16 Carbonization and Coke Characterization Harald Tillmanns
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
Sigri ElektrographitGmbH,Werk Griesheim, 6230 Frankfurt (M) 83, Federal Republic of Germany
When the carbonization process is divided into its dis tinct physical and chemical parts and both are considered according to their contributions to the over a l l process, only then is a description of the mechanism possible. Carbon precursors and the products of their carbonization are characterized by various test methods whose objectives can be the control of coking, a description of the carbon or the determination of its suitability for further application. This paper considers the significance of selected common charac terization procedures. The carbonization of natural or i n d u s t r i a l hydrocarbon mixtures annually produces about 2.2 b i l l i o n tons of s o l i d carbon which, depending on the f i n a l heat treatment temperature, i s called coke or graphite. A wide range of premium carbons that are not based d i r e c t l y on coal, produced by p l a s t i c phase pyrolysis of fusible or l i q u i d isotropic hydrocarbons, constitute about one percent (22 m i l l i o n t/a) of the t o t a l s o l i d carbon material produced; included are: % of Total Production Highly orientated carbons (e.g., needle coke)
5
Mosaic structured carbons (e.g., regular coke)
75
Nearly isotropic structured carbon (e.g., binder coke)
13
Other carbon products (e.g., isotropic coke, glassy carbon and carbon fiber)
7
0097-6156/86/0303-0215S08.25/0 © 1986 American Chemical Society
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
PETROLEUM-DERIVED CARBONS
216
Three i n d u s t r i e s produce carbon p r o d u c t s based on the c a r b o n i zation process:
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
• • •
crude o i l and c o a l t a r r e f i n i n g , carbon m a n u f a c t u r i n g , and Fe and A l m e t a l l u r g i c a l i n d u s t r i e s .
I n d u s t r i e s concerned w i t h the c a r b o n i z a t i o n p r o c e s s , the feed s t o c k s , or the p r o d u c t s t h e r e o f are i d e n t i f i e d i n F i g u r e 1. The areas of a c t i v i t y of the d i f f e r e n t i n d u s t r i e s I n t e r a c t , as shown by the o v e r l a p p i n g of the carbon products of common I n t e r e s t . Basically the same t e s t i n g methods are used f o r either studying the carbonization process or characterizing carbon materials. I n s t u d y i n g c a r b o n i z a t i o n , however, the t e s t i n g p r o cedures a r e a p p l i e d under n o n - s t e a d y s t a t e c o n d i t i o n s (so c a l l e d " i n s i t u " measurements) or a r e a p p l i e d under steady s t a t e c o n d i t i o n s w i t h the r e a c t i o n s p l i t i n t o s i n g l e s t e p s by b a t c h type r e a c t i o n systems. There are two b a s i c t e s t i n g s t r a t e g i e s f o r the s e v e r a l o b j e c t i v e s of s t u d y i n g carbon m a t e r i a l s o r the c a r b o n i zation process: First:
Measure p h y s i c a l and c h e m i c a l p r o p e r t i e s of the m a t e r i a l ( f e e d s t o c k , i n t e r m e d i a t e p r o d u c t , or f i n a l product).
Second:
Measure " e m p i r i c a l d a t a " to d e s c r i b e these are strongly dependent on procedure.
Objectives:
D e s c r i b e carbon m a t e r i a l p r o p e r t i e s o r the changes properties during manufacturing. P r e d i c t manufacturing baking, g r a p h i t i z i n g ) .
behavior
(coking,
Predict properties of the product a r t i f a c t s , graphite a r t i f a c t s ) . Predict applications
the m a t e r i a l ; the testing of
calcining,
(coke,
carbon
behavior.
Measurement of p h y s i c a l o r c h e m i c a l p r o p e r t i e s r e s u l t i n r e p r o d u c i b l e d a t a which depend o n l y on the p r o p e r t i e s of the sample i f proper t e s t i n g methods are u s e d . I n c o m p a r i s o n , measurement of " e m p i r i c a l d a t a " i s determined m a i n l y by sample p r e p a r a t i o n or t e s t i n g parameters and no p u r e l y m a t e r i a l - d e p e n d e n t p r o p e r t i e s can be e v a l u a t e d . These p r i n c i p l e s must be c o n s i d e r e d i f r e s u l t s of d i f f e r e n t t e s t i n g methods a r e compared; r e l i a b i l i t y of r e s u l t s and c o n c l u s i o n s a r e c o n s t r a i n e d by the v a l i d i t y of the t e s t i n g method. A g e n e r a l d e s c r i p t i o n of the c a r b o n i z a t i o n p r o c e s s e s u s i n g the c h a r a c t e r i z a t i o n methods f o r w i d e l y used coke p r o d u c t s l i k e b i n d e r c o k e , r e g u l a r c o k e , and needle coke i s g i v e n i n t h i s r e v i e w . The
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
16.
TILLMANNS
217
Carbonization and Coke Characterization
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
p r i m a r y aim o f the a u t h o r i s to p r e s e n t the f o l l o w i n g aspects of carbonization, based on the schematic mesophase- and c o k e - f o r m a t i o n g i v e n i n F i g u r e 2:
t h r e e main model of
1.
d i f f e r e n t i a t i n g c h e m i c a l and p h y s i c a l p r o c e s s e s ;
2.
determining the i n f l u e n c e of q u i n o l i n e s t i t u e n t s i n the c o k i n g f e e d s t o c k s ; and
3.
measuring the c a r b o n i z a t i o n p r o c e s s k i n e t i c s .
insoluble
con
The d i f f e r e n t m a n u f a c t u r i n g t e c h n i q u e s f o r h i g h l y s p e c i a l i z e d carbon p r o d u c t s ( i . e . , i s o t r o p i c c o k e , g l a s s y c a r b o n , and carbon f i b e r ) a r e not covered by t h i s p a p e r . Moreover, a d i s c u s s i o n of the m u l t i p l i c i t y o f t e s t i n g methods used to study the c a r b o n i z a t i o n b e h a v i o r o f d i f f e r e n t f e e d s t o c k s and to c h a r a c t e r i z e d i f f e r e n t coke q u a l i t i e s i s a l s o beyond the scope o f t h i s p r e s e n t a t i o n . P h y s i c a l and Chemical P y r o l y s i s
Processes
Two a s p e c t s o f the p y r o l y s i s p r o c e s s must be d i s t i n g u i s h e d : •
d i s t i l l a t i o n as the p h y s i c a l a s p e c t and
•
t h e r m a l d e c o m p o s i t i o n as the c h e m i c a l
aspect.
The o b j e c t i v e s o f t h e t e s t i n g methods used a r e to s e p a r a t e the p h y s i c a l and c h e m i c a l a s p e c t s and t o d e f i n e p a r t i c u l a r s t a t e s during p y r o l y s i s . A number o f assumptions have to be taken i n t o c o n s i d e r a t i o n i n e v a l u a t i n g the proposed model and u n d e r s t a n d i n g i t s l i m i t a t i o n s and range o f i n t e r p r e t a t i o n s . These a r e : •
The i n i t i a l m a t e r i a l i s a pure hydrocarbon c o n t a i n i n g o n l y hydrogen and carbon o r the heteroatom c o n t e n t i s so s m a l l t h a t i t has no e f f e c t on the d a t a w i t h i n the p r e c i s i o n o f the t e s t i n g method.
•
P y r o l y s i s i s a combination decomposition.
•
C a r b o n i z a t i o n i s pure t h e r m a l d e c o m p o s i t i o n forming a v o l a t i l e , low m o l e c u l a r weight f r a c t i o n and a r e s i d u a l high molecular weight f r a c t i o n by d i s p r o p o r t i o n a t i o n reactions.
•
Thermal d e c o m p o s i t i o n
•
I n c r e a s e d temperature d e c r e a s e s the hydrocarbons d i s t i l l e d i n p y r o l y s i s .
of
distillation
and t h e r m a l
i s dominated by r a d i c a l r e a c t i o n s . H/C r a t i o
of
the
Pure decarbonization is not relevant for hydrocarbon p y r o l y s i s , but may be o f i n t e r e s t f o r h i g h temperature treatment o f s o l i d carbon m a t e r i a l l i k e c o k e .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
PETROLEUM-DERIVED CARBONS
REFINERY COKE,PITCH CARBON
IND
ELECTRODE STEEL
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
F i g u r e 1.
R e l a t i o n o f carbon h a n d l i n g
A) ISOTROPIC RAW MATERIAL B)
IND
ISOTROPIC RAW MATERIAL
>CROSSLINKAGE WITHOUT ORIENTATION CONDENSATION AND CROSSLINKAGE WITH ORIENTATION
fc
industries.
ISOTROPIC MICRO AND MACRO STRUCTURE OF THE COKE .ANISOTROPIC MICRO AND MACRO STRUCTURE OF THE COKE
RAW MATERIAL DISTILLATION OIL
i
CONDENSATION
PRIM.CROSSLINKAGE ψ
CRISTALLOID PITCH (MESOPHASE)
REACTIVITY OF FEEDSTOCK| STRUCTURE OF FEEDSTOCK COKING CONDITIONS MICRO AND MACRO ISOTROP. COKE (GLASSY CARBON)
_ / SEC. OR I ENTAT I ON COAGULATI?N WITH SEC.ORIENTAT ION
AGGLOMERATION AND PART.COAGULAT ION
AGGLOMERATION WITHOUT SEC.OR I ENTAT ION
FIBER STRUCTURE NEEDLE COKE
MOSAIC STRUCTURE REGULAR COKE
MICRO MOSAIC STRUCTURE ISOTROPIC COKE
F i g u r e 2.
Model o f coke f o r m a t i o n .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
16.
TILLMANNS
Carbonization and Coke Characterization
219
Different processes contributing to pyrolysis are l i s t e d In Figure 3. There Is a basic difference between the f i r s t and the subsequent three processes. Distillation removes molecules unchanged i n atomic composition, whereas the other three processes cause a degradation of the molecules. Molecular degradation results i n lower molecular weight fractions (which are v o l a t i l e ) and i n a residual f r a c t i o n consisting of non-volatile constituents and recombined r a d i c a l fragments which form high molecular weight components. A s i g n i f i c a n t difference Is observed i n the composition of the v o l a t i l e products. As i l l u s t r a t e d i n Figure 4, the hydrogen content of the t o t a l v o l a t i l e s i s reduced with increasing d i s t i l l a t i o n temperatures. In contrast, carbonization produces an increase of the hydrogen content of the t o t a l v o l a t i l e products as carbonization progresses. Experimental data shown i n Figure 5 demonstrate how spin concentration and the formation of methane and hydrogen indicate the beginning of carbonization and the resultant s i g n i f i c a n t change i n the H/C r a t i o of the v o l a t i l e matter. A carbonization model results i f i t i s assumed that, apart from d i s t i l l a t i o n , the carbonization processes of the pyrolysis can be described by three parameters: 1.
r e l a t i v e weight loss or residue,
2.
r e l a t i v e carbon content, and
3.
r e l a t i v e hydrogen content.
Using these three parameters the carbonizing materials or the carbonizing part of the i n i t i a l material can be characterized i n any reaction state by a point laying on the triangle area A-B-C i n Figure 6. The t h e o r e t i c a l amount of mesophase (characterized by a hydrogen content of 3.5%) formed i s described by the area of D-H-F for decarbonizing materials and the area of H-F-G-C f o r dehydrogenating materials given i n Figure 7. The Intersection of area A-B-C with area D-H-F and the area H-F-G-C represents the state of 100% mesophase defined by the hydrogen content of 3.5%. The state Is given In Figure 8 by the dotted l i n e between E-F and F-C. Pyrolysis follows a reaction path described schematically i n Figure 8. The starting material ( I ) Is characterized by i t s hydrogen and carbon content and i t s mass i s related to the mass of the i n i t i a l material at the start of carbonization ( I I ) . Distill a t i o n reduces the mass from I to the 100% point ( I I ) ; the reduced carbon and hydrogen content are depicted between I and I I . Pure d i s t i l l a t i o n , which i s not part of the carbonization, i s followed by the thermal degradation II to I I I ; thus weight loss and changes in the hydrogen and carbon content are depicted. At point I I I , theoretical 100% mesophase i s formed, which f i n a l l y i s converted to pure residual carbon (IV). 1
1
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
PETROLEUM-DERIVED CARBONS
Distillation c
n m
^" n r r /
H
c
H
Dehvdroqe nation C H n
» . n C • m-Hf
m
Decor bonisation C H n
^ C
m
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
^
n
.
x
H +xCf m
n-Cf • m-H/
Carbonisation c
n m
*
H
c
n-x m-y* H
c
x y' H
^"C _ + m-y-Hf • C H f n
x
x
y
F i g u r e 3. P o s s i b l e r e a c t i o n s d u r i n g the c a r b o n i z a t i o n .
H
Cn m
C H H s
r
2
Distillation
dT
ϋ
2
d H/C d2 * 0 T
Figure 4.
D i s t i l l a t i o n and c a r b o n i z a t i o n .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Carbonization and Coke Characterization
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
TILLMANNS
F i g u r e 6-
Model of
carbonization.
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
PETROLEUM-DERIVED CARBONS
Max. mesophase yield % residue
!'\ '
•χ.
\
'
Ν N
ι
1
\
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
— *
'G
y F i g u r e 7.
Model of
carbonization.
Max. coke yield/residue
F i g u r e 8.
Model o f
carbonization.
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
16.
TILLMANNS
Carbonization and Coke Characterization
223
Thus the pyrolysis of hydrocarbons can be generally described by the following information provided by the proposed model: • • • • •
H/C r a t i o of the starting material ( I ) , amount of evaporable or d i s t i l l a b l e material (Ι', I ) , H/C r a t i o of the i n i t i a l material at the start of carbon ization (II), t h e o r e t i c a l y i e l d of mesophase (III) i n comparison to residue with hydrogen content of 3.5 %, and carbon y i e l d (IV) based on the i n i t i a l material at the start of carbonization.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
This model characterizes the reaction path of the hydrocarbon pyrolysis by four reaction states (I-II-III-IV), with each reaction state being described by three parameters: • •
r e l a t i v e hydrogen content, r e l a t i v e carbon content, and
•
residue related to the start of carbonization.
Influence of Quinoline Insolubles The model described i n the preceding section did not take into account any factor which might influence the structure of the coke formed. As can be seen i n Figure 9, quinoline insolubles are formed above the temperature where weight loss has begun. In addition to the r e a c t i v i t y of the i s o t r o p i c - l i q u i d phase, quinoline Insoluble p a r t i c l e s within hydrocarbon mixtures are of s i g n i f i c a n t importance i n Influencing the structure of the coke formed during carbonization. Generally, two d i f f e r e n t types of quinoline i n s o l u bles can be distinguished: •
primary or o r i g i n a l type of quinoline insolubles which are only poorly defined o p t i c a l l y and have a low hydrogen content of 1.5%; and
•
secondary or mesophase type of quinoline insolubles which are s p h e r i c a l l y shaped, are characterized by well-known o p t i c a l structure, and have a hydrogen content of 3.5%.
The f i r s t question that arises with respect to the carboni zation reaction i s whether the d i f f e r e n t types of quinoline insolubles cause differences i n the formation rate of quinoline insoluble mesophase. Figure 10 indicates there i s no difference i n the formation rate of primary and secondary types of quinoline insolubles. The formation rate depends not s i g n i f i c a n t l y on the type but strongly on the amount of quinoline insolubles present during carbonization. The data In Figure 10 show that the f o r mation rate at 400 °C Is Increased from 2% Ql/h up to 10% Ql/h i f the quinoline insolubles content i n the s t a r t i n g material i s increased from 5 to 25%. The formation rate of quinoline i n s o l u bles i s related nearly l i n e a r l y to the quinoline insolubles content of the s t a r t i n g material, being (at 400°C i n t h i s experiment) 0.4% per hour per % quinoline insolubles of the starting material.
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
224
PETROLEUM-DERIVED CARBONS
vo
100 total
initial material
50
0
200
1000 °C
£ 100 Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
material
ι ι Ql of the residue
Ql of the initial material
0 F i g u r e 9.
200
600
1000 °C
Weight l o s s and t he Q l f o r m a t i o n .
%QI/h SOAKING AT 400 "C
oORIGINALLY NO Ql A PRIMARY TYPE OF Ql xSECONDARY TYPE OF Ql
12 Pu Ο
Ο
ο tu
0
5 15 25 % ORIGINAL CONTENT OF Q l
F i g u r e 1 0 . F o r m a t i o n r a t e of Q l as a f u n c t i o n o f t h e o r i g i n a l Ql c o n t e n t .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
16.
TILLMANNS
225
Carbonization and Coke Characterization
However, as shown i n F i g u r e 1 1 , the type o f q u i n o l i n e i n s o l u b l e s s t r o n g l y i n f l u e n c e the s t r u c t u r e o f the coke formed. Primary q u i n o l i n e i n s o l u b l e s l e a d to an i s o t r o p i c coke w i t h a v e r y h i g h coefficient o f t h e r m a l e x p a n s i o n (16x10 ~ 6 / K ) . i contrast, secondary q u i n o l i n e i n s o l u b l e s a l s o produce n e a r l y i s o t r o p i c c o k e , but they h a r d l y a f f e c t the c o e f f i c i e n t of thermal expansion n
(0% s e c . QI = 3.5x10 ~ 6 / K ; 20% s e c . QI = 4.1x10 ~6/κ).
There e x i s t s a wide range o f o t h e r v a r i a b l e s which a f f e c t coke s t r u c t u r e ( e . g . , s o l u b l e r e a c t i v i t y , c o k i n g c o n d i t i o n s , and a d d i t i v e s ) which a r e not d i s c u s s e d h e r e . However, f o r a l l t e c h n i c a l h y d r o c a r b o n s , and e s p e c i a l l y f o r the c o k i n g of c o a l based t a r s and p i t c h e s , q u i n o l i n e i n s o l u b l e s have the dominant i n f l u e n c e on t h e structure.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
K i n e t i c s of C a r b o n i z a t i o n A number of methods a r e used to e v a l u a t e a d a t a s e t to d e s c r i b e the k i n e t i c s o f c a r b o n i z a t i o n , such as d e t e r m i n i n g the t e m p e r a t u r e / t i m e dependence o f v i s c o s i t y , q u i n o l i n e i n s o l u b l e s f o r m a t i o n , o r weight loss. T h e r m o g r a v i m e t r i c a n a l y s i s can f o l l o w weight l o s s d u r i n g hydrocarbon p y r o l y s i s . A l a b o r a t o r y thermobalance w i t h a sample s i z e o f 100 mg to 1 g g i v e s v e r y s i m i l a r r e s u l t s f o r d i f f e r e n t types o f p i t c h e s as shown i n F i g u r e 12 (KS s o f t e n i n g p o i n t : 50° and 90°C). But k i n e t i c d e t e r m i n a t i o n s based on u s i n g the A r r h e n i u s e q u a t i o n t o meet the weight l o s s c u r v e must r e c o g n i z e t h a t one b a s i c assumption of t h i s type of c a l c u l a t i o n i s not met. That i s the a s s u m p t i o n o f a homogeneous r e a c t i o n o f the c a r b o n i z a t i o n p r o c e s s from room temperature up to the f i n a l s t a t e . In r e a l i t y , I t i s w e l l known t h a t t h e r e I s a d r a s t i c change i n the c o m p o s i t i o n o f t h e r e s i d u a l m a t e r i a l which p r o b a b l y m o d i f i e s the r e a c t i o n o r d e r , the frequency f a c t o r , and the a c t i v a t i o n e n e r g y . I n c o n t r a s t to t h i s , the technique r e p o r t e d h e r e i n uses the weight l o s s o f p i t c h d u r i n g heat treatment to e v a l u a t e a s e t of apparent k i n e t i c d a t a ( r e a c t i o n o r d e r , frequency f a c t o r , and a c t i v a t i o n e n e r g y ) , t a k i n g i n t o account t h a t the c o m p o s i t i o n and n a t u r e of the r e a c t a n t s a r e v a r y i n g . The e x p e r i m e n t a l way to s o l v e the a n a l y t i c a l problem i s to heat up the sample to a d e f i n e d weight l o s s a t d i f f e r e n t h e a t i n g r a t e s (assuming t h a t the u l t i m a t e c o m p o s i t i o n o f the r e s i d u e i s the same) and observe t h a t the p o i n t o f e q u i v a l e n t weight l o s s I s reached a t d i f f e r e n t temperature l e v e l s . At t h i s p o i n t the temper a t u r e treatment i s changed to i s o t h e r m a l c o n d i t i o n s and one f o l l o w s the f u r t h e r weight l o s s . T h i s t e c h n i q u e p e r m i t s measuring weight l o s s r a t e at d i f f e r e n t r e a c t i o n temperatures. The e x p e r i m e n t a l procedure I s i l l u s t r a t e d s c h e m a t i c a l l y i n F i g u r e 1 3 . The r e s u l t i n g weight l o s s curves u s i n g t h i s e x p e r i m e n t a l t e c h nique a r e p l o t t e d f o r d i f f e r e n t i s o t h e r m a l treatment temperatures i n F i g u r e 1 4 . The r a t e of weight l o s s v e r s u s the r e s i d u e produces a l i n e a r r e l a t i o n . The l i n e a r l i n e s f o r the i s o t h e r m a l weight l o s s c u r v e s a r e s h i f t e d a l o n g t h e o v e r a l l weight l o s s c u r v e with i n c r e a s i n g temperature. I n the b e g i n n i n g the s l o p e s of the l i n e s are v e r y s i m i l a r ; above 400°C the s l o p e s of the l i n e s d e c r e a s e .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
PETROLEUM-DERIVED CARBONS
T E M P E R A T U R E °C
Figure 12.
Thermogram o f p i t c h .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
TILLMAN Ν S
Carbonization and Coke Characterization
RELTIME % Figure 13.
'
Scheme o f e v a l u a t i o n .
I
ι
logdOO-R) F i g u r e 14.
Rate o f weight l o s s v s . r e s i d u e .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
PETROLEUM-DERIVED CARBONS
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
228
These thermobalance d a t a were used to c a l c u l a t e a s e t o f apparent k i n e t i c d a t a f o r each s t a t e o f weight l o s s . The A r r h e n i u s p l o t s ( F i g u r e 15) show an i n c r e a s e o f the s l o p e w i t h i n c r e a s i n g r e l a t i v e weight l o s s up t o 76.7%; a t 91.4% r e l a t i v e weight l o s s t h e slope i s decreased. The r e s u l t i n g apparent k i n e t i c d a t a a r e g i v e n I n F i g u r e 16. The f i r s t c o n c l u s i o n i s , as e x p e c t e d , t h a t c a r b o n i z a t i o n i s not a homogeneous p r o c e s s d e s c r i b e d by one s e t o f k i n e t i c d a t a . The r e a c t i o n o r d e r i s n e a r l y c o n s t a n t a t about 3 up to 400°C and I s determined by the e x p e r i m e n t a l p r o c e d u r e . The a c t i v a t i o n energy i n c r e a s e s l i n e a r l y w i t h weight l o s s up t o 75%. A c t i v a t i o n e n e r g i e s range from 30 t o 600 K G / M o l . The maximum a c t i v a t i o n energy i s 2 t o 2.5 times t h e e v a p o r a t i o n energy o f a r o m a t i c compounds w i t h a m o l e c u l a r weight o f 700-800. The h i g h l e v e l o f a c t i v a t i o n energy i s c e r t a i n l y caused p a r t l y by the s t r o n g I n t e r a c t i o n o f the aromatic molecules i n the i s o t r o p i c phase which u l t i m a t e l y o r i e n t a t e and form t h e mesophase. The frequency f a c t o r also I n c r e a s e s w i t h weight l o s s , r e a c h i n g a peak a t about 75% weight l o s s ; the subsequent d e c r e a s e may be r e l a t e d to s o l i d i f i c a t i o n o f the r e s i d u e . T h i s d r a s t i c change i n the phase o f the r e s i d u e must i n f l u e n c e t h e apparent k i n e t i c d a t a s i g n i f i c a n t l y . T h i s m a t h e m a t i c a l model d e s c r i b i n g the inhomogeneous p y r o l y s i s r e a c t i o n s by a s e t o f apparent k i n e t i c d a t a (which a r e changing w i t h the p r o g r e s s o f the p y r o l y s i s ) s h o u l d be understood as a f i r s t attempt to s e t up a mechanism to p r e d i c t p y r o l y s i s . The t a r g e t o f the a p p l i c a t i o n o f t h i s model would be to e v a l u a t e the i n f l u e n c e o f temperature programs on b a k i n g b e h a v i o r . Coke C h a r a c t e r i z a t i o n A l l the many methods used to c h a r a c t e r i z e coke samples cannot be d i s c u s s e d w i t h i n the scope o f t h i s p a p e r . F o r b r e v i t y and s i m plicity, this discussion on coke q u a l i t y focuses on t h r e e parameters : • • •
hydrogen c o n t e n t o f c a l c i n e d coke to c h a r a c t e r i z e the calcination severity, m e c h a n i c a l p r o p e r t i e s o f coke g r a i n s , and I r r e v e r s i b l e d i l a t a t i o n o f carbon a r t i f a c t s caused by coke puf f i n g .
Hydrogen c o n t e n t o f c a l c i n e d coke i s o f t e n used to c o n t r o l commercial coke c a l c i n i n g s e v e r i t y . I t I s w e l l known t h a t o v e r a l l the hydrogen c o n t e n t I s r e l a t e d to f i n a l c a l c i n i n g t e m p e r a t u r e . But d e t a i l e d a n a l y s e s show t h a t the hydrogen c o n t e n t a l o n e cannot be used to deduce the f i n a l heat treatment f o r cokes o f d i f f e r e n t quality. B e s i d e s the f i n a l t e m p e r a t u r e , t h e r e i s a l s o an i n f l u e n c e o f the r e s i d e n c e time and the s u l f u r c o n t e n t o f the green c o k e . Residence time i s o f l e s s e r s i g n i f i c a n c e f o r t e c h n i c a l c a l c i n i n g p r o c e s s e s because a s t a t e c l o s e to e q u i l i b r i u m i s r e a c h e d . The i n f l u e n c e o f green coke s u l f u r content i s o f much g r e a t e r s i g n i f i cance; i t can cause misjudgments w i t h r e s p e c t t o the r e q u i r e d c a l c i n i n g temperature i f d i f f e r e n t q u a l i t y cokes a r e compared.
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Carbonization and Coke Characterization
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
TILLMANNS
0
1 2 10~ TEMPERATURE, 1/T Κ 3
Figure 15.
0
I
1
300 F i g u r e 16.
Arrhenius
1
plot.
1
400 500 TEMPERATURE °C Kinetic data.
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
230
PETROLEUM-DERIVED CARBONS
As shown i n Figure 17, coke with a 1.5% sulfur l e v e l has the highest rate of hydrogen release, whereas the coke samples with 0.6% and 0.2% sulfur have a much smaller rate of hydrogen release. Thus, the sulfur present i n green coke can result i n higher hydrogen release during calcination; i f the hydrogen content i s solely used as the controlling parameter, over calcination of the coke could occur. Another important property of commercial coke i s the crushing strength of coke grains as an indicator of their handling sensit i v i t y (but not the strength of the f i n a l carbon a r t i f a c t ) . There i s a good c o r r e l a t i o n between the c o e f f i c i e n t of thermal expansion and the crushing strength (Figure 18). A second factor influencing the crushing strength i s the bulk density of the coke grains. The importance of the crushing strength i n respect to the c o e f f i c i e n t of thermal expansion w i l l increase i n the future. S e n s i t i v i t y of cokes of different quality to handling during their manufacture, their transportation and manufacture of the carbon products therefore may be a c r i t e r i o n for selection.
Figure 17.
Hydrogen release as function of temperature
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
16.
231
Carbonization and Coke Characterization
TILLMANNS
One of the most d i s c u s s e d items i n r e c e n t times i s the p u f f i n g b e h a v i o r of c o k e , e s p e c i a l l y o f c o a l t a r based needle c o k e . The d i l a t a t i o n b e h a v i o r o f cokes o f d i f f e r e n t q u a l i t y , as measured d u r i n g g r a p h i t i z a t i o n o f e l e c t r o d e s , a r e shown i n F i g u r e 1 9 . O v e r all, t h e c u r v e s c o r r e s p o n d to the p u f f i n g c u r v e s measured i n l a b o r a t o r y equipment. One f a c e t r e l a t e d to p u f f i n g t h a t i s seldom d i s c u s s e d i s the f a c t t h a t b e s i d e s the s t r o n g e l o n g a t i o n c a l l e d p u f f i n g , a v e r y s t r o n g s h r i n k a g e i n the f i n a l s t a t e o f g r a p h i t i z a t i o n a l s o takes p l a c e . I n s o f a r as the i n t e r n a l s t r e s s / s t r a i n s i t u a t i o n i s c o n c e r n e d , t h i s l a t t e r phenomenon may cause problems s i m i l a r to ( o r worse than) those caused by p u f f i n g . W h i l e t h e r e a r e many a p p l i c a b l e methods r e p o r t e d i n the l i t e r a t u r e , t h i s paper was r e s t r i c t e d t o a s u b j e c t i v e s e l e c t i o n o f t e s t i n g procedures i n the hope t h a t i t would s t i m u l a t e the d e v e l o p ment o f b e t t e r a n a l y t i c a l t e c h n i q u e s , r e c o g n i z i n g t h a t t h e r e i s always a l i m i t a t i o n of v a l i d i t y f o r each method and e v a l u a t i o n o f results. A n a l y s i s o f carbon m a t e r i a l s and e s p e c i a l l y o f the c a r b o n i z a t i o n p r o c e s s w i l l never l o s e i t s a t t r a c t i o n as a f a s c i n a t i n g a p p l i c a t i o n of the a r t o f b l a c k m a g i c .
1 00
I Ι Ο ζ u tt h
80
L
60
L
40
L
20
L
W
(9 Ζ M
I D
(0
α ο
0 6 CTE
Figure 18.
8 CVOL.5
10
12
10E-6/K
C o r r e l a t i o n o f c r u s h s t r e n g t h and t h e r m a l e x p a n s i o n .
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
232
PETROLEUM-DERIVED CARBONS
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
τ
0
30
60
90 REL .
Figure 19.
Γ
1 20
GRAPHIΤIΖ.
1 50
1 80
PROGRESS
D i l a t a t i o n curves of e l e c t r o d e s .
BIBLIOGRAPHY Review Papers: E. Fitzer, K. Mueller, W. Schaefer, "Chem. and Phys. of Carbon", M. Dekker, Inc. 1970, Vol. 7, p. 237. K. J . Huettinger, Habilitationsschrift, Universitaet Karlsruhe, Inst. Chem. Tech. 1973. E. Fitzer, 9th World Petroleum Congress, Tokyo 1975, review paper no. 12. E. Fitzer, H. Tillmanns, 2nd Iranian Congress on Chemical Engineering, Teheran 1975. H. Marsh, Ph. L. Walker, J r . , "Chem. and Phys. of Carbon", M. Dekker, Inc. 1980, Vol. 15. H. A. Kremer, Chemistry and Industry, London No. 18, 1982, p. 702. Carbonization, Mesophase and Quinoline Insoluble: J.
E. Zimmer, J . L . White, Proc. 12th Bienn. Conf. on Carbon, Pittsburgh 1975, p. 223. H. Tillmanns, H. Pauls, G. Pietzka, Abstr. Carbon 76, Baden-Baden 1976, p. 374. H. Tillmanns, G. Pietzka, Abstr. 13th Bienn. Conf. on Carbon, Irvine 1977, p. 332. G. R. Romovacek, Proc. AIME, 1977, p. 275. H. Pauls, G. Pietzka, Fuel, 1978, Vol. 57, p. 171. J . W. Stadelhofer, Fuel, 1980, Vol. 59, p. 360. A. J . Perotta, R. M. Henry, J . D. Bacha, E. W. Albaugh, High Temp. High Press. 13, 1981, p. 159. H. Tillmanns, Abstr. 15th Bienn. Conf. on Carbon, Philadelphia 1981, p. 142.
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
16. TILLMANNS
Carbonization and Coke Characterization
H.
J.
A. Kremer, S. Cukier, Proc. Roy. Microscop. Soc., 1981, University of York. L. White, J . F. Tellers, Jour. of Appl. Polym. S c i . , Appl. Polym. Symp. No. 33, p. 137. I . Romey, H. Glaser, R. Marrett, H. Tillmanns, 27. DGMK Haupttagung 1982, Aachen, p. 172. H. Tillmanns, Proc. 6th Intern. Carbon and Graphite Conf., London 1982, p. 362.
Downloaded by UNIV LAVAL on July 13, 2016 | http://pubs.acs.org Publication Date: April 14, 1986 | doi: 10.1021/bk-1986-0303.ch016
Thermobalance Analysis: E. C. C. A. H. C. J. K. K. K. K. T.
S. Freeman, B. Carroll, J . Phys. Chem., 1958, Vol. 62, p. 394. D. Doyle, et al., J . Appl. Polym. Sci., 1961, p. 285. D. Doyle, et al., J . Appl. Polym. Sci., 1962, p. 639. W. Coats, et al., Nature, 1964, Vol. 201, p. 68. L. Friedman, J. Appl. Polym. S c i . , 1964, p. 183. D. Doyle, Nature, 1965, Vol. 207, p. 290. Zsako, J . Phys. Chem., 1968, Vol. 72, p. 2406. J . Huettinger, Erdoel und Kohle, 1970, Bd. 9, p. 559. J . Huettinger, Bitumen, Teere und Asphalte, 1970, p. 528. J . Huettinger, Bitumen, Teere und Asphalte, 1970, p. 487. J . Huettinger, Chem. Ing. Tech., 1970, Bd. 42, p. 812. Ozawa, J. of Therm. Analysis, 1976, Vol. 9, p. 217.
RECEIVED December 9, 1985
Bacha et al.; Petroleum-Derived Carbons ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
233