pH-Dependent Adsorption Release of Doxorubicin on MamC

14 mins ago - New biomimetic magnetite nanoparticles (hereafter BMNPs) with sizes larger than most common superparamagnetic nanoparticles were ...
0 downloads 0 Views 6MB Size
Article Cite This: Langmuir XXXX, XXX, XXX−XXX

pubs.acs.org/Langmuir

pH-Dependent Adsorption Release of Doxorubicin on MamCBiomimetic Magnetite Nanoparticles Germań García Rubia,† Ana Peigneux,† Ylenia Jabalera,† Javier Puerma,† Francesca Oltolina,§ ́ ez Morales,∥ Maria Prat,§ Kerstin Elert,‡ Donato Colangelo,§ Jaime Gom ,† and Concepcion Jimenez-Lopez*

Langmuir Downloaded from pubs.acs.org by KAOHSIUNG MEDICAL UNIV on 11/08/18. For personal use only.



Departamento de Microbiología, and ‡Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18002 Granada, Spain § Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy ∥ Laboratorio de Estudios Cristalográficos, IACT (CSIC-Universidad de Granada), Avda. Las Palmeras, 4, 18100 Armilla, Spain ABSTRACT: New biomimetic magnetite nanoparticles (hereafter BMNPs) with sizes larger than most common superparamagnetic nanoparticles were produced in the presence of the recombinant MamC protein from Magnetococcus marinus MC-1 and functionalized with doxorubicin (DOXO) intended as potential drug nanocarriers. Unlike inorganic magnetite nanoparticles, in BMNPs the MamC protein controls their size and morphology, providing them with magnetic properties consistent with a large magnetic moment per particle; moreover, it provides the nanoparticles with novel surface properties. BMNPs display the isoelectric point at pH 4.4, being strongly negatively charged at physiological pH (pH 7.4). This allows both (i) their functionalization with DOXO, which is positively charged at pH 7.4, and (ii) the stability of the DOXO−surface bond and DOXO release to be pH dependent and governed by electrostatic interactions. DOXO adsorption follows a Langmuir−Freundlich model, and the coupling of DOXO to BMNPs (binary biomimetic nanoparticles) is very stable at physiological pH (maximum release of 5% of the drug adsorbed). Conversely, when pH decreases, these electrostatic interactions weaken, and at pH 5, DOXO is released up to ∼35% of the amount initially adsorbed. The DOXO−BMNPs display cytotoxicity on the GTL-16 human gastric carcinoma cell line in a dose-dependent manner, reaching about ∼70% of mortality at the maximum amount tested, while the nonloaded BMNPs are fully cytocompatible. The present data suggest that BMNPs could be useful as potential drug nanocarriers with a drug adsorptionrelease governed by changes in local pH values.



INTRODUCTION

derived from the fact that conventional synthesis of magnetic nanostructured materials often requires toxic reagents.1 Moreover, the superparamagnetic nanoparticles resulting from these synthetic procedures are relatively small ( 1000 nm (Figure 7) and, therefore, they could not undergo EPR effect. However, there is still a population with a size ≤150 nm (dots within the colored area in the figure) that could reach the H

DOI: 10.1021/acs.langmuir.8b03109 Langmuir XXXX, XXX, XXX−XXX

Article

Langmuir

Figure 6. Hemolytic response of human red blood cells (RBCs) incubated with serial dilutions of BMNPs, sterilized by UV (A) or by autoclave (B), PBS, or distilled water for 24 h at room temperature. Top panels, percentage of hemolysis in comparison with the positive (distilled water) and negative (PBS) controls, assessed by the absorbance of supernatant at 540 nm wavelength. Results are shown as means ± standard error of the mean (SEM). Bottom panels, representative images of RBC mixtures with PBS, BMNP serial dilutions, and distilled water after 24 h of incubation followed by centrifugation. Results in line with were observed also with untreated BMNPs. Pictures of the blood smears prepared from ethylenediamine tetraacetic acid-anticoagulated blood incubated in PBS (C), with BMNPs, sterilized by UV (D, F) or by autoclave (E, G), 10 μg/ mL (D, E), or 100 μg/mL. Scale bars in Figures is 50 μm.

tumor site by EPR effect.48 Nevertheless, EPR effect by itself might not be enough in this case to ensure a correct targeting of the tumor site, and other ways of cell targeting such as additional coupling of the BMNPs with monoclonal antibodies combined with active guidance of the BMNPs to the target site by means of the application of an external magnetic field should be explored in the future to increase the efficiency of the targeting. The slowest sedimentation occurred in the samples containing nonloaded BMNPs (0.0192 mm/s), and the fastest sedimentation occurred in DOXO−BMNPs, 0.038 mm/s. These results are in accordance with the data of hydrodynamic

radius, in which it was observed that the latter binary biomimetic nanoparticles exhibited the highest percentage of aggregates. Colloidal stability of these binary nanoparticles, nevertheless, should be improved in the future. As a summary, there are a number of findings that make BMNPs unique and good candidates as potential drug nanocarriers for targeted drug delivery, although colloidal stability still needs to be improved. The advantages of the biomimetic nanoparticles of the present study are: (1) nonloaded BMNPs are cytocompatible, but they become cytotoxic when coupled with DOXO; (2) they exhibit a large magnetic moment per particle; (3) DOXO adsorption and I

DOI: 10.1021/acs.langmuir.8b03109 Langmuir XXXX, XXX, XXX−XXX

Article

Langmuir

Figure 7. Hydrodynamic size of the inorganic magnetic nanoparticles (MNP), biomimetic magnetic nanoparticles (BMNPs), and DOXO− BMNPs. The percentage of nanoparticles of a certain size for the different pH values measured is plotted. Colored area marks the size range of hydrodynamic radius ≤ 150 nm.

ORCID

release can be controlled efficiently by changes in pH, like those that naturally occur when entering from the blood stream to the tumor tissues; (4) MamC provides the surface of the BMNPs with functional groups that allow coupling with other molecules; and (5) the DOXO−BMNPs nanoassembly is quite stable at physiological pH values.

Concepcion Jimenez-Lopez: 0000-0002-5645-2079 Notes

The authors declare no competing financial interest.





ACKNOWLEDGMENTS Thanks go to Ma̲ Antonia Fernandez Vivas and Rafael LopezMoreno for technical assistance in the laboratory and data analysis, Angel Delgado Mora for assistance in electrophoretic mobility measurements, and to the CIC personnel of the University of Granada for technical assistance in the TEM. Thanks go to Nicolás López Baeza for some of the electrophoretic mobility measurements. C.J.-L. wants to thank projects CGL2013-46612 and CGL2016-76723 from the Ministerio de Economiá y Competitividad from SPAIN and Fondo Europeo de Desarrollo Regional (FEDER) for ́ financial support and Unidad Cientifica de Excelencia UCEPP2016-05 of the University of Granada. This research is original and had a financial support also from the Università del Piemonte Orientale “A. Avogadro”, Italy. We also wish to thank the Senior Editor of the Journal, Dr Zhan Chen, and three anonymous reviewers for their suggestions that greatly improved the present manuscript.

CONCLUSIONS The potential role of BMNPs produced in the presence of MamC as drug nanocarriers has been assessed for the first time. The BMNPs produced in the present study are pHsensitive nanocarriers in which DOXO adsorption is mostly driven by electrostatic interactions between positively charged DOXO amino groups and negatively charged acidic residues of the MamC that is attached to the surface of the crystal. By contrast, desorption of DOXO from the DOXO−BMNPs nanoassembly is achieved by weakening this bond as pH decreases and approaches the iep of the BMNPs (iep 4.4). The adsorption process follows a Langmuir−Freundlich model, which shows that the surface of the magnetite is energetically heterogeneous and displays positive cooperativity. The BMNPs coupled with DOXO (DOXO−BMNPs) are stable at physiological pH with maximum releases of 5% of the initial DOXO adsorbed, while the desorption process is efficient since about 35% of the adsorbed drug was released in just 4 h at pH 5. Moreover, these DOXO−BMNPs nanoassemblies are cytotoxic for the GTL-16 carcinoma cell line, in which they induced more than 70% mortality. This toxicity was dependent on the DOXO adsorbed to the BMNPs since nonfunctionalized nanoparticles were highly cytocompatible and hemocompatible when in the presence of red blood cells. All together, these data indicate that BMNPs are unique magnetite nanoparticles with novel properties acquired thanks to their interaction with the protein MamC and, therefore, their potential as nanocarriers should be further explored in future studies.





REFERENCES

(1) Alphandéry, E.; Faure, S.; Raison, L.; Duguet, E.; Howse, P. A.; Bazylinski, D. A. Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J. Phys. Chem. C 2011, 115, 18−22. (2) Prozorov, T.; Bazylinski, D. A.; Mallapragada, S. K.; Prozorov, R. Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review. Mater. Sci. Eng. R 2013, 74, 133−172. (3) Mou, X.; Ali, Z.; Li, S.; He, N. Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol. 2015, 15, 54−62. (4) Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M. A. Iron oxide nanoparticles for magnetically-guided and magneticallyresponsive drug delivery. Int. J. Mol. Sci. 2015, 16, 8070−8101. (5) Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885−2911.

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Phone: (+34) 958 249833. J

DOI: 10.1021/acs.langmuir.8b03109 Langmuir XXXX, XXX, XXX−XXX

Article

Langmuir (6) Bazylinski, D. A.; Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004, 2, 217−230. (7) Sun, J.; Tang, T.; Duan, J.; Xu, P.-X.; Wang, Z.; Zhang, Y.; Wu, L.; Li, Y. Biocompatibility of Bacterial Magnetosomes: Acute Toxicity, Immunotoxicity and Cytotoxicity. Nanotoxicology 2010, 4, 271−283. (8) Amemiya, Y.; Arakaki, A.; Staniland, S. S.; Tanaka, T.; Matsunaga, T. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 2007, 28, 5381− 5389. (9) Kolhatkar, A. G.; Jamison, A. C.; Litvinov, D.; Willson, R. C.; Lee, T. R. Tuning the Magnetic Properties of Nanoparticles. Int. J. Mol. Sci. 2013, 14, 15977−16009. (10) Zhang, F.; Zhao, L.; Wang, S.; Yang, J.; Lu, G.; Luo, N.; Gao, X.; Ma, G.; Xie, H. Y.; Wei, W. Construction of a biomimetic magnetosome and its application as a siRNA carrier for highperformance anticancer therapy. Adv. Funct. Mater. 2017, 28, No. 1703326. (11) Timko, M.; Dzarova, A.; Kovac, J.; Skumiel, A.; Jozefczak, A.; Hornowski, T.; Gojzewski, H.; Zavisova, V.; Koneracka, M.; Sprincova, A.; Strbak, O.; Kopcansky, P.; Tomasovicova, N. Magnetic properties and heating effect in bacterial magnetic nanoparticles. J. Magn. Magn. Mater. 2009, 321, 1521−1524. (12) Boucher, M.; Geffroy, F.; Prévéral, S.; Bellanger, L.; Selingue, E.; Adryanczyk-Perrier, G.; Péan, M.; Lefèvre, C. T.; Pignol, D.; Ginet, N.; Mériaux, S. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 2017, 121, 167−178. (13) Prozorov, T.; Mallapragada, S. K.; Narasimhan, B.; Wang, L.; Palo, P.; Nilsen-Hamilton, M.; Williams, T. J.; Bazylinski, D. A.; Prozorov, R.; Canfield, P. C. Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 2007, 17, 951−957. (14) Arakaki, A.; Webb, J.; Matsunaga, T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 2003, 278, 8745−8750. (15) Valverde-Tercedor, C.; Montalbán-López, M.; Perez-Gonzalez, T.; Sanchez-Quesada, M. S.; Prozorov, T.; Pineda-Molina, E.; Fernandez-Vivas, M. A.; Rodriguez-Navarro, A. B.; Trubitsyn, D.; Bazylinski, D. A.; Jimenez-Lopez, C. Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1. Appl. Microbiol. Biotechnol. 2015, 99, 5109− 5121. (16) Bellocq, A.; Suberville, S.; Philippe, C.; Bertrand, F.; Perez, J.; Fouqueray, B.; Cherqui, G.; Baud, L. Low environmental pH is responsible for the induction of nitric-oxide synthase in macrophages. Evidence for involvement of nuclear factor-kappaB activation. J. Biol. Chem. 1998, 273, 5086−5092. (17) Guo, M.; Yan, Y.; Zhang, H.; Yan, H.; Cao, Y.; Liu, K.; Wan, S.; Huang, J.; Yue, W. Magnetic and pH-responsive nanocarriers with multilayer core−shell architecture for anticancer drug delivery. J. Mater. Chem. 2008, 18, 5104−5112. (18) Rodríguez-Ruiz, I.; Delgado-López, J. M.; Durán-Olivencia, M. A.; Lafisco, M.; Tampieri, A.; Colangelo, D.; Prat, M.; GómezMorales, J. pH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir 2013, 29, 8213−8221. (19) Curry, D.; Cameron, A.; MacDonald, B.; Nganou, C.; Scheller, H.; Marsh, J.; Beale, S.; Lu, M.; Shan, Z.; Kaliaperumal, R.; Xu, H.; Servos, M.; Bennett, C.; MacQuarrie, S.; Oakes, K. D.; Mkandawire, M.; Zhang, X. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. Nanoscale 2015, 7, 19611−19619. (20) Wu, S.; Zhao, X.; Li, Y.; Du, Q.; Sun, J.; Wang, Y.; Wang, X.; Xia, Y.; Wang, Z.; Xia, L. Adsorption properties of doxorubicin hydrochloride onto graphene oxide: equilibrium, kinetic and thermodynamic studies. Materials 2013, 6, 2026−2042. (21) Beretta, G. L.; Zunino, F. Molecular mechanisms of anthracycline activity. Top. Curr. Chem. 2008, 283, 1−19.

(22) Thorn, C. F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T. E.; Altman, R. B. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics 2011, 21, 440−446. (23) Kremer, L. C. M.; van Dalen, E. C.; Offringa, M.; Voûte, P. A. Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann. Oncol. 2002, 13, 503− 512. (24) Longhi, A.; Ferrari, S.; Bacci, G.; Specchia, S. Long-term followup of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anticancer Drugs 2007, 18, 737−744. (25) Martin-Ramos, J. D. Using XPowder: A Software Package for Powder X-ray Diffraction Analysis, D.L. GR 1001/04, 2004. (26) Von Smoluchowski, M. In Handbuch der Elektrizitt und des Magnetismus; Greatz, L., Ed.; J.A. Barth: Leipzig, Germany, 1921; Vol. 2, p 366. (27) Brunauer, S. P.; Emmett, H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309−319. (28) Beijnen, J. H.; et al. Aspects of the degradation kinetics of doxorubicin in aqueous solution. Int. J. Pharm. 1986, 32, 123−131. (29) Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361−1403. (30) Rill, C.; Kolar, Z. I.; Kickelbick, G.; Wolterbeek, H. T.; Peters, J. A. Kinetics and thermodynamics of adsorption on hydroxyapatite of the [160Tb]terbium complexes of the bone-targeting ligands DOTP and BPPED. Langmuir 2009, 25, 2294−2301. (31) Turiel, E.; Perez-Conde, C.; Martin-Esteban, A. Assessment of the cross-reactivity and binding sites characterization of a propazineimprinted polymer using the Langmuir-Freundlich isotherm. Analyst 2003, 128, 137−141. (32) Fornaguera, C.; Calderó, G.; Mitjans, M.; Vinardell, M. P.; Solans, C.; Vauthier, C. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale 2015, 7, 6045− 6058. (33) Tombácz, E.; Farkas, K.; Foldesi, I.; Szekeres, M.; Illés, E.; Tóth, I. Y.; Nesztor, D.; Szabó, T. Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media. Interface Focus 2016, 6, No. 20160068. (34) Szekeres, M.; Tóth, I.; Illés, E.; Hajdú, A.; Zupkó, I.; Farkas, K.; Oszlánczi, G.; Tiszlavicz, L.; Tombácz, E. Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 2013, 14, 14550−14574. (35) Iafisco, M.; Delgado-Lopez, J. M.; Varoni, E. M.; Tampieri, A.; Rimondini, L.; Gomez-Morales, J.; Prat, M. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 2013, 9, 3834−3844. (36) Jain, S.; Shah, J.; Dhakate, S. R.; Gupta, G.; Sharma, C.; Kotnala, R. K. Environment-friendly mesoporous magnetite nanoparticles-based hydroelectric cell. J. Phys. Chem. C 2018, 122, 5908− 5916. (37) Ma, J.; Wang, L.; Wu, Y.; Dong, X.; Ma, Q.; Qiao, C.; Zhang, Q.; Zhang, J. Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Mater. Trans. 2014, 55, 1900−1902. (38) Sundman, A.; Byrne, J. M.; Bauer, I.; Menguy, N.; Kappler, A. Interactions between magnetite and humic substances: redox reactions and dissolution processes. Geochem. Trans. 2017, 18, No. 6. (39) Sarno, M.; Ponticorvo, E.; Cirillo, C. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors. J. Phys. Chem. Solids 2016, 99, 138−147. (40) Semko, L. S.; Khutornoi, S. V.; Abramov, N. V.; Gorbik, P. P. Synthesis, structure, and properties of large surface area Fe3O4/SiO2 Nanocomposites. Inorg. Mater. 2012, 48, 374−381. (41) Nudelman, H.; Valverde-Tercedor, C.; Kolusheva, S.; Perez Gonzalez, T.; Widdrat, M.; Grimberg, N.; Levi, H.; Nelkenbaum, O.; Davidov, G.; Faivre, D.; Jimenez-Lopez, C.; Zarivach, R. StructureK

DOI: 10.1021/acs.langmuir.8b03109 Langmuir XXXX, XXX, XXX−XXX

Article

Langmuir function studies of the magnetite-biomineralizing magnetosomeassociated protein MamC. J. Struct. Biol. 2016, 194, 244−252. (42) Lopez-Moreno, R.; Fernández-Vivas, A.; Valverde-Tercedor, C.; Azuaga Fortes, A. I.; Casares Atienza, S.; Rodriguez-Navarro, A. B.; Zarivach, R.; Jimenez-Lopez, C. Magnetite nanoparticles biomineralization in the presence of the magnetosome membrane protein MamC: Effect of protein aggregation and protein structure on magnetite formation. Cryst. Growth Des. 2017, 17, 1620−1629. (43) Iafisco, M.; Drouet, C.; Adamiano, A.; Pascaud, P.; Montesi, M.; Panseri, S.; Sarda, S.; Tampieri, A. Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin. J. Mater. Chem. B 2016, 4, 57−70. (44) Sun, Z. X.; Su, F. W.; Forsling, W.; Samskog, P. O. Surface Characteristics of Magnetite in Aqueous Suspension. J. Colloid Interface Sci. 1998, 197, 151−159. (45) Kievit, F. M.; Wang, F. Y.; Fang, C.; Mok, H.; Wang, K.; Silber, J. R.; Ellenbogen, R. G.; Zhang, M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Controlled Release 2011, 152, 76−83. (46) Agrawal, P.; Barthwal, S. K.; Barthwal, R. Studies on selfaggregation of anthracycline drugs by restrained molecular dynamics approach using nuclear magnetic resonance spectroscopy supported by absorption, fluorescence, diffusion ordered spectroscopy and mass spectrometry. Eur. J. Med. Chem. 2009, 44, 1437−1451. (47) Geisow, M. J.; Evans, W. H. pH in the endosome. Measurements during pinocytosis and receptor-mediated endocytosis. Exp. Cell Res. 1984, 150, 36−46. (48) Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189− 207.

L

DOI: 10.1021/acs.langmuir.8b03109 Langmuir XXXX, XXX, XXX−XXX