a l r e l a t i v e l y h i g h c o n c e n t r a t i o n o f t r i f l u r a l i n may account f o r the lower accumulation o f a l g a e biomass i n the t r e a t e d tanks as compared t o t h e c o n t r o l . O n l y one o t h e r s t u d y has b e e n c o n d u c t e d t o e v a l u a t e t h e f a t e o f t r i f l u r a l i n i n an a q u a t i c model e c o s y s t e m ( 1 0 ) . I n t h e i r s y s tem, t r i f l u r a l i n p e r s i s t e d much l o n g e r i n w a t e r t h a n i n o u r s t u d y ( p r o b a b l y due t o l e s s p h o t o d e g r a d a t i o n t h r o u g h t h e use o f a r t i f i cial light). As a r e s u l t , t h e y r e p o r t e d much h i g h e r c o n c e n t r a t i o n s o f t r i f l u r a l i n i n s n a i l s and f i s h t h a n we f o u n d , b u t no residues i n daphinds. They a l s o r e p o r t e d t h e p r e s e n c e o f Compound 7 p l u s s e v e r a l o t h e r known and unknown m e t a b o l i t e s . 1 4
4
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
0
3.8 3.9 1.2 1.5 1.7 1.8 0 0 24.2
3.3
58.6
4.9 4.4 0.2 1.2 0.8 1.1 0 0 14.7
5.2
67.5
1 4
7.0 3.3 1.4 0.6 2.7 4.3 0 0 20.5
5.6
54.6
a
13.8 3.4 3.2 2.2 0.8 1.0 0 0 10.6
4.1
60.9
20.6 2.1 1.4 1.8 1.7 1.1 0 0 4.5
3.9
62.9
29.8 4.0 1.3 2.0 1.1 0.4 0 0 2.5
5.6
53.3
c
25.6 6.0 0.5 0.7 0.9 0.4 0 0 0
1.8
63.4
( m e t h a n o l ) by
28.8 4.6 0.9 1.2 0.4 0.6 0 0 1.8
1.5
60.2
Degradation o f [ C ] t r i f l u r a l i n i n b l u e g i l l f i s h (expressed as percent of e x t r a c t e d radioactivity) Days a f t e r s t a r t o f e x p e r i m e n t 2 5 9 22 15 30' 42 44
Values represent percent o f t o t a l C r e c o v e r e d from f i s h e x t r a c t s TLC methods, k r e c o v e r e d from t h e o r g i n . r e c o v e r e d i n a zone b e t w e e n t h e o r g i n a n d compound 1.
a
b
P o l a r metabolites Nonpolar metabolites 1 2 3 4 5 6 7 8 Trifluralin
Compound
Table V I .
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
a
0
22.2 3.5 6.9 3.5 0 0 0 2.5 4.7
56.9
2
12.6 10.1 3.9 4.4 0 2.6 0 4.3 1.9
60.4
5
a
9
12. 0 7. 8 0 4. 9 0 2. 3 1. 8 3. 6 2. 6
C r e c o v e r e d from t h e o r g i n .
i n snails
1 4
C
15.5 6.6 3.5 6.7 0 0 0 3.3 6.0
57.5 8. 8 5. 6 2. 5 1. 3 10. 2 0 0 0 0
71. 6 10.9 5.3 2.4 3.0 1.1 0.8 0 0 0
76.5
44
21.9 2.1 0.6 0 2.0 0 0 0 0
73.6
48
16.6 2.7 1.4 2.0 1.6 0 0 0 0
75.4
58
10.3 2.1 4.6 2.7 0.9 0 0 0 0
79.4
72
( m e t h a n o l ) b y TLC methods.
18.7 4.6 0 1.4 0 0 0 0 0
75.8
r e c o v e r e d from s n a i l e x t r a c t s
7. 7 1. 0 1. 4 0 6. 2 0 1. 0 2. 8 1. 1
79. 0
experiment 42
( e x p r e s s e d as p e r c e n t o f e x t r a c t e d
Days a f t e r s t a r t o f 22 30 15
C]trifluralin
62. 7
Degradation of [ radioactivity)
Values represent percent o f t o t a l
Polar metabolites 1 2 3 4 5 6 7 8 Trifluralin
Compounds
Table V I I .
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
0
14
3.9 12.1 0.3 1.5 0.9 0.8 0 7.5 9.7
3.6
1 4
9.8 15.7 0.3 2.8 1.7 0 0 2.3 4.7
8.1
54.6
7.0 6.7 0 1.4 1.0 0 0 0.7 1.5
7.8
73.9
16.0 5.5 0 0 6.0 0 0 0 0
7.9
64.6
9.4 15.8 0.4 1.6 1.2 1.0 0 0 0
8.3
62.3
0
1 4
Values represent percent of t o t a l C r e c o v e r e d from daphnid e x t r a c t s TLC m e t h o d s , b c r e c o v e r e d from t h e o r g i n . C r e c o v e r e d i n a zone b e t w e e n t h e o r g i n a n d Compound 1.
a
7.8 16.6 4.0 0 1.0 1.0 2.3 12.0 36.0
5.2
59.7
8.9 7.0 0.4 2.3 0 0 0 0 0
15.5
(methanol) by
11.2 11.0 0 1.2 0 0.7 0 0 0
10.0
65.9
65.9
1 3
14.1
P o l a r metabolites Nonpolar metabolites 1 2 3 4 5 6 7 8 Trifluralin
Compounds
D e g r a d a t i o n o f [ C ] t r i f l u r a l i n i n daphnids (expressed as p e r c e n t o f extracted radioactivity) . Days a f t e r s t a r t o f e x p e r i m e n t 72 58 48 42 44 30 22 15
Table V I I I .
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
C
5.4 1.8 0 0 0 0 11.0 5.4 74.5
0
0.6 1.7 0 0 1.7 1.2 7.6 1.2 82.0
0.6
3.4
5
14.3 0 8.6 0 5.7 0 0 0 28.6
8.6
34.2
15
i n algae
1 4
11.4 2.3 8.9 0 0 0 6.8 2.3 11.4
9.1
47.7
2.3 0 0 0 0 0 0 0 19.3
22.6
54.8
6.1 0 8.2 0 0 0 0 0 6.1
20.4
54.2
7.1 0 0 0 0 0 0 0 0
28.6
64.3
experiment 42 44
3.0 0 0 0 0 0 0 0 0
21.2
75.8
48
5.8 2.0 0 0 0 0 0 0 0
28.7
61.5
58
( e x p r e s s e d as p e r c e n t o f e x t r a c t e d
Days a f t e r s t a r t o f 22 30
C]trifluralin
13.1 2.0 0 0 0 0 0 0 0
27.7
57.2
72
b
Values represent percent o f t o t a l C r e c o v e r e d f r o m a l g a e e x t r a c t s ( m e t h a n o l ) b y TLC methods. 14c r e c o v e r e d f r o m t h e o r g i n . c 14 r e c o v e r e d i n a zone b e t w e e n t h e o r g i n a n d Compound 1.
a
0
1.8
P o l a r metabolites Nonpolar metabolites 1 2 3 4 5 6 7 8 Trifluralin
b
2
a
Degradation of [ radioactivity)
Compounds
Table IX.
13.
isENSEE E T A L .
Modeling
Aquatic
215
Ecosystems
The o b j e c t i v e o f t h i s i n v e s t i g a t i o n , t o d e m o n s t r a t e t h a t a q u a t i c model e c o s y s t e m s c a n b e s c a l e d up i n s i z e t o p e r f o r m t i m e r e l a t e d , m e t a b o l i c s t u d i e s , was o n l y p a r t l y a c h i e v e d . We s u c c e s s f u l l y demonstrated t h a t t h e d e g r a d a t i v e pathways a n d r a t e s o f t r i f l u r a l i n m e t a b o l i s m i n an a n a e r o b i c s o i l c a n b e d e t e r m i n e d i n an e c o s y s t e m j u s t as w e l l a s t h e y c a n i n l a b o r a t o r y s t u d i e s ( 4 ) . A l s o , t h e r e c o v e r y o f Compound 1 f r o m w a t e r s u b s t a n t i a t e d t h e s i g n i f i c a n c e o f p h o t o d e g r a d a t i o n , which had p r e v i o u s l y been measured u n d e r l a b o r a t o r y c o n d i t i o n s ( 9 ) . However, m e t a b o l i c s t u d i e s i n a q u a t i c o r g a n i s m s were n o t v e r y s u c c e s s f u l b e c a u s e ( i ) t h e t r i f l u r a l i n i n water decreased v e r y r a p i d l y , and ( i i ) t h e o r i g i n o f t h e few m e t a b o l i t e s t h a t were r e c o v e r e d was n o t c l e a r . A c c u m u l a t i o n o f t h e C - l a b e l e d compounds i n w a t e r b y t h e o r g a n i s m s was a p p a r e n t l y the predominant source. (The m a j o r p r o b l e m i n s t u d y i n g t h e m e t a b o l i s m o f p e s t i c i d e s i n a q u a t i c o r g a n i s m s r e t r i e v e d f r o m model ecosystems i s i d e n t i f y i n g t h e source o f the m e t a b o l i t e s , i . e . , were t h e y f o r m e d i n t h e o r g a n i s m s t h r o u g h some m e t a b o l i c p r o c e s s o r were t h e y a b s o r b e d f r o m w a t e r ? ) . T h e s e r e s u l t s i n d i c a t e t h a t o u r s c a l e d - u p model e c o s y s t e m s a r e more u s e f u l f o r s t u d y i n g s y s t e m p r o c e s s e s t h a n p r o c e s s e s t h a t f u n c t i o n i n i n d i v i d u a l components o f t h e e n v i r o n m e n t . In this r e g a r d , a p r e l i m i n a r y l a r g e s c a l e ecosystem study c o u l d be v e r y u s e f u l t o i n d i c a t e parameter l i m i t s such as o v e r a l l degradation r a t e s a n d l i k e l y c o n c e n t r a t i o n s o f p a r e n t compounds p l u s metabol i t e s over time. Such i n f o r m a t i o n w o u l d be u s e f u l i n t h e d e s i g n o f m e t a b o l i c s t u d i e s i n v a r i o u s components o f t h e e c o s y s t e m . I n a d d i t i o n , t h e l a r g e s c a l e ecosystem study c o u l d a l s o be used t o d e t e r m i n e i f p r o c e s s e s d e r i v e d under l a b o r a t o r y c o n d i t i o n s cont i n u e t o f u n c t i o n a n d / o r p r e d o m i n a t e when combined i n a c o m p l e x system. 1 4
Abstract This project was designed to demonstrate that the static water model ecosystems can be scaled up in size to provide sufficient amounts of biomass, s o i l , and water to study metabolism kinetics of pesticides. Fourteen kg of s o i l , treated with [ 4C]trifluralin at 10 ppm, was flooded with 84 liters water. Bluegill fish, snails, daphnids, and algae were exposed to this system for 72 days. Samples of s o i l , water, and organisms were periodically analyzed for trifluralin and eight metabolites. The recovered metabolites and their rate of formation closely followed previously reported values for anaerobic soil and water, substantiating the u t i l i t y of the model ecosystem for metabolic studies. However, residues in the biomass were apparently derived primarily through absorption from water rather than metabolism within the organisms themselves. It was concluded that the scaled-up model ecosystem is more useful for studying system process than processes that function in individual components of the environment. 1
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
216
PESTICIDE AND XENOBIOTIC METABOLISM IN AQUATIC ORGANISMS
Literature cited 1. Isensee, A. R., Intern. J. Envirnomental Studies (1976) 10, 35. 2. Isensee, A. R., E. R. Holden, E. A. Woolson, G. E. Jones, J. Agric. Food Chem. (1976) 24, 1210. 3. Ambrosi, D., A. R. Isensee, J. A. Macchia, J. Agric. Food Chem. (1978) 26, 50. 4. Probst, G. W., T. Golab, R. J. Herberg, F. J. Holzer, S. J. Parka, C. V. D. Schans, J. B. Tepe, J. Agric. Food Chem. (1967) 15, 592. 5. Probst, G. W., T. Golab, W. L. Wright, "Herbicide: Chemistry, Degradation and Mode of Action" Vol. 1, p. 453 Marcel Dekker, Inc. New York, 1975. 6. Parr, J. F., S. Smith, Soi Sci. (1973) 115, 55. 7. Wright, W. L. G. F. Warren, Weeds (1965) 13, 329. 8. Kearney, P. C., A. R. Isensee, A. Kontson, Pest. Biochem. Physiology (1977) 7, 242. 9. Leitis, E., D. G. Crosby, J. Agric. Food Chem. (1974) 22, 842. 10. Metcalf, R. L., J. R. Sandborn, Illinois Natural History Survey Bull. (1975) 31, 381. RECEIVED
January 2, 1979.
Khan et al.; Pesticide and Xenobiotic Metabolism in Aquatic Organisms ACS Symposium Series; American Chemical Society: Washington, DC, 1979.