1 Possible Limits of Ultramicro Analysis
Downloaded via 185.252.219.61 on November 13, 2018 at 04:30:26 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
GUNNAR
WIDMARK
Institute of Analytical Chemistry, University of Stockholm, Stockholm 50, Sweden
This paper discusses reached
by modern
the possible methods
ment trends in analytical paths, both marked leads toward terized
the
by the
complex
traditional
information.
especially (DAS). foreseen
when A further when
for
using
data
the combination
analysis
are
(MS)
by
can
systems
and selectivity is
The ultimate
illustrated
for
sensitivity,
acquisition
of instruments
to cover the GC/MS/DAS/computer. ultramicro
second employing
at high
in sensitivity
path charac-
The
and mass spectrometry on-line
main
with the need
instruments
identification
increase
two
The first
simplicity.
be
Develop-
seem to follow
Combination for
to
analysis.
sensitivity.
to identification,
(GC)
information
of sensitivity
goal of quantitation,
demand
leading
gas chromatography produce
chemistry
by increasing
strong
path is hopefully
limits
of residue
a "map
is
extended limits of of
tracer
cosmos."
T o u r i n g t h e past t w o decades there has b e e n a r e m a r k a b l e increase i n sensitivity analysis. figures
of
chemical
analysis, e s p e c i a l l y
i n pesticide
residue
It is f r o m this field m o r e t h a n a n y other t h a t h i g h s e n s i t i v i t y
s u c h as p p m , p p b , a n d p p t h a v e b e e n b r o u g h t to the p u b l i c b y
t h e n e w s m e d i a . U n f o r t u n a t e l y , the p u b l i c has h a d f e w o p p o r t u n i t i e s to u n d e r s t a n d the d i m e n s i o n s of these
figures;
i l l u s t r a t i n g the b i o l o g i c a l
significance of a n a l y t i c a l l y h i g h s e n s i t i v i t y figures is o b v i o u s l y a n e v e n m o r e difficult task.
Ultimate Sensitivity at Ultramicro Analysis I t is reasonable to ask the a n a l y s t i f t h e r e exists a n u l t i m a t e p o s s i b l e l i m i t of d e t e c t i o n of s m a l l q u a n t i t i e s i n c h e m i c a l analysis. A s i n m o s t 1
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
PESTICIDES
IDENTIFICATION
cases associated w i t h p e s t i c i d e c h e m i s t r y , there are o n l y c o m p l e x answers to this v e r y s i m p l e q u e s t i o n . W h a t is a c t u a l l y q u e s t i o n e d is the l i m i t of s e n s i t i v i t y at w h i c h u s e f u l a n a l y t i c a l results c a n be o b t a i n e d .
T h u s , any answer w o u l d d e m a n d a
d e f i n i t i o n of the c o n c e p t of usefulness. T h e e x p e r i e n c e d analyst k n o w s t h a t the extreme u l t i m a t e of sensit i v i t y of one m o l e c u l e
( o r one a t o m after d e c o m p o s i t i o n )
per
sample
u n i t is not foreseen f o r p r a c t i c a l a n a l y t i c a l w o r k . N e v e r t h e l e s s , t h e e a r l y s c h o o l of n u c l e a r p h y s i c i s t s w e r e a b l e to detect single e l e m e n t a r y p a r t i c l e s w h e n using very simple instrumentation. T h e tremendous
improvements
i n i n s t r u m e n t a t i o n since t h e n w o u l d c e r t a i n l y m a k e a n y t y p e of single m o l e c u l e detectable, b u t n o t i n a m i x t u r e a n d n e v e r i n a n u n k n o w n s a m p l e g i v e n to the analyst. I n the s a m p l e of the o l d p h y s i c i s t , the e m i t t e d p a r t i c l e d i f f e r e d sufficiently f r o m the b a c k g r o u n d to b e d e t e c t e d — w h e n
not
absorbed!
A l t h o u g h less s e n s i t i v e l y d e t e c t e d , the same h o l d s t r u e to some extent f o r electron-capturing compounds,
s u c h as D D T , w h e n present i n a n o r d i -
n a r y b i o l o g i c a l s a m p l e . T h e m a i n difference is t h a t there are o n l y a f e w e l e m e n t a r y p a r t i c l e s to b e c o n s i d e r e d , w h e r e a s there is a vast n u m b e r of electron-capturing compounds.
T h u s , the E C D response
w i l l not
be
i n t e r p r e t a b l e i n p r o p e r c h e m i c a l terms. T h e m a i n factor h a m p e r i n g a n increase of s e n s i t i v i t y i n c h e m i c a l a n a l y s i s — s u c h as r e s i d u e a n a l y s i s — i s the l a r g e n u m b e r of
compounds
p o s s i b l y present i n a n o r d i n a r y - s i z e sample—e.g., 1 g r a m .
The
n u m b e r of c o m p o u n d s makes it l i k e l y that m a n y of the c o m p o u n d s
large will
h a v e c h e m i c a l p r o p e r t i e s too close for d i f f e r e n t i a t i o n b y o r d i n a r y m e t h ods of d e t e c t i o n a n d s e p a r a t i o n . H o w e v e r , because most m o d e r n schemes of analysis c o n t a i n one or s e v e r a l s e p a r a t i o n a n d c o n c e n t r a t i o n
steps,
t h e r e is no m o r e reason to m a k e a n o m e n c l a t u r e d i f f e r e n t i a t i o n b e t w e e n u l t r a m i c r o analysis a n d h i g h s e n s i t i v i t y analysis.
I n b o t h cases, h i g h
s e n s i t i v i t y d e t e c t i o n is a s k e d for, a n d b y c o n c e n t r a t i o n steps the
com-
p o u n d s w i l l finally b e d e t e c t a b l e i n a v e r y s m a l l s a m p l e .
Tracer Cosmos A l t h o u g h a n enormous n u m b e r of c o m p o u n d s are constituents of a n y 1-gram
s a m p l e , as m e n t i o n e d ,
this n u m b e r
is n e v e r
unlimited.
Ap-
p r o a c h i n g the l o w e s t levels of c o n c e n t r a t i o n , w h e r e o n l y a f e w orders of m a g n i t u d e of e a c h m o l e c u l e are present, the n u m b e r of possible
con-
stituents is s u c h t h a t the use of the n a m e " t r a c e r c o s m o s " is justified, e m p h a s i z i n g the a n a l y t i c a l difficulties foreseen to r e a c h the l o w e r levels. I n F i g u r e 1, a n a t t e m p t is m a d e to i l l u s t r a t e b y the h e a v y l i n e s , t h e sides
of the triangles, the m a x i m u m n u m b e r
of
compounds
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
possibly
1.
Limits of Ultramicro
W I D M A R K
3
Analysis
Levels of Concentration
Levels of Molecules
- in"3
•+f't--+\+ i.i i + + V. + +/-t- + •+• -+- •+- -K«f • M i l l i r i i i • & • + + + + ++ + + 4-Vt + -!"•«-Is + I i i I iM r n 1/1 i i i i •+* + + + •!-•»++ + -r/+- +• -t + 1- •»- - •t + + + +\J-i / i i l I i i I l I i i i K I +/++•+•+-1-1-1 - --r -t--t- -t- + -f, •+-/+-•»- + +-+ t -t--- + + 1 - 4-4—*- •»-+. + • H i/i i i i i i i i i I I I I I I I'M il ft
:
10
10
10
I0
V
10
10'
10
Moximum Number of Compounds ot Each Level of Concentration Figure 1.
Map of tracer cosmos
present o n each d e c i m a l l e v e l of concentration.
I n this
figure,
a s s u m e d t h a t a l l c o m p o u n d s h a v e a m o l e c u l a r w e i g h t o f 60. T h i s
it is figure
is too l o w , b u t 600 is b e l i e v e d t o b e f a r too h i g h . U n i t s o f c o n c e n t r a t i o n n o w i n use at p o l l u t i o n studies are g i v e n o n t h e axes. T h e d o t t e d lines o f F i g u r e 1 refer t o the a s s u m p t i o n t h a t w e a r e d e a l i n g w i t h a 1-gram s a m p l e o f 9 9 % p u r i t y , a n d t h a t t h e a m o u n t o f i m p u r i t y is e q u a l l y d i v i d e d o n e a c h o f t h e p o s s i b l e d e c i m a l levels o f c o n c e n t r a t i o n . N a t u r a l l y , t o m e e t this a s s u m p t i o n , there are n o t e n o u g h materials a v a i l a b l e f o r the 1 % o r for the 0 . 1 % l e v e l . H o w e v e r , one i s u n l i k e l y to find f r o m n a t u r a l sources a n e v e n d i s t r i b u t i o n o f c o n t a m i n a n t s l i k e t h i s , o r one a t w h i c h there are the s a m e n u m b e r o f c o m p o u n d s o n e a c h l e v e l . T h e same h o l d s t r u e for the other extreme, t h a t a l l t h e t r a c e constituents are present o n t h e s a m e l e v e l o f c o n c e n t r a t i o n .
I t seems
more realistic to assume—excluding a detailed discussion—that i m p u r i -
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4
PESTICIDES
IDENTIFICATION
ties are g r o u p e d as " i s l a n d s " o n the t r i a n g u l a r m a p of t h e t r a c e r c o s m o s ; p r e s u m a b l y , the islands w i l l b e densest at the top.
D e p e n d i n g o n the
c h e m i c a l n a t u r e of these i s l a n d s — l i p i d or h y d r o p h i l i c — t h e y w i l l m o v e upwards or downwards on their respective maps w h e n brought i n contact w i t h a system of r e v e r s e d character. T h u s , a w a t e r s a m p l e w i l l lose p a r t of its d i s s o l v e d l i p i d m a t e r i a l s to s u s p e n d e d
particles h a v i n g a fatty
surface. P a r t i c l e s a b l e to a b s o r b l i p i d m a t e r i a l s are a l w a y s present i n n a t u r a l w a t e r s a n d a i d i n the t r a n s p o r t of the l i p i d m a t e r i a l s — i n c l u d i n g s o m e t e c h n i c a l c o m p o u n d s , e.g.,
D D T — t o l i v i n g organisms, thus c a u s i n g ac-
c u m u l a t i o n . M o r e o v e r , i t is a s s u m e d t h a t the fatty surface of the p a r t i c l e s protects p a r t l y l i p i d m a t e r i a l s f r o m c h e m i c a l d e g r a d a t i o n .
However, it
w o u l d b e of great interest to k n o w m o r e a b o u t the reactions o c c u r r i n g i n w a t e r at v e r y l o w c o n c e n t r a t i o n levels w h e r e the h i g h l y r e a c t i v e p r o d u c t s of
H2O-O2
e q u i l i b r i u m are to b e
found—e.g., the h y d r o x y r a d i c a l .
K n o w l e d g e f r o m this field w o u l d p r o b a b l y i n d i c a t e t h a t f e w
organic
c o m p o u n d s are l i k e l y to s u r v i v e at the l o w e s t levels of c o n c e n t r a t i o n . T h e short d i s c u s s i o n i n the p r e c e d i n g p a r a g r a p h s illustrates t h e usefulness of p e s t i c i d e r e s i d u e analysis at m u c h l o w e r levels of c o n c e n t r a t i o n t h a n those p r e s e n t l y a v a i l a b l e . A s i n d i c a t e d b y T a b l e I , there are a n u m b e r of o t h e r fields w h e r e a n a l y t i c a l m e t h o d s of i m p r o v e d s e n s i t i v i t y w i l l be
needed. Table I.
Fields Requiring More Sensitive Analysis
S t u d i e s of disappearance of t e c h n i c a l c h e m i c a l p r o d u c t s i n n a t u r e ; e.g., p l a s t i c , p a i n t , pesticides, d r u g s ( t o t a l fate s t u d i e s ; a c c u m u l a t i o n , e.g., a t t h e e n d of f o o d chains) I d e n t i f i c a t i o n of u n k n o w n s f o u n d i n n a t u r e ( c o n d i t i o n for legislation) S t u d i e s of n a t u r a l l y - o c c u r r i n g c o m p o u n d s a t p p m - p p b levels S t u d i e s of m a i n c o m p o n e n t s of i n d i v i d u a l cells N e w w a y s to d e t e r m i n e degree of t o x i c i t y (at n o r m a l l y s u b t o x i c levels) Quality control and monitoring E a r l y w a r n i n g systems (e.g., h e a l t h control)
Limits of Detection; Quantitation and Identification •
Sensitivity limits must be i m p r o v e d for both quantitation a n d i d e n t i fication
of p e s t i c i d e residues. A l t h o u g h the f o r m e r m e t h o d is m o r e sensi-
t i v e t h a n t h e latter, u n t i l recently m o s t progress
has b e e n m a d e
in
i m p r o v i n g the s e n s i t i v i t y of q u a n t i t a t i v e analysis. S i n c e there is a d e p e n d ence b e t w e e n the t w o m e t h o d s , sensitive m e t h o d s of i d e n t i f i c a t i o n h a v e
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
W I D M A R K
Limits
of Ultramicro
SEPARATION
Analysis
5
IDENTIFICATION 10 nq (pg)
(lOOng) Figure 2. Flow chart of separation and identification processes in pesticide residue analysis. Solid line indicates that on-line combinations are available; thick line indicates that they are in common use; dotted line, manipulations. b e c o m e e v e n m o r e d e s i r a b l e . F i g u r e 2 demonstrates t h e c o n n e c t i o n t w e e n the m e t h o d s
be-
o f s e p a r a t i o n a n d o f i d e n t i f i c a t i o n ; differences i n
sensitivities are i n d i c a t e d . Quantitation. T h e most easily i n t e r p r e t e d p a r t of a q u a n t i t a t i v e r e s i d u e analysis is the r e c o r d i n g o f a detector response f o u n d l i n e a r to c o n c e n t r a t i o n w h e n c h e c k e d b y s t a n d a r d solutions. It has to b e v e r i f i e d also that t h e response of s a m p l e a n d s t a n d a r d s o l u t i o n w i t h a specific m e t h o d is o b t a i n e d at t h e same a n a l y t i c a l position—e.g., o n a gas c h r o m a t o g r a m . T h e use of b l a n k s w i l l demonstrate the d e g r e e o f influence of i n t e r f e r i n g materials a n d thus e x h i b i t the d e t e c t i o n l i m i t o f the r e c o r d i n g system. H o w e v e r , because o f the f u n d a m e n t a l l i m i t a t i o n o f a n y
monodetector
system, o n l y c o n s i d e r a b l e k n o w l e d g e of the s a m p l e w i l l m a k e a q u a n t i t a t i v e r e s i d u e analysis r e l i a b l e . A c h e m i c a l analysis is not o n l y the r e c o r d i n g o f a detector s i g n a l but a very complex
matter.
I n T a b l e I I , the extent o f t o t a l r e s i d u e
analysis i s s k e t c h e d , a n d at e a c h step errors c a n b e m a d e w h i c h w i l l influence the a n a l y t i c a l result. W h e n serious, these errors w i l l the r e c o r d e d a n a l y t i c a l result i n t o nonsense.
convert
W h e n less i m p o r t a n t , these
errors w i l l o n l y l o w e r the o v e r - a l l s e n s i t i v i t y o f the analysis. T h u s , the s e n s i t i v i t y l i m i t o b t a i n a b l e b y t h e detector alone is i n r e a c h o n l y w h e n the e n t i r e scheme o f the analysis is successfully p e r f o r m e d .
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
PESTICIDES
Table II.
IDENTIFICATION
T h e Analytical Process
Planning before the actual analysis in collaboration with, e.g., biologists D i s c u s s i o n s w i t h biologists of the purpose of a n a l y s i s D i s c u s s i o n of the t y p e of s a m p l e t o be chosen P i l o t tests; use of s i m p l i f i e d models Suggestions—criticism S m a l l series are a n a l y z e d A g r e e m e n t s o n p u r p o s e , size, e c o n o m y , etc.
Performance of analysis Field sampling Packing—storing Transportation S t o r i n g a t the l a b Mechanical treatment E x t r a c t i o n , etc. Cleaning up C h e m i c a l reactions P r e p a r a t i o n of final s o l u t i o n , s t a n d a r d , a n d b l a n k s Instrumental
Analysis
R e c o r d i n g of response Checks
Report Calculations W r i t t e n report Statistical treatment Bookkeeping
After report D i s c u s s i o n s w i t h biologists Criticism Corrections I m p r o v e m e n t of a n a l y t i c a l m e t h o d A f u r t h e r n e g a t i v e influence o n the p o s s i b l e l i m i t of d e t e c t i o n
of
r e s i d u e analysis is g i v e n b y the t y p e of r e s i d u e u n d e r i n v e s t i g a t i o n . T h e r e is a m a r k e d difference i n detector s e n s i t i v i t y i n analysis of, e.g., mates a n d D D T - t y p e pesticides.
carba-
T h e g e n e r a l difficulties of e a c h class
h a v e to b e c o n s i d e r e d , as is d e m o n s t r a t e d i n T a b l e I I I . Identification. T h e f u n d a m e n t a l l i m i t a t i o n o f gas c h r o m a t o g r a p h y i n i d e n t i f i c a t i o n studies is that b y this m e t h o d , one c a n o n l y state n o n presence of a k n o w n c o m p o u n d w h i c h is a v a i l a b l e as a s t a n d a r d i n a considerably
pure
form.
T h u s , gas
chromatography
is a n
excellent
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
W I D M A R K
Limits of Ultramicro Table III.
7
Analysis
Objects of Analytical Investigation
C o m p o u n d (s) sought C o m p o u n d s slightly changed b y : Isomerization Polymerization Photoreaction
Autoxidation Hydrolysis
M e t a b o l i t e s ( m i g h t v a r y w i t h ecosystem) R e a c t i o n s i n the ecosystem e.g., M e t h y l a t i o n I n d u c e d changes i n the ecosystem e.g. H o r m o n e effects, " H i t a n d r u n " effects
Possible Complications Isomers a n d homologs Related compounds a) used for t h e same purpose b) n o t used for the same purpose—e.g., P C B Contamination; impurities m e t h o d to d e m o n s t r a t e that a k n o w n p e s t i c i d e is n o t present at a g i v e n l e v e l of concentration—e.g.,
the one a c c e p t e d b y the a u t h o r i t i e s . H o w -
ever, n o p o s i t i v e i n f o r m a t i o n as to the i d e n t i t y of the p e a k - f o r m i n g c o m p o u n d is o b t a i n a b l e b y o r d i n a r y gas c h r o m a t o g r a p h y .
Some information
m i g h t b e c o l l e c t e d u s i n g a t w o - d e t e c t o r system, b u t o n l y i f one of t h e detectors gives a response i n t e r p r e t a b l e i n c h e m i c a l terms.
As critical
e x a m i n a t i o n w i l l s h o w , the gas c h r o m a t o g r a p h i c detectors n o w u s e d as c o m p l i m e n t s to E C D are i m p e r f e c t i n this respect.
I n general, more
i n f o r m a t i o n is g a i n e d b y u s i n g a l t e r n a t i v e m e t h o d s
of s e p a r a t i o n , as
s h o w n at the left of F i g u r e 2. firmatory
T h e s e operations w i l l also serve a c o n -
purpose.
T h e great a d v a n t a g e of mass s p e c t r o m e t r y o v e r other m e t h o d s
of
i d e n t i f i c a t i o n is t h a t the response is g i v e n b y i n t e g e r mass u n i t s , a n d t h u s the response w i l l b e m o r e a p t for c h e m i c a l i n t e r p r e t a t i o n t h a n is v a l i d f o r other types of detectors.
S i n c e the mass spectrometer, w h e n
combined
w i t h a gas c h r o m a t o g r a p h , w i l l serve as a m u l t i d e t e c t o r , the c o m p u t e r i z e d d a t a a c q u i s i t i o n systems n o w b e i n g i n t r o d u c e d o n the m a r k e t w i l l i m p r o v e o u r a b i l i t y to i d e n t i f y most c o m p o u n d s s e p a r a t e d i n a r e a s o n a b l y p u r e f o r m b y gas c h r o m a t o g r a p h y . A n E C D c h r o m a t o g r a m s h o u l d n o t b e u s e d alone as a n i n d i c a t i o n of a s u c c e s s f u l s e p a r a t i o n . I n some s a m p l e s , s u c h as s e w a g e s l u d g e , there m i g h t b e a c o n s i d e r a b l e o v e r l a p b y
compounds
of l o w - c a p t u r i n g a b i l i t y . T h u s , F I D checks s h o u l d b e m a d e b e f o r e starti n g i d e n t i f i c a t i o n studies o n a mass spectrometer.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8
PESTICIDES
IDENTIFICATION
A severe obstacle i n present i d e n t i f i c a t i o n studies of a s s u m e d p e s t i c i d e residues is t h a t the mass s p e c t r o m e t e r is n o r m a l l y a less sensitive d e t e c t o r t h a n E C D . W h e n t h e mass spectrometer is set o n a s i n g l e mass n u m b e r , there is a g a i n i n s e n s i t i v i t y b u t also a n o b v i o u s loss i n selectivity.
R e c o r d i n g of o n l y a s m a l l — b u t s i g n i f i c a n t — p a r t of
t h e mass
s p e c t r u m w h i l e t h e gas c h r o m a t o g r a p h i c f r a c t i o n emerges is a n i m p r o v e m e n t f o r some i d e n t i f i c a t i o n studies, b u t c o l u m n b l e e d i n g m i g h t g i v e u n e x p e c t e d difficulties. H o w e v e r , i t is p r o b a b l e t h a t a d e s i r e d g a i n i n s e n s i t i v i t y w i l l b e a c h i e v e d soon b y i n s t r u m e n t a l i m p r o v e m e n t s o f t h e mass spectrometer, m a i n l y i n i o n i z a t i o n . I n T a b l e I V , t h e losses w h i c h are a s s u m e d at the v a r i o u s sites of c o m m e r c i a l l y a v a i l a b l e spectrometers are t a b u l a t e d . T h i s t a b l e also i n d i c a t e s t h a t the mass s p e c t r o m e t e r is o b v i o u s l y s u p e r i o r i n s e n s i t i v i t y to o t h e r i n s t r u m e n t a l t e c h n i q u e s . M o r e Table I V .
Detection Levels of Combined Instruments, G C / M S
Detector M i n i m u m 30 t o 100 ions t o g i v e a detector s i g n a l a t i d e a l s i g n a l to-noise c o n d i t i o n s
Mass Analyzer A
efficiency 1 0 ~ - 1 0 ~ l
3
M i n i m u m 300 to 1 0 ions to reach t h e mass a n a l y z e r 6
Ionization
efficiency 1 0 ~ - 1 0 ~ 3
M i n i m u m 3 X 10 to 10 5
13
Separator
8
ions t o be i n t r o d u c e d i n t o t h e ionization chamber efficiency 5 0 % or better
M i n i m u m 6 X 10 to 2 X 10 5
13
molecules t o t h e separator
T o be i n j e c t e d i n t o G C / M S , w h e n s c a n n i n g 2 - 5 0 0 mass u n i t s i n 1 sec 3 X 10 to 10 8
16
molecules
A s s u m i n g m w = 200, 5 X 1 0 ~
GC
16
to 2 X 1 0 "
8
mole
Injection T o be i n j e c t e d w h e n e l u t e d f r o m G C i n 1 sec 0.1 p g t o 4 (xg m o r e a t G C peaks of longer d u r a t i o n 0
° In practice, it is necessary to prepare sample solutions 10-100 times more concentrated.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
wiDMARK
Limits of Ultramicro
9
Analysis
over, gas c h r o m a t o g r a p h i c peaks o f short d u r a t i o n g i v e a n increase i n sensitivity.
T h i s i s o n e o f the factors t h a t f a v o r t h e use o f c a p i l l a r y
c o l u m n s for f u t u r e r e s i d u e studies. M o s t analysts n o w u s i n g mass s p e c t r o m e t r y alone o r i n c o m b i n a t i o n w i t h gas c h r o m a t o g r a p h y w i l l n o t b e a b l e t o u t i l i z e a l l t h e i n f o r m a t i o n o b t a i n a b l e at a series o f mass s p e c t r o m e t r i c scans. T h i s is m a i n l y b e c a u s e of i m p e r f e c t r e c o r d i n g devices w h i c h are u n a b l e t o a c c e p t a l l details i n the r a p i d flow o f signals. S o m e analysts c o m p l a i n o f b e i n g c o m p l e t e l y d r o w n e d i n p a p e r s p e c t r a . W e h a v e b e e n l u c k y e n o u g h t o h a v e one o f t h e e a r l y d a t a a c q u i s i t i o n systems c a p a b l e o f p r o d u c i n g i n s t a n t a n e o u s l y c o m p e n s a t e d a n d n o r m a l i z e d mass s p e c t r a i n d i g i t a l f o r m ( J , 2 ) .
This
system ( o n - l i n e ) has g r a d u a l l y b e e n e x t e n d e d b y a recent c o n n e c t i o n t o a s m a l l c o m p u t e r ; t h u s , w e c a n c o n v e n i e n t l y use a n y s y s t e m o f r e c o r d e d d a t a as l o n g as this o p e r a t i o n c a n b e p r o g r a m m e d .
T h e r a p i d changes
b e t w e e n different a n a l y t i c a l p r o g r a m s w i l l b e f a c i l i t a t e d b y a n e x t e r n a l disc memory n o w being installed (3).
O u r n e w system w i l l t h e n operate
as d e m o n s t r a t e d b y the flow sheet i n F i g u r e 3. H o w e v e r , d e s p i t e t h e use of a l l the electronics, the success o f a n analysis w i l l s t i l l d e p e n d m a i n l y
(or printout) digital tape on normalized spectra or raw data GC/s/MS/
H
/ OAS / J4K
Alternate methods of treating the sample to be analyzed
on
printout /Computer/ « . off | } 8K new progroms
Instant oscilloscopic inspection 'on-line 1
r
Standard analytical programs on discs
command joint planning analysts-biologists Figure 3. Flow sheet of a computerized combination gas chromatograph (GC) and mass spectrometer (MS); DAS = data acquisition system, s = separator, i = interface, d.r. = data reduction
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10
PESTICIDES
o n the c o n d i t i o n of t h e gas c h r o m a t o g r a p h i c
IDENTIFICATION
column a n d the proper
h a n d l i n g o f the s a m p l e . T h e p r o g r a m m i n g of a c o m p r e h e n s i v e d a t a system i n t e g r a t e d t o a system of a n a l y t i c a l i n s t r u m e n t a t i o n w i l l c e r t a i n l y b e a v e r y e x c i t i n g task. H o w e v e r , this w i l l d e m a n d specific i n f o r m a t i o n i n a f o r m w h i c h is u s e f u l for p r o g r a m m i n g f r o m a l l t h e scientists i n v o l v e d i n t h e s t u d y o r r e s p o n sible for parts o f the s t u d y , as i n d i c a t e d b y T a b l e s I I a n d I I I . P r e s e n t difficulties i n a c h i e v i n g this t y p e of c o l l a b o r a t i o n m i g h t r e m a i n as a l i m i t i n g factor f o r i m p r o v e d l i m i t s of r e s i d u e analysis d e t e c t i o n a n d other s i m i l a r types of u l t r a m i c r o analysis.
Literature Cited (1) Bergstedt, L., W i d m a r k , G . , Chromatographia (2) I b i d . , (1970) 3, 59.
(1969) 2, 529.
(3) Bennet, P . , Bergstedt, L., W i d m a r k , G . , to be published. RECEIVED
August 24, 1970.
Biros; Pesticides Identification Advances in Chemistry; American Chemical Society: Washington, DC, 1971.