Chapter 1
Pesticides in the Soil Microbial Ecosystem Kenneth D. Racke
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
Environmental Chemistry Laboratory, DowElanco, 9001 Building, Midland, MI 48641-1706
The soil environment comprises a diverse ecosystem in which the recycling of organic matter provides a key link with global carbon and nutrient cycles. Soil contains populations of microorganisms that have exceptional degradative capabilities and the ability to adapt to utilize the variety of allochthonous organic materials that enter the soil carbon cycle. As man has come to rely upon the use of soil-applied pesticides in many agroecosystems, he has learned that the residual control provided by these compounds is modulated by both abiotic and biotic degradative processes. The ability of microorganisms to adapt for rapid catabolism of some soil pesticides has in some cases resulted in economically significant pest control failures. The phenomenon of enhanced pesticide degradation has become a significant concern requiring the development of management strategies. Yet, this unwelcome occurrence has led to valuable opportunities to investigate the remarkable adaptability and complexity of the soil microbial ecosystem.
In o r d e r t o p r o p e r l y u n d e r s t a n d p e s t i c i d e s i n t h e c o n t e x t o f t h e s o i l m i c r o b i a l ecosystem, i t i s important t o c o n s i d e r t h e r e l e v a n t p r o p e r t i e s o f t h e s o i l environment, t h e m e t a b o l i c c a p a b i l i t i e s o f t h e s o i l m i c r o b i a l community, and t h e uses and d i s s i p a t i o n r o u t e s o f soil-applied pesticides. The
Soil
Environment
S o i l has been d e f i n e d as t h e " u n c o n s o l i d a t e d m i n e r a l m a t e r i a l on t h e immediate s u r f a c e o f t h e e a r t h t h a t s e r v e s a s a n a t u r a l medium f o r the growth o f l a n d p l a n t s " (1). A l t h o u g h t h i s sounds r e l a t i v e l y 0097-6156/90/0426-0001S06.00/0 © 1990 American Chemical Society
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
2
ENHANCED BIODEGRADATION OF PESTICIDES IN THE ENVIRONMENT
s i m p l e , i n r e a l i t y s o i l i s a complex ecosystem, not m e r e l y the " d i r t " of v e r n a c u l a r language. In a p h y s i c a l sense, s o i l i s composed o f m i n e r a l m a t e r i a l ( c l a y , s i l t , sand, s t o n e s ) , a i r o r w a t e r - f i l l e d p o r e space, and o r g a n i c matter. The s o i l o r g a n i c m a t t e r i s a v e r y important and a c t i v e component. Roughly t h r e e f r a c t i o n s c a n be d e l i n e a t e d ; a m a c r o s c o p i c component composed o f p a r t i c u l a t e p l a n t and animal d e b r i s i n e a r l y s t a g e s o f breakdown , a c h e m i c a l l y w e l l d e f i n e d assemblage o f v a r i o u s s i m p l e o r g a n i c compounds ( c a r b o h y d r a t e s , amino a c i d s , p r o t e i n s ) , and a complex, d a r k - c o l o r e d component, l a r g e l y a r o m a t i c and p o l y m e r i c ( i . e . , "humus"), t h a t i s r e l a t i v e l y r e s i s t a n t to degradation (2). Turnover times f o r o r g a n i c d e b r i s , s o l u b l e compounds, and humus a r e on the o r d e r o f 2-5 y e a r s , 5-25 y e a r s , and 250-2500 y e a r s , r e s p e c t i v e l y ( 3 ) . The p h y s i c a l components o f s o i l a r e i n t e g r a t e d i n t o a h e t e r o g e n e o u s m a t r i x t h a t forms the b a s i s f o r the s o i l a g g r e g a t e and p a r t i c l e . F o r example, c l a y s and humic m a t e r i a l s a r e o f t e n i n t i m a t e l y a s s o c i a t e d t o f o r m o r g a n o - m i n e r a l complexes ( 4 ) . The s o i l s h o u l d be u n d e r s t o o d as an ecosystem, w i t h p o p u l a t i o n s o f m i c r o s c o p i c ( b a c t e r i a , f u n g i , p r o t o z o a n s , a l g a e ) and m a c r o s c o p i c ( a n n e l i d s , a r t h r o p o d s ) organisms f o r m i n g complex f o o d web communities. The s o i l m i c r o f l o r a p l a y a key r o l e i n g l o b a l l y significant nutrient cycles. Important examples o f s u c h microbially-mediated processes are n i t r i f i c a t i o n , d e n i t r i f i c a t i o n , and c a r b o n m i n e r a l i z a t i o n . The s o i l e c o s y s t e m c o n s t i t u t e s an a l l o c h t h o n o u s one i n an e n e r g e t i c sense, w i t h p l a n t and animal d e b r i s e n t e r i n g the s o i l t o b e g i n the d e g r a d a t i v e p r o c e s s . In a p r a c t i c a l sense, the s o i l may be viewed as a v a s t r e c y c l i n g depot, c o n t i n u a l l y r e c e i v i n g r e d u c e d compounds o f c a r b o n and c o n t i n u a l l y o x i d i z i n g them to C02 and water ( 5 ) . Of the s o i l o r g a n i s m s a c t i v e i n t h i s r e c y c l i n g e f f o r t , the s o i l f u n g i a r e p a r t i c u l a r l y e f f e c t i v e i n i n i t i a t i n g the d e g r a d a t i o n o f r a t h e r complex p o l y m e r i c s u b s t r a t e s (e.g., c e l l u l o s e ) , whereas the s o i l b a c t e r i a have i n g e n e r a l s p e c i a l i z e d i n the degradation of simpler, soluble organics. Among the i n d i g e n o u s p o p u l a t i o n s a r e many b a c t e r i a l s p e c i e s t h a t a r e l a r g e l y q u i e s c e n t , but f l o u r i s h d r a m a t i c a l l y when r e a d i l y a v a i l a b l e o r g a n i c n u t r i e n t s a r e added ( 6 ) . Thus, a l t h o u g h the s o i l has o f t e n been viewed as a r i c h , f e r t i l e ecosystem, i n r e a l i t y s o i l i s c o n s i d e r e d t o be an o l i g o t r o p h i c environment ( 7 ) . The f i e r c e n a t u r e o f c o m p e t i t i o n f o r the e a s i l y d e g r a d a b l e o r g a n i c compounds added t o s o i l i s e x e m p l i f i e d by a n t i b i o t i c p r o d u c t i o n by s o i l m i c r o o r g a n i s m s , which p r o b a b l y r e p r e s e n t s a f o r m o f c h e m i c a l w a r f a r e o v e r the d e f e n s e o f n i c h e s ( 6 ) . P e s t i c i d e s A p p l i e d t o the S o i l
Environment
S o i l i s the f o u n d a t i o n o f a g r i c u l t u r e . I t i s the s u b s t r a t e i n which the agronomic c r o p s o f the e a r t h f i n d r e q u i r e d n u t r i e n t s , water, m i c r o b i a l symbionts, and a p h y s i c a l anchor. Due t o t h e p r e s e n c e i n s o i l o f c r o p c o m p e t i t o r s and c o m p e t i t o r s f o r the use o f t h i s p l a n t biomass, p e s t i c i d e s have become i n d i s p e n s i b l e t o o l s i n t h e management o f weeds, i n s e c t s , and f u n g i o f economic s i g n i f i c a n c e . At p r e s e n t t h e r e a r e a p p r o x i m a t e l y 600 d i f f e r e n t p e s t i c i d e a c t i v e i n g r e d i e n t s r e g i s t e r e d f o r use i n the U.S., and m i l l i o n s o f pounds a r e g l o b a l l y a p p l i e d e a c h y e a r , w i t h the w o r l d market e s t i m a t e d a t g r e a t e r t h a n 20 b i l l i o n d o l l a r s ( 8 ) . Much o f t h i s use r e p r e s e n t s d i r e c t a p p l i c a t i o n to s o i l , and a c o n s i d e r a b l e p o r t i o n o f t h a t which i s f o l i a r l y a p p l i e d
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
1.
RACKE
3
Pesticides in the Soil Microbial Ecosystem
may r e a c h t h e s o i l as s p r a y d r i f t , r u n o f f , o r wash-off. One c o n s i d e r a t i o n o f the use o f s o i l - a p p l i e d p e s t i c i d e s i s t h a t t h e y s h o u l d p e r s i s t l o n g enough i n s o i l t o c o n t r o l t h e t a r g e t p e s t ( s ) , but not so l o n g as t o c r e a t e e n v i r o n m e n t a l r i s k s . H e r b i c i d e s which a r e a p p l i e d d i r e c t l y t o s o i l w i t h the i n t e n t o f p r o v i d i n g r e s i d u a l weed c o n t r o l may be a p p l i e d p r i o r t o c r o p p l a n t i n g ( p r e p l a n t ) o r a f t e r p l a n t i n g and p r i o r t o weed emergence (preemergence). Classes of h e r b i c i d e s that are a p p l i e d preplant or preemergence i n c l u d e the t r i a z i n e s , s u b s t i t u t e d u r e a s , carbamates, c a r b a m o t h i o a t e s , s u l f o n y l u r e a s , c h l o r a c e t a r n i d e s , and d i n i t r o a n i l i n e s (9). Many i m p o r t a n t c r o p s , s u c h as c o r n and soybeans, r e l y upon p r e p l a n t o r preemergence h e r b i c i d e s . A t y p i c a l preemergent weed c o n t r o l s c e n a r i o i s p r o v i d e d by the o c c u r r e n c e o f w i l d p r o s o m i l l e t (Panicum miliaceum) i n Midwestern U.S. c o r n . Wild proso m i l l e t i s a p e r n i c i o u s g r a s s s p e c i e s , and o f t e n e x h i b i t s b o t h e a r l y and l a t e s e a s o n f l u s h e s (10). One o f the h e r b i c i d e s t h a t i s e f f e c t i v e a g a i n s t t h i s weed i s EPTC, which must be f o r m u l a t e d w i t h a m e t a b o l i c s a f e n e r ( d i c h l o r m i d ) t h a t a l l o w s c o r n t o escape i t s h e r b i c i d a l e f f e c t s . EPTC i s a p p l i e d p r e p l a n t - i n c o r p o r a t e d a t 2.2-6.7 kg/ha and must p e r s i s t i n s i g n i f i c a n t q u a n t i t i e s f o r r o u g h l y 15-30 days f o r e f f e c t i v e c o n t r o l o f e a r l y s e a s o n f l u s h e s o f w i l d p r o s o m i l l e t (11.). s h o u l d be n o t e d t h a t i n many agroecosysterns, s u c h as c o r n , h e r b i c i d e s o r "tank mixes" o f m u l t i p l e h e r b i c i d e s a r e a p p l i e d t o c o n t r o l complexes o f weed s p e c i e s . J t
A l t h o u g h t h e use o f i n s e c t i c i d e s i s not as h e a v i l y skewed toward s o i l a p p l i c a t i o n as t h a t f o r h e r b i c i d e s , t h e r e a r e s e v e r a l s i g n i f i c a n t c r o p s s u c h as c o r n , peanuts, and s u g a r b e e t s which r e l y h e a v i l y on s u c c e s s f u l c o n t r o l o f s o i l i n s e c t p e s t s . A typical example o f s o i l i n s e c t p e s t c o n t r o l i s p r o v i d e d by the c o r n rootworm (Diabrotica spp.). T h i s key p e s t o f c o r n o v e r w i n t e r s i n the egg s t a g e i n c o r n s t u b b l e , and a f t e r a v a r i a b l e h a t c h i n g p e r i o d the l a r v a e a c t i v e l y damage c o r n r o o t s from e a r l y June t o l a t e J u l y (12). The most common method o f c o r n rootworm c o n t r o l i n v o l v e s an a t - p l a n t i n g (April-May) a p p l i c a t i o n of a granular i n s e c t i c i d e , such as c a r b o f u r a n , a t 1 kg/ha. To p r o v i d e e f f e c t i v e rootworm c o n t r o l the c a r b o f u r a n a p p l i e d must p e r s i s t i n t o x i c c o n c e n t r a t i o n s f o r a p p r o x i m a t e l y 4-8 weeks a f t e r a p p l i c a t i o n (13). Insecticides of s e v e r a l c l a s s e s have been employed f o r s o i l i n s e c t c o n t r o l , i n c l u d i n g organophosphorus, carbamate, and p y r e t h r o i d compounds. F u n g i c i d e s a r e a p p l i e d t o s o i l i n a few s p e c i f i c i n s t a n c e s f o r c o n t r o l o f s o i l - b o r n e p l a n t pathogens. Some c r o p s f o r which s o i l - a p p l i e d f u n g i c i d e a p p l i c a t i o n s are o f t e n necessary include o n i o n s , peanuts, and avocado. An example o f t h i s would be the use o f i p r o d i o n e f o r the c o n t r o l o f w h i t e r o t d i s e a s e {Sclerotium cepivorum) o f o n i o n s i n the U n i t e d Kingdom (14). S o i l - a p p l i e d f u n g i c i d e s are o f t e n s y s t e m i c i n n a t u r e , and may need t o be t a k e n up by p l a n t r o o t s and t r a n s l o c a t e d t o stem and f o l i a g e f o r e f f i c a c i o u s pathogen control. S e v e r a l commonly used s o i l f u n g i c i d e s a r e i p r o d i o n e , carbendazim, and thiabendazole. Mechanisms o f P e s t i c i d e D i s s i p a t i o n i n S o i l P e s t i c i d e s which a r e a p p l i e d t o s o i l become enmeshed i n the t r a n s p o r t and d e g r a d a t i o n p r o c e s s e s t h a t a f f e c t a l l a l l o c h t h o n o u s organics added t o t h i s dynamic e c o s y s t e m (15).
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
4
ENHANCED BIODEGRADATION OF PESTICIDES IN T H E ENVIRONMENT
Transport Processes. There a r e s e v e r a l p r o c e s s e s t h a t a r e a c t i v e i n t r a n s p o r t i n g p e s t i c i d e r e s i d u e s w i t h i n o r o u t o f t h e s o i l ecosystem. The f i r s t c l a s s o f p r o c e s s e s i n v o l v e s a e r i a l t r a n s p o r t o f p e s t i c i d e s f r o m t h e s o i l i n t o t h e atmosphere. V o l a t i l i z a t i o n i s an important p r o c e s s by which p e s t i c i d e s i n t h e v a p o r phase c a n move f r o m t h e s o i l s u r f a c e i n t o t h e atmosphere. P e s t i c i d e s with vapor p r e s s u r e s g r e a t e r t h a n a p p r o x i m a t e l y 10" mm Hg a t 25°C a r e most g r e a t l y a f f e c t e d , and l o s s e s f r o m s u r f a c e a p p l i c a t i o n s c a n a p p r o a c h g r e a t e r t h a n 50% i n l e s s t h a n 48 h o u r s (16). In a d d i t i o n t o the vapor p r e s s u r e o f a p e s t i c i d e , which i n c r e a s e s w i t h i n c r e a s i n g temperature, s e v e r a l s o i l p r o p e r t i e s s u c h as m o i s t u r e and o r g a n i c m a t t e r c o n t e n t c a n g r e a t l y modify the k i n e t i c s o f v o l a t i l i z a t i o n . T h i s i s due t o t h e f a c t t h a t p e s t i c i d e s i n s o i l p a r t i t i o n between a t l e a s t t h r e e phases: s o i l - s o r b e d , s o i l s o l u t i o n , and s o i l a i r (17). Although not i n t e n s i v e l y i n v e s t i g a t e d , movement o f s o i l p a r t i c l e s and a t t a c h e d p e s t i c i d e s by wind may a l s o p l a y a r o l e under some e n v i r o n m e n t a l conditions. The s e c o n d c l a s s o f p e s t i c i d e t r a n s p o r t p r o c e s s e s i s t h a t o f movement o f d i s s o l v e d o r p a r t i c u l a t e - s o r b e d p e s t i c i d e s i n water. L e a c h i n g o f p e s t i c i d e s has been r e c o g n i z e d a s a c r i t i c a l p r o c e s s , i f not i n t h e s e n s e o f t h e a b s o l u t e p e r c e n t a g e o f a p p l i e d p e s t i c i d e leached i n t o the s o i l p r o f i l e , then with respect t o the contamination o f groundwater by t r a c e q u a n t i t i e s o f p e s t i c i d e . S e v e r a l pathways o f d i s s o l v e d p e s t i c i d e movement w i t h l e a c h i n g water a r e r e c o g n i z e d ( 1 8 ) . C o n v e c t i o n and d i f f u s i o n a r e o f t e n s i m u l t a n e o u s p r o c e s s e s t h a t i n v o l v e p e s t i c i d e t r a n s p o r t i n water moving g r a v i t a t i o n a l l y o r w i t h a concentration gradient. Macropore f l o w i n v o l v e s p e s t i c i d e t r a n s p o r t i n water f l o w i n g t h r o u g h t h e i r r e g u l a r network o f c h a n n e l s c r e a t e d by earthworms, r o o t s , i n s e c t s , and b u r r o w i n g a n i m a l s . The e x t e n t o f l e a c h i n g i s g o v e r n e d by p a r t i t i o n i n g p r o c e s s e s between s o r b e d and s o l u t i o n phase p e s t i c i d e , and o f t e n l a b o r a t o r y - d e t e r m i n e d s o r p t i o n c o e f f i c i e n t s (e.g. F r e u n d l i c h Kd) a r e used t o p r e d i c t f i e l d l e a c h i n g p o t e n t i a l (19). An u n d e r s t a n d i n g o f t h e r e l a t i o n s h i p between o b s e r v e d p a r t i t i o n i n g b e h a v i o r and a c t u a l f i e l d l e a c h i n g measurement i s c o m p l i c a t e d by s u c h f a c t o r s as n o n e q u i 1 i b r i u m p a r t i t i o n i n g r e s u l t i n g f r o m s l o w - d e s o r p t i o n k i n e t i c s (20). Transport o f p e s t i c i d e s i n water moving o v e r t h e s o i l s u r f a c e i s a l s o a n i m p o r t a n t p r o c e s s t h a t c a n impact s u r f a c e - w a t e r q u a l i t y . P e s t i c i d e s w i t h water s o l u b i l i t i e s g r e a t e r t h a n a p p r o x i m a t e l y 10 pg/g have been h y p o t h e s i z e d t o move l a r g e l y i n t h e s o l u t i o n phase, w h i l e l e s s s o l u b l e p e s t i c i d e s a r e thought t o move m a i n l y s o r b e d t o e r o d i n g s o i l p a r t i c l e s (21). A b i o t i c Transformation Processes. P e s t i c i d e s that r e s i d e w i t h i n o r on t h e s o i l a r e s u b j e c t t o t h e a b i o t i c and m i c r o b i o l o g i c a l transformation processes that operate i n t h i s great r e c y c l i n g ecosystem. A f t e r numerous problems w i t h t h e p r o l o n g e d p e r s i s t e n c e o f some e a r l y s o i l p e s t i c i d e s (e.g. a l d r i n , c h l o r d a n e ) , d e g r a d a b i l i t y i s viewed a s a d e s i r a b l e a t t r i b u t e o f modern s o i l - a p p l i e d p e s t i c i d e s . D e g r a d a t i o n p r o c e s s e s i n s o i l may r e s u l t i n a c c u m u l a t i o n o f well-defined metabolites, incorporation o f p e s t i c i d e carbon o r n i t r o g e n i n t o t h e s o i l o r g a n i c m a t t e r f r a c t i o n , o r complete mineralization. Many o f t h e a b i o t i c d e g r a d a t i o n p r o c e s s e s a c t i v e i n s o i l r e s u l t i n p a r t i a l degradation o f the p e s t i c i d e to products that a r e f u r t h e r d e g r a d e d m i c r o b i a l l y , accumulate i n s o i l t e m p o r a r i l y , o r
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
1. RACKE
5
Pesticides in the Soil Microbial Ecosystem
b i n d t o s o i l o r g a n i c components. Exposure o f p e s t i c i d e r e s i d u e s t o u l t r a v i o l e t r a d i a t i o n can r e s u l t i n considerable photodegradation o f p e s t i c i d e s on t h e s o i l s u r f a c e , a l t h o u g h o n l y r e s i d u e s on t h e extreme s u r f a c e l a y e r ( t e r b u f o s s u l f o x i d e ) and r e d u c t i o n s ( p a r a t h i o n =» a m i n o - p a r a t h i o n ) c a n a l s o be i m p o r t a n t t r a n s f o r m a t i o n p r o c e s s e s f o r s p e c i f i c p e s t i c i d e s (29,30).
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
+
M i c r o b i o l o g i c a l Transformation Processes. The importance o f t h e s o i l m i c r o b i a l community i n m e d i a t i n g p e s t i c i d e d e g r a d a t i o n has l o n g been recognized. I n f a c t , i t was f o r one o f t h e f i r s t s y n t h e t i c o r g a n i c p e s t i c i d e s , 2,4-D, t h a t m i c r o b i o l o g i c a l d e g r a d a t i o n was f i r s t shown t o be a n important f a c t o r (31). The c o n c l u s i o n o f t h i s e a r l y work was " . . . t h e d e t o x i c a t i o n o f 2 : 4 - d i c h l o r o p h e n o x y a c e t i c a c i d i n g a r d e n loam i s due almost e n t i r e l y t o t h e a c t i v i t y o f m i c r o o r g a n i s m s " . S i n c e t h i s e a r l y d i s c o v e r y t h e r e has been c o n s i d e r a b l e a p p r e c i a t i o n f o r t h e r o l e o f t h e s o i l m i c r o b i a l community i n p e s t i c i d e transformations. I n some c a s e s t h e r o l e o f m i c r o o r g a n i s m s has been s t r e s s e d by c o m p a r i s o n o f d e g r a d a t i o n r a t e s i n n a t u r a l and s t e r i l i z e d systems (32), w h i l e i n o t h e r s r e s e a r c h e r s have c h o s e n t o use i s o l a t i o n o f p e s t i c i d e - d e g r a d i n g microorganisms from s o i l as evidence o f m i c r o b i a l involvement (33). I t has a l s o been r e c o g n i z e d t h a t environmental c o n d i t i o n s that influence microbial a c t i v i t y (temperature, moisture,...) a f f e c t the m i c r o b i a l d e g r a d a t i o n o f p e s t i c i d e s i n s o i l (34). The importance o f m i c r o b i a l i n v o l v e m e n t i s d e m o n s t r a t e d by t h e many r e v i e w s o f p e s t i c i d e / m i c r o b e i n t e r a c t i o n s t h a t have a p p e a r e d (35-41). The m i c r o b i a l m e t a b o l i s m o f p e s t i c i d e s has o f t e n been s u b d i v i d e d into 2 d i s t i n c t classes. The f i r s t o f t h e s e i s termed s i m p l y "catabolism". This process o f t e n r e s u l t s i n the m i n e r a l i z a t i o n o f some p o r t i o n o f an o r g a n i c compound v i a e n z y m a t i c pathways t o s i m p l e p r o d u c t s o f u n i v e r s a l c u r r e n c y (C02, N H 3 ) . I n some c a s e s , one p o r t i o n o f t h e m o l e c u l e may be m i n e r a l i z e d and a n o t h e r p o r t i o n may accumulate i n s o i l . This i s true f o r the s o i l microbial degradation o f c a r b o f u r a n (42,43). T h e r e f o r e , c a t a b o l i s m s h o u l d n o t be e q u a t e d w i t h m i n e r a l i z a t i o n o r complete d e s t r u c t i o n o f a p e s t i c i d e . I t s h o u l d be p o i n t e d out, however, t h a t m i n e r a l i z a t i o n o f a p e s t i c i d e i n s o i l is n e a r l y always a consequence o f m i c r o b i a l a c t i v i t y (44)key t o u n d e r s t a n d i n g c a t a b o l i s m i s t h a t i t i s p r i m a r i l y a p r o c e s s d r i v e n by t h e m i c r o b i a l quest f o r energy. T h e r e f o r e , c a t a b o l i s m has come t o be e q u a t e d w i t h u t i l i z a t i o n o f a p e s t i c i d e a s a n e n e r g y s o u r c e and t h u s a growth s u b s t r a t e (40,41). C a t a b o l i s m i s most commonly l i n k e d t o t h e c o n v e r s i o n o f p e s t i c i d e s i n t o c a r b o n s k e l e t o n T
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
n
e
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
6
ENHANCED BIODEGRADATION OF PESTICIDES IN THE ENVIRONMENT
f e e d s t o c k s f o r e x i s t i n g m e t a b o l i c pathways. However, i n a few i n s t a n c e s pure c u l t u r e s o f p e s t i c i d e - d e g r a d i n g m i c r o o r g a n i s m s i s o l a t e d from s o i l have been c a p a b l e o f e x p l o i t i n g p e s t i c i d e s as s o l e s o u r c e s o f phosphorus (45,46), n i t r o g e n (42), o r s u l f u r (47). A second r e c o g n i z e d c l a s s o f m i c r o b i a l p e s t i c i d e metabolism, "cometabolism", i s r e l a t e d t o the o b s e r v e d u n c o o r d i n a t i o n o f m i c r o b i a l enzyme a c t i v i t i e s . As D a g l e y (48) has o b s e r v e d : "Most m i c r o b i a l d e g r a d a t i v e ( c a t a b o l i c ) enzymes a r e not l i n k e d directly to p r o c e s s e s t h a t h a r n e s s r e l e a s e d e n e r g y f o r growth. Thus, enzymes t h a t add water, o r break c h e m i c a l bonds by h y d r o l y s i s o r a l d o l f i s s i o n , s i m p l y s e r v e the f u n c t i o n o f s u p p l y i n g s u b s t r a t e s f o r t h e m e t a b o l i c sequences t h a t t e r m i n a t e i n e n e r g y p r o d u c t i o n " . When a d i s j u n c t i o n o c c u r s , i n c o m p l e t e p e s t i c i d e d e g r a d a t i o n r e s u l t s , and t h e r e i s an a c c u m u l a t i o n o f i n t e r m e d i a t e m e t a b o l i c p r o d u c t s . The phenomenon o f cometabolism has been d e f i n e d as the d e g r a d a t i o n " o f s u b s t a n c e s w i t h o u t u t i l i z a t i o n o f the e n e r g y d e r i v e d f r o m t h e i r o x i d a t i o n t o s u p p o r t growth..." (49). M i c r o b i o l o g i c a l s t u d i e s to d i s t i n g u i s h c a t a b o l i s m from c o m e t a b o l i s m under n a t u r a l c o n d i t i o n s a r e not t r i v i a l , and most r e s e a r c h e r s have r e l i e d upon work w i t h i s o l a t e d pure c u l t u r e s . The c o n c l u s i o n s , a p p r o p r i a t e o r not, drawn f r o m pure c u l t u r e work i n the l a b o r a t o r y depend on whether a m i c r o o r g a n i s m c a p a b l e o f growing on the p e s t i c i d e i s i s o l a t e d ( i . e . , c a t a b o l i s m ) o r not ( i . e . , c o m e t a b o l i s m ) . A new emphasis i s now b e i n g p l a c e d by r e s e a r c h e r s on u n d e r s t a n d i n g c o m e t a b o l i s m i n i t s e c o l o g i c a l c o n t e x t . T h i s r e e v a l u a t i o n has been s p u r r e d by i n s t a n c e s i n w h i c h no s i n g l e microbe c a n c a t a b o l i z e a p e s t i c i d e , but o n l y by t h e s y n e r g i s t i c i n t e r a c t i o n s o f s e v e r a l members o f a m i c r o b i a l c o n s o r t i u m i s m i n e r a l i z a t i o n and growth r e a l i z e d (50-53). Microbial
Adaptation f o r Degradation
The p a t t e r n o f m i c r o b i a l p o p u l a t i o n growth p r e s e n t s some i n t e r e s t i n g ecological implications. Because the most common mode o f b a c t e r i a l r e p r o d u c t i o n i n v o l v e s f i s s i o n , w i t h two d a u g h t e r c e l l s formed f r o m e a c h s p l i t p a r e n t , m i c r o b i a l p o p u l a t i o n s e x h i b i t t h e phenomenon o f e x p o n e n t i a l growth. The c l a s s i c growth c u r v e f o r b a c t e r i a l p o p u l a t i o n s i n v o l v e s 4 r e c o g n i z e d phases (54). The lag phase i s a p e r i o d d u r i n g which no growth o c c u r s upon p r e s e n t a t i o n o f a new carbonaceous e n e r g y s o u r c e t o the p o p u l a t i o n . T h i s l a g i s due t o t h e time n e c e s s a r y t o g e a r up the m e t a b o l i c machinery t h r o u g h enzyme and coenzyme s y n t h e s i s , a p r o c e s s which has been termed " i n d u c t i o n " . D u r i n g the exponential phase the p o p u l a t i o n grows e x p o n e n t i a l l y as i t e x p l o i t s t h e growth s u b s t r a t e . The stationary phase i s r e a c h e d when p o p u l a t i o n growth slows and h a l t s due t o l i m i t a t i o n s o f n u t r i e n t d e p l e t i o n o r t o x i n a c c u m u l a t i o n . F i n a l l y , the death phase i s c h a r a c t e r i z e d by a d e c l i n e i n the v i a b l e p o p u l a t i o n . Microbiologists have used t h i s s c e n a r i o as a paradigm o f m i c r o b i a l p o p u l a t i o n growth, y e t i t s h o u l d be n o t e d t h a t t h i s i s almost e n t i r e l y based on pure c u l t u r e work i n the l a b o r a t o r y . A l t h o u g h i n some c a s e s t h i s t y p e o f growth p a t t e r n may be o b s e r v e d i n s o i l (55), t h e r e i s some doubt whether i n the m a t r i x o f complex m i c r o b i a l community i n t e r a c t i o n s i n the h a r s h s o i l environment t h i s p a t t e r n i s as c l e a r l y d i s p l a y e d . S o i l b a c t e r i a l growth r a t e s i n n a t u r e seem t o be f a r s l o w e r t h a n t h o s e t y p i c a l o f s o i l b a c t e r i a grown i n r i c h n u t r i e n t media i n t h e l a b o r a t o r y (7). I t has been c o n c l u d e d t h a t m i c r o b i a l p o p u l a t i o n s i n
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
1. RACKE
Pesticides in the Soil Microbial Ecosystem
7
s o i l a r e l a r g e l y dormant, w i t h o n l y 15-30% o f t h e b a c t e r i a l p o p u l a t i o n a c t i v e even under t h e most f a v o r a b l e c o n d i t i o n s (56,57). The m a j o r i t y o f e v i d e n c e p o r t r a y s s o i l b a c t e r i a l p o p u l a t i o n s a s o p e r a t i n g on what i s e c o l o g i c a l l y known a s R p o p u l a t i o n growth s t r a t e g y : p o p u l a t i o n s r a p i d l y i n c r e a s e t o e x p l o i t f a v o r a b l e growth c o n d i t i o n s ( i . e . , "boom"), and m a i n t a i n n e g l i g i b l e p o p u l a t i o n growth and a c t i v i t y d u r i n g p e r i o d s o f u n f a v o r a b l e c o n d i t i o n s ( i . e . , " b u s t " ) (Z, 58). The s o i l e c o s y s t e m i s p r i m a r i l y a n a l l o c h t h o n o u s one i n terms o f e n e r g e t i c input, r e c e i v i n g i t s energy input p r i m a r i l y as o r g a n i c c a r b o n c o n s t i t u e n t s o f p l a n t and a n i m a l d e b r i s . Plants alone i n t r o d u c e a n i n c r e d i b l e d i v e r s i t y o f compounds i n t o t h e s o i l : cellulose, hemicelluloses, lignin, starch, pectins, proteins, l i p i d s , pigments, and d e f e n s e c h e m i c a l s (e.g., n i c o t i n e , r o t e n o n e ) ( 5 9 ) . As a consequence, a n a l y s e s o f s o i l r e v e a l t h e p r e s e n c e o f a m y r i a d o f b i o c h e m i c a l l y i d e n t i f i a b l e components i n a d d i t i o n t o t h e more amorphous humic m a t e r i a l s ( 3 ) . As might be e x p e c t e d , t h e s o i l m i c r o b i a l community c o n t a i n s p o p u l a t i o n s o f f u n g i , a c t i n o m y c e t e s , and b a c t e r i a t h a t degrade t h i s d i v e r s e n u t r i t i o n a l o f f e r i n g . The f u n g a l and a c t i n o m y c e t e p o p u l a t i o n s o f t e n a c t a s p r i m a r y d e g r a d e r s i n s o i l , and a r e v e r y a c t i v e i n t h e d e g r a d a t i o n o f r a t h e r complex s u b s t r a t e s s u c h a s c e l l u l o s e , l i g n i n , and c h i t i n ( 6 ) . The s o i l b a c t e r i a l p o p u l a t i o n c o n t a i n s some organisms which have become s p e c i a l i z e d t o u t i l i z e some f a i r l y s i m p l e a l i p h a t i c and a r o m a t i c s u b s t r a t e s a s growth s u b s t r a t e s , some o f which appear t o p r e s e n t p e c u l i a r m e t a b o l i c conundrums. F o r example, a s u r v e y o f t h e Arthrobacter spp. o f agronomic s o i l s f o u n d a s p e c t r u m o f n u t r i t i o n a l s u b g r o u p i n g s represented, that i n a d d i t i o n t o t y p i c a l s u b s t r a t e s such as glucose, b u t y r i c a c i d , and g l y c i n e , c o u l d u t i l i z e s u c h compounds a s b e n z o i c a c i d , s a l i c y l i c a c i d , h i s t a m i n e , and methylamine a s s o l e c a r b o n s o u r c e s (60). The c a p a b i l i t i e s o f s e v e r a l g e n e r a o f s o i l b a c t e r i a f o r d e g r a d a t i o n o f complex, s o l u b l e s u b s t r a t e s a r e w e l l known. F o r example, Pseudomonas spp. a r e common s o i l b a c t e r i a t h a t c a n u t i l i z e many a r o m a t i c compounds f o r growth. Some o f t h e compounds d e g r a d e d i n c l u d e camphor, n a p h t h a l e n e , t o l u e n e , p h t h a l i c a c i d , and o c t a n e (61,62). The b a c t e r i a l community i s c a p a b l e o f d e g r a d i n g v i r t u a l l y any o r g a n i c compound t h a t i s added t o t h e s o i l environment, due t o some m i c r o o r g a n i s m o r m i c r o b i a l c o n s o r t i u m t h a t c a n degrade and m i n e r a l i z e t h e compound and e x t r a c t e n e r g y from i t f o r growth ( 5 ) . How c a n some p o r t i o n s o f t h e s o i l m i c r o b i a l community be s o f l e x i b l e i n t h e i r n u t r i t i o n a l r e q u i r e m e n t s so a s t o e x p l o i t t h e v a r i e t y o f c a r b o n s o u r c e s t h a t e n t e r t h e s o i l e n v i r o n m e n t ? The answer t o t h i s q u e s t i o n l i e s i n t h e u n i q u e m i c r o e v o l u t i o n a r y n a t u r e of microbial substrate adaptation. Characteristic of microbial m e t a b o l i s m i s t h e a d a p t a b i l i t y o f m i c r o o r g a n i s m s t h r o u g h m u t a t i o n and i n d u c t i o n t o d e v e l o p t h e a b i l i t y t o degrade compounds which i n i t i a l l y c o u l d n o t be degraded o r were t o x i c (63). This can involve the e v o l u t i o n o f s u i t a b l e c e l l w a l l t r a n s p o r t systems, o f more e f f i c i e n t enzymes, o r o f enzymes w i t h new a c t i v i t i e s (64). Any o f t h e s e s c e n a r i o s would c o n f e r a s e l e c t i v e advantage on t h e m i c r o o r g a n i s m i n v o l v e d , and would have s i g n i f i c a n t e c o l o g i c a l i m p l i c a t i o n s because e a c h b a c t e r i a l c e l l has t h e a b i l i t y t o f o r m an e n t i r e p o p u l a t i o n (65). One o f t h e k e y f a c t o r s i n t h e m e t a b o l i c a d a p t a b i l i t y o f m i c r o o r g a n i s m s i s r e l a t e d t o t h e p o s s e s s i o n and u t i l i z a t i o n o f plasmids. P l a s m i d s a r e extrachromosomal c i r c l e t s o f g e n e t i c m a t e r i a l
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
8
ENHANCED BIODEGRADATION OF PESTICIDES IN T H E ENVIRONMENT
(DNA) t h a t i n b a c t e r i a e x i s t i n d e p e n d e n t l y o f the chromosome, and o f t e n encode f o r " n o n e s s e n t i a l " but u s e f u l c h a r a c t e r i s t i c s s u c h as c o n j u g a t i o n f a c t o r s , c a p s u l e f o r m a t i o n , h o s t s p e c i f i c i t y , and d r u g r e s i s t a n c e (66). M e t a b o l i c genes r e s i d i n g on p l a s m i d s i n c l u d e t h e a b i l i t y t o degrade camphor, t o l u e n e , naphthalene, o c t a n e , and PCB's (61,67). D e g r a d a t i v e p l a s m i d s c a n be t r a n s f e r r e d between i n d i v i d u a l b a c t e r i a o f the same o r d i f f e r e n t s p e c i e s (68). Possession of d e g r a d a t i v e p l a s m i d s a l l o w s microorganisms t o "experiment" w i t h a u x i l i a r y m e t a b o l i c pathways v i a gene m u t a t i o n o r p r o m i s c u o u s g e n e t i c exchange w i t h o u t j e o p a r d i z i n g t h e i r r e p l a c e a b l e genes on t h e c e n t r a l chromosome. The u l t i m a t e s e l e c t i v e f a c t o r i n d e t e r m i n i n g whether a n o v e l o r g a n i c compound c a n p r o v i d e the s e l e c t i v e advantage n e c e s s a r y to i n d u c e c a t a b o l i c a d a p t a t i o n appears t o be i t s a b i l i t y t o s u p p o r t the s y n t h e s i s o f a t l e a s t one m o l e c u l e o f ATP d u r i n g i t s d e g r a d a t i o n (5,48). As Delwiche has o b s e r v e d "Few e n e r g y - y i e l d i n g r e a c t i o n s have not been e x p l o i t e d by microorganisms, and some f o r m i d a b l e o b s t a c l e s to e x p l o i t a t i o n have been overcome by i n g e n i o u s a d a p t a t i o n s , some o f which r e m a i n t o be e x p l a i n e d by the m i c r o b i o l o g i s t " ( 5 ) . Enhanced P e s t i c i d e
Biodegradation
In l i g h t o f the m e t a b o l i c a d a p t a b i l i t y o f m i c r o o r g a n i s m s r e s i d i n g i n t h e e n e r g y - p o o r environment o f the s o i l , i t s h o u l d not t h e n be s u r p r i s i n g t h a t s o i l - a p p l i e d p e s t i c i d e s c a n be degraded b i o l o g i c a l l y and t h a t m i c r o b i a l a d a p t a t i o n f o r p e s t i c i d e c a t a b o l i s m would be possible. T h i s f a c t became apparent not l o n g a f t e r t h e i n t r o d u c t i o n of the f i r s t s y n t h e t i c o r g a n i c p e s t i c i d e s (e.g., phenoxyacetic a c i d herbicides). V e r y e a r l y work d e m o n s t r a t e d t h a t 2,4-D d i s s i p a t e d much more s l o w l y from a u t o c l a v e d ( i . e . , s t e r i l i z e d ) s o i l t h a n from n a t u r a l s o i l (69). I n t r i g u e d by the p o s s i b i l i t y o f m i c r o b i a l d e g r a d a t i o n , L . J . Audus o f t h e Botany Department o f B e d f o r d C o l l e g e U n i v e r s i t y , London, began a s e r i e s o f i n v e s t i g a t i o n s t h a t f i r s t c l e a r l y e l u c i d a t e d the r o l e o f s o i l m i c r o o r g a n i s m s i n t h e d e g r a d a t i o n o f p e s t i c i d e s a p p l i e d to s o i l . In h i s e x p e r i m e n t s Audus r e c y c l e d an aqueous s o l u t i o n o f 2,4-D (10-1,000 fxg/ml) t h r o u g h a column packed with garden s o i l . U s i n g b i o a s s a y t e c h n i q u e s he was a b l e t o demonstrate that a f t e r a d e f i n e d l a g p e r i o d , d u r i n g which l i t t l e 2,4-D d e g r a d a t i o n was noted, t h e r e f o l l o w e d a p e r i o d o f v e r y r a p i d p e s t i c i d e d e g r a d a t i o n t o n e g l i g i b l e l e v e l s (31). A s e c o n d key f i n d i n g o f t h i s s t u d y was t h a t a second dose o f 2,4-D r e c y c l e d t h r o u g h t h e s o i l column was i m m e d i a t e l y degraded w i t h no l a g p e r i o d evident. These s o i l p e r f u s i o n s t u d i e s were q u i c k l y f o l l o w e d by o t h e r i n v e s t i g a t i o n s which d e m o n s t r a t e d t h a t s o i l p r e t r e a t e d w i t h 2,4-D d i s p l a y e d t h e a b i l i t y t o more r a p i d l y degrade a subsequent dose o f 2,4-D t h a n p r e v i o u s l y u n t r e a t e d s o i l (70). The m i c r o b i a l l y - m e d i a t e d n a t u r e o f t h i s p r o c e s s was l a t e r c o n f i r m e d t h r o u g h t h e i s o l a t i o n o f 2,4-D c a t a b o l i z i n g m i c r o o r g a n i s m s and the s t u d y o f 2,4-D degrading p o p u l a t i o n s o f s o i l microorganisms (71-74). D u r i n g the 30 y e a r s f o l l o w i n g the d i s c o v e r y o f m i c r o b i a l a d a p t a t i o n f o r p e s t i c i d e d e g r a d a t i o n , t h e r e were i n t e r m i t t e n t r e p o r t s o f t h e same phenomenon a f f e c t i n g t h e p e r s i s t e n c e o f o t h e r p e s t i c i d e s . However, due t o t h e f a c t t h a t v i r t u a l l y none o f t h e s e r e p o r t s c o n c e r n e d s i t u a t i o n s where r e d u c e d p e s t i c i d e p e r s i s t e n c e a f f e c t e d pest c o n t r o l e f f i c a c y , m i c r o b i a l adaptation f o r p e s t i c i d e degradation was l a r g e l y r e l e g a t e d t o the s t a t u s o f academic c u r i o s i t y . In f a c t ,
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
1.
RACKE
Pesticides in the Soil Microbial Ecosystem
9
t h e f o c u s o f e n v i r o n m e n t a l c h e m i s t s d u r i n g much o f t h i s p e r i o d was on t h e r e c a l c i t r a n c e and lack o f d e g r a d a t i o n o f many e a r l y p e s t i c i d e s . By t h e mid 1970*s, t h e replacement o f t h e s e m a t e r i a l s w i t h d e g r a d a b l e , s o i l - a p p l i e d p e s t i c i d e s i n n e a r l y a l l markets s e t t h e scene f o r t h e development o f c u r r e n t i n t e r e s t i n a d a p t e d m i c r o b i a l p e s t i c i d e degradation. Although agronomists p e r i o d i c a l l y observe f a i l u r e s o f s o i l a p p l i e d p e s t i c i d e s t o c o n t r o l t a r g e t p e s t s , t h e s e have h i s t o r i c a l l y been a t t r i b u t e d t o improper a p p l i c a t i o n t e c h n i q u e , u n u s u a l e n v i r o n m e n t a l c o n d i t i o n s , o r development o f p e s t r e s i s t a n c e . However, a p a t t e r n o f p e s t c o n t r o l f a i l u r e s a f t e r a p p l i c a t i o n o f n o r m a l l y e f f i c a c i o u s s o i l p e s t i c i d e s emerged i n t h e l a t e 1970*s. In New Z e a l a n d , W i s c o n s i n , Nebraska, and Iowa the c a r b a m o t h i o a t e h e r b i c i d e EPTC no l o n g e r p r o v i d e d e f f e c t i v e c o n t r o l o f c e r t a i n weeds i n some f i e l d s w i t h h i s t o r i c use o f EPTC (75-78). In I l l i n o i s , Iowa, Kansas, and E a s t e r n Canada the carbamate i n s e c t i c i d e c a r b o f u r a n d i d not p r o v i d e adequate p r o t e c t i o n a g a i n s t c e r t a i n s o i l i n s e c t p e s t s i n some s o i l s w i t h h i s t o r i c c a r b o f u r a n use (79-83). The f a i l u r e s o f t h e s e and a few o t h e r p e s t i c i d e s were e v e n t u a l l y r e c o g n i z e d t o o c c u r due t o r a p i d m i c r o b i a l d e g r a d a t i o n t h a t m a n i f e s t e d i t s e l f a f t e r a p a r t i c u l a r p e s t i c i d e had been a p p l i e d f o r two o r more c o n s e c u t i v e y e a r s t o the same f i e l d . T h i s phenomenon came t o be termed "enhanced d e g r a d a t i o n " o r " a c c e l e r a t e d d e g r a d a t i o n " , because a more r a p i d r a t e o f p e s t i c i d e d e g r a d a t i o n was o b s e r v e d i n p r e v i o u s l y t r e a t e d t h a n i n previously untreated f i e l d s . The term "enhanced d e g r a d a t i o n " has come t o be synonymous w i t h adapted m i c r o b i a l c a t a b o l i s m . S i n c e enhanced d e g r a d a t i o n has come t o the f o r e f r o n t o f e n v i r o n m e n t a l c h e m i s t r y , much r e s e a r c h e f f o r t has been d i r e c t e d a t u n d e r s t a n d i n g t h e f i e l d i m p l i c a t i o n s , m i c r o b i o l o g y , and b i o c h e m i s t r y o f t h i s phenomenon. The c h a p t e r s which f o l l o w i n t h i s book have been o r g a n i z e d so as t o convey the d e p t h o f u n d e r s t a n d i n g we have a c h i e v e d regarding microbial adaptation f o r p e s t i c i d e degradation. These c h a p t e r s r e v e a l t h a t we s h o u l d not o n l y v i e w t h i s phenomenon as an a g r i c u l t u r a l problem r e q u i r i n g management and s o l u t i o n s , but as a window i n t o t h e remarkable a d a p t a b i l i t y and c o m p l e x i t y o f t h e s o i l m i c r o b i a l ecosystem.
Literature Cited 1. 2. 3. 4. 5. 6. 7.
Foth, H.D. Fundamentals of Soil Science; John Wiley and Sons: New York, NY, 1978; p 423. Stotzky, G.; Burns, R.G. In Experimental Microbial Ecology; Burns, R.G.; Slater, J.H., Eds.; Blackwell Scientific Publications: Oxford, 1982; Chapter 7. Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley and Sons: New York, NY, 1982; p 12. Theng, B.K.G. Formation and Properties of Clay-Polymer Complexes; Elsevier: Amsterdam, 1979. Delwiche, C.C. In Soil Biochemistry; McLaren, A.D.; Peterson, G.H., Eds.; Marcel Dekker: New York, NY, 1967; Vol. I, Chapter 7. Alexander, M. Introduction to Soil Microbiology; John Wiley and Sons: New York, NY, 1977; p 17. Williams, S.T. In Bacteria in Their Natural Environments: Academic Press: London, 1985; Chapter 3.
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
10
8. 9. 10. 11. 12. 13. 14.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
29. 30. 31. 32. 33.
ENHANCED BIODEGRADATION OF PESTICIDES IN T H E ENVIRONMENT
McDougall, J.; Woodburn, J. Agrochemical Review; County Natwest Woodmac, London, May 1989; p 7. Ross, M. A.; Lembi, C.A. Applied Weed Science; Macmillan: New York, NY, 1985. Cannell, A.M. Crops and Soils 1983, 36, 16-18. Harvey, R. G.; McNevin, G. R.; Albright, J.W.; Kozak, M.E. Weed Sci. 1986, 34, 773-780. Krysan, J.L.; Miller, T.A. Methods for the Study of Pest Diabrotica; Springer-Verlag: New York, NY, 1986. Felsot, A.S.; Steffey, K.L.; Levine, E.; Wilson, J.G. J. Econ. Entomol. 1985, 78, 45-52. Walker, A.; Brown, P.A.; Entwistle, A. R. Pestic. Sci. 1986, 17, 183-193. Sawhney, B.L.; Brown, K., Eds., Reactions and Movements of Organic Chemicals in Soils; Soil Science Society of America: Madison, WI, 1989. Spencer, W.F. In Fate of Pesticides in the Environment; Biggar, J.W.; Seiber, J.N., Eds.; University of California Publication 3320: Oakland, CA, 1987; Chapter 6. Glotfelty, D.E.; Schomburg, C.J. In Reactions and Movements of Organic Chemicals in Soils; Sawhney, B.L.; Brown, K., Eds., Soil Science Society of America: Madison, WI, 1989; Chapter 7. Green, R. E.; Khan, M.A. In Fate of Pesticides in the Environment; Biggar, J.W.; Seiber, J.N., Eds.; University of California Publication 3320: Oakland, CA, 1987; Chapter 9. Cohen, S.Z.; Creeger, S.M.; Carsel, R. F.; Enfield, C.G. In Treatment and Disposal of Pesticide Wastes; American Chemical Society: Washington, DC, 1984; Chapter 18. Pignatello, J.J. In Reactions and Movements of Organic Chemicals in Soils; Sawhney, B.L.; Brown, K., Eds., Soil Science Society of America: Madison, WI, 1989; Chapter 3. Wauchope, R.D. J. Environ. Qual. 1978, 7, 459-472. Miller, G.C.; Herbert, V.R. In Fate of Pesticides in the Environment; Biggar, J.W.; Seiber, J.N., Eds.; University of California Publication 3320: Oakland, CA, 1987; Chapter 8. Tinsley, I.J. Chemical Concepts in Pollutant Behavior; John Wiley and Sons: New York, NY, 1979. Drossman, H.; Johnson, H.; Mill, T. Chemosphere 1988, 17, 15091530. Yaron, B. Soil Sci. 1978, 125, 210-216. Skujins, J. CRC Critic. Rev. Microbiol. 1976, May, 383-421. Mortland, M. M.; Raman, K.V. J. Agric. Food Chem. 1967, 15, 163167. Wolfe, N.L.; Metwally, M.E.S.; Moftah, A.E. In Reactions and Movements of Organic Chemicals in Soils; Sawhney, B.L.; Brown, K., Eds., Soil Science Society of America: Madison, WI, 1989; Chapter 9. Wahid, P.A.; Ramakrishna, C.; Sethunathan, N. J. Environ. Qual. 1980, 9, 127-130. Chapman, R. A.; Tu, C.M.; Harris, C.R.; Dubois, D. J. Econ. Entomol. 1982, 75, 955-960. Audus, L.J. Plant Soil 1949, 2, 31-36. Lichtenstein, E.P.; Schultz, K. R. J. Econ. Entomol. 1964, 57, 618-627. Steenson, T.I.; Walker, N. J. Gen. Microbiol. 1957, 16, 146-155.
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
1. RACKE 34. 35. 36. 37. 38. 39. 40. 41. 42.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65.
Pesticides in the Soil Microbial Ecosystem
11
Chapman, R.A.; Harris, C.R.; Harris, C. J. Environ. Sci. Health 1986, B21, 125-141. Bollen, W.B. Ann. Rev. Microbiol. 1961, 15, 69-92. Cullimore, D.R. Residue Rev. 1971, 35, 65-80. Bollag, J.M. Adv. Appl. Microbiol. 1974, 18, 75-130. Tu, C.M.; Miles, J.R.W. Residue Rev. 1976, 64, 17-65. Laveglia, J.; Dahm, P.A. Ann. Rev. Entomol. 1977, 22, 483-513. H i l l , I.R.; Wright, S.J.L., Eds. Pesticide Microbiology; Academic Press: London, 1978. Lal, R., Ed. Insecticide Microbiology; Springer-Verlag: Berlin, 1984. Karns, J.S.; Mulbry, W. W.; Nelson, J.O.; Kearney, P.C. Pestic. Biochem. Physiol. 1986, 25, 211-217. Gorder, G.W. Ph.D. Dissertation, Iowa State University, IA, 1980. Alexander, M. Science 1981, 211, 132-138. Bhaskaran, B.; Kandasamy, D.; Oblisami, G.; Subramaniam, T.R. Current Sci. 1973, 42, 835-836. Cook, A.M.; Daughton, C.G.; Alexander, M. Appl. Environ. Microbiol. 1978, 36, 668-672. Cook, A.M.; Hutter, R. Appl. Environ. Microbiol. 1982, 43, 781786. Dagley, S. Residue Rev. 1983, 85, 127-137. Horvath, R.S. Bacteriol. Rev. 1972, 36, 146-155. Gunner, H.B.; Zuckerman, B.M. Nature 1968, 217, 1183-1184. Senior, E.; Bull, A.T.; Slater, J.H. Nature 1976, 263, 476-479. Ou, L.T.; Sikka, H.C. J. Agric. Food Chem. 1977, 25, 1336-1339. Ou, L.T.; Sharma, A. J. Agric. Food Chem. 1989, 37, 1514-1518. Brock, T.D.; Smith, D.W.; Madigan, M.T. Biology of Microorganisms; Prentice-Hall: Englewood Cliffs, NJ, 1984; Chapter 7. Smith, O.L. Soil Microbiology: A Model of Decomposition and Recycling; CRC Press: Boca Raton, FL, 1982; Chapter 12. Paul, E.A.; Voroney, R.P. In Contemporary Microbial Ecology; Ellwood, D.C.; Hedger, J.N.; Latham, J.; Lynch, J.M.; Slater, J.H., Eds., Academic Press: London, 1980; pp 215-237. Clarholm, M.; Rosswall, T. Soil Biol. Biochem. 1980, 12, 49-57. McLaren, A.D. Environ. Lett. 1973, 5, 143-154. Raven, P.H.; Evert, R.F.; Curtis, H. Biology of Plants; Worth: New York, NY, 1976; Chapter 2. Hagedorn, C.; Holt, J.G. Can. J. Microbiol. 1975, 21, 353-361. Wheel is, M.L. Ann. Rev. Microbiol. 1975, 29, 505-524. Palleroni, N.J. In Bergey's Manual of Systematic Bacteriology; Krieg, N.R., Ed., Williams and Wilkins: Baltimore, MD, 1984; Volume 1, pp 141-199. Matsumura, F.; Benezet, H.J. In Pesticide Microbiology; H i l l , I.R.; Wright, S.J.L., Eds., Academic Press: London; 1978, Chapter 10. Clarke, P.H. In Evolution in the Microbial World; Cambridge University Press: Cambridge, 1974; pp 183-217. Slater, J.H.; Godwin, D. In Contemporary Microbial Ecology; Ellwood, D.C.; Hedger, J.N.; Latham, J.; Lynch, J.M.; Slater, J.H., Eds., Academic Press: London, 1980; pp 137-160.
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
12
66. 67.
E N H A N C E D B I O D E G R A D A T I O N O F P E S T I C I D E S IN T H E E N V I R O N M E N T
Williams, P.A. In Companion to Microbiology; Bull, A.T.; Meadow, A.T., Eds., Cambridge University Press: Cambridge, 1978; Chapter 4. Furukawa, K.; Chakrabarty, A.M. Appl. Environ. Microbiol. 1982, 44,
68.
619-626.
69. 70. 71. 72. 73.
Slater, J.H. In Current Perspectives in Microbial Ecology; Klug, M. J.; Reddy, C.A., Eds., American Society for Microbiology: Washington, DC; 1984, pp 87-93. Brown, J.W.; Mitchell, J.W. Bot. Gaz. 1948, 109, 314-323. Newman, A.S.; Thomas, J.R. Soil Sci. Soc. Proc. 1949, 160-164. Audus, L.J. J. Sci. Food Agric. 1952, 3, 268-274. Walker, R. L.; Newman, A.S. Appl. Microbiol. 1956, 4, 201-206. Loos, M. A.; Schlosser, I.F.; Mapham, W. R. Soil Biol. Biochem.
74.
Ou, L.T.
75.
Rahman, A.; Atkinson, G.C.; Douglas, J.A. New Zealand J. Agric.
76.
Martin, A.R.; Roeth, F. W. Proc. North Centr. Weed Contr. Conf.
77.
Doersch, R. E.; Harvey, A.G. Proc. North Centr. Weed Contr. Conf.
78.
Gunsolus, J.L.; Fawcett, R. S. Proc. North Centr. Weed Contr. Conf. 1980, 35, 18. Felsot, A.; Maddox, J.V.; Bruce, W. Bull. Environ. Contam.
Downloaded by 79.110.25.167 on January 21, 2017 | http://pubs.acs.org Publication Date: May 3, 1990 | doi: 10.1021/bk-1990-0426.ch001
1979,
1979, 1979, 1979,
79.
11,
377-385.
Soil Sci. 1984, 137, 100-107.
139, 34, 34,
47-49. 51-52. 58-59.
Toxicol. 1981, 26, 781-788.
80. 81. 82. 83.
Felsot, A.S.; Wilson, J.G.; Kuhlman, D.E.; Steffey, K.L. J. Econ. Entomol. 1982, 75, 1098-1103. Read, D.C. Agric. Ecosyst. Environ. 1983, 10, 37-46. Wilde, G.; Mize, T. Environ. Entomol. 1984, 13, 1079-1082. Tollefson, J.J. Solutions 1986, January, 48-55.
RECEIVED January 22, 1990
Racke and Coats; Enhanced Biodegradation of Pesticides in the Environment ACS Symposium Series; American Chemical Society: Washington, DC, 1990.