Pharmaceuticals and Related Drugs - Analytical Chemistry (ACS

Likewise, evaluating the purity and stability of bulk drug substances and formulated ..... commercially available optimization software, has been cons...
0 downloads 0 Views 177KB Size
Anal. Chem. 2007, 79, 4275-4294

Pharmaceuticals and Related Drugs R. K. Gilpin* and C. S. Gilpin

Brehm Research Laboratory, University Park, Wright State University, Fairborn, Ohio 45324-2031 Review Contents Separation-Based Methodology Liquid Chromatography Capillary Electrophoresis and Electrochromatography Other Separation Techniques Hyphenated Techniques Spectrometric-Based Methodology Infrared and Raman Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ultraviolet, Visible, Fluorescence, and Chemiluminesence Techniques Other Metholodgy Electroanalytical Techniques Thermal and Miscellaneous Techniques Literature Cited

4276 4276 4278 4280 4280 4282 4282 4283 4283 4284 4284 4285 4286

The current article surveys pharmaceutical analysis and related methodology that has appeared in the literature since the last review in this series was published in Analytical Chemistry 2 years ago (1). It covers the time period between January 1, 2005 and December 31, 2006 and is directed exclusively toward the analysis of pharmaceuticals in unformulated and dosage forms and procedures of evaluating their quality, purity, strength, and stability. It does not deal with biochemical, clinical, metabolism, pharmacokinetic, or related aspects of the topic. Because of space citation limitations, the references included represent only a fraction of the total number published. Books and book chapters are not included and, in most cases, neither are routine procedures, less often used techniques, and more common approaches. Likewise, even though a cited paper may deal with more than one technique, it will be discussed typically in only one of the subsections. In terms of the included citations, an attempt has been made to place more emphasis on emerging techniques and procedures related to newer compounds. Unlike past reviews in this series, which were organized based on compound classifications, the current review is divided into three major sections based on classification of the measurement approach employed. These are Separation-Based Methodology, Spectrometric-Based Methodology, and Other Methodology. Additionally, the major sections are subdivided in terms of specific instrumental techniques. In most cases, major reviews of a technique are included in the appropriate subsection. However, several articles were published that are more general in terms of assay methodology. A few examples of them are ones that relate to the analysis of a particular compound or class of compounds such as paracetamol (2) and COX-2 inhibitors (3) or ones that consider a particular problem such as the determination of volatile impurities in pharmaceuticals (4), the evaluation of the role of water in the physical stability of solid dosage formulations (5), 10.1021/ac070708x CCC: $37.00 Published on Web 05/19/2007

© 2007 American Chemical Society

the prediction of chemical stability from accelerated aging studies (6), the classification of topical drugs (7), and the characterization of Internet pharmaceuticals using traditional and nontraditional methodologies (8). An emerging instrumental trend has been the increasing application of hyphenated techniques; the most used of which is high-performance liquid chromatography-mass spectrometry (HPLC-MS), and to lesser extents capillary electrophoresis (CE)-mass spectrometry and nuclear magnetic resonance spectroscopy-mass spectrometry. These combined techniques have been useful for investigating a wide range of problems including profiling the composition of natural and herbal products. Likewise, evaluating the purity and stability of bulk drug substances and formulated products containing them have been other important applications. There have been a number of comprehensive reviews published that discuss fundamental and applied aspects of the various hyphenated techniques. These are included in their respective subsections below. In terms of the most often used instrumental technique, HPLC continues to be unchallenged as it has been for many years. The breaths of applications that have used HPLC span a very broad range. The bulk of them typically are carried out under reversedphase (RP) conditions, and the most common approach is to use some type of standard 150- or 250-mm column packed with either 5- or 10-µm porous silica-based C8 or C18 material in combination with UV detection. Although standard column technology is the frontline approach for most analytical work, the number of assays that use either monolithic or smaller particle-based columns is increasing. In cases where sub-3.0-µm materials are being employed, specially designed higher pressure pumping systems are required. Although pumps are now available commercially that can operated up to∼1000 bar, a number of investigators are assembling their own systems, which can be operated at significantly higher pressures. Unfortunately, when ultrahigh pressures are employed, fluid compressibility, which can be ignored in conventional HPLC, is an important consideration. The result of using ultrahigh pressures is nonlinear heating and retention effects that cannot be ignored. Studies of these effects and development of appropriate physicochemical models for them are emerging areas of research interest. Other instrumental techniques gaining in importance, as they relate to pharmaceutical analysis, are infrared, near-infrared, and Raman spectroscopy. Two of the major areas of application of these techniques are for evaluating polymorphic purity and monitoring product manufacturing both off-line and on-line. In the latter instance, they are being used to measure both the content and distribution of the active ingredients in the final formulation. Likewise, solid-state nuclear magnetic resonance (SSNMR) spectroscopy has become an often used tool for studying the physical Analytical Chemistry, Vol. 79, No. 12, June 15, 2007 4275

characteristics of drug formulations. Although only a few examples are included in the current review, there are many publications that report on SSNMR studies concerned with various aspects of formulation. The driving force behind this work is the development of better drug delivery systems, which is an important goal for producing safer and more effective products. The use of CE over the last 2 years has remained relatively constant compared to previous years. The most typical application of it has been for evaluating chiral purity. Some of the more commonly employed chiral selectors are the native and modified forms of β-cyclodextrin. Based on the number of new publications, its general application for product quality control screening (i.e., the development of new routine assays) has decreased. Other techniques that are decreasing in popularity, as noted by the number of new papers appearing in the literature, are gas and thin-layer chromatography and ultraviolet and visible spectroscopy. Although the majority of the published methods have been developed for assaying the active compound in either the bulk form or formulated products, in terms of other important topical areas, chiral purity, polymorphism, and formulation design received considerable attention. The most often used techniques for assaying chiral purity were HPLC and CE, although some NMR-based methods were developed. Many vibrational, nuclear magnetic resonance, calorimetric, and X-ray approaches were used singularly or in combination to study polymorphic behavior of bulk drug substances and formulated forms of them. Most of these papers are discussed in only one of a major subsection of this review even though many report on the use of multiple technques. In addition to these citations, a few papers have appeared that discuss topical aspects of polymorphism including two that consider general aspects of the characterization of amorphous/ crystalline phases in pharmaceutical solids (9), and historical prespective of trends in solubility/dissolution of polymorphic compounds (10). SEPARATION-BASED METHODOLOGY Liquid Chromatography. As has been the general trend for the last three decades, HPLC continues to be the most often used technique in the pharmaceutical research and development laboratory. Since the last biannual review in this series (1), numerous HPLC-based methods have appeared for studying pharmaceuticals in both unformulated and formulated forms. Many of the procedures have employed some type of reversedphase column, typically containing either an octyl or octyldecyl packing, in combination with buffered hydroorganic eluents that are binary blends of either methanol/water or acetonitrile/water. Likewise, the majority of the methods have used some form of UV detection. Because of the large number of RP methods appearing yearly in the scientific literature, it is possible to cite only a few examples of them, which are given in Table 1 (A1-A41). A range of sample types have been studied including the use of various drug delivery systems. A number of papers have appeared that are concerned with encapsulation of the active ingredient in nanoparticles. Two of these discuss analytical procedures that can be used to study the entrapment and release of insulin from triblock copolmeric nanoparticles (A23, A42). During the development stage of the first method, several C18 columns from different manufacturers 4276

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

were evaluated and only one found to be satisfactory in terms of peak symmetry. Although the accuracy and precision of the final method was found to be very good, a possible limitation of it appears to be relatively short column lifetimes due to the harsh eluent conditions (i.e., a pH of 2.3) needed to carry out the separation. In the second method, 0.1% trifluoroacetic acid was used as an eluent modifier. This latter procedure was used to characterize the efficiency of association and release of insulin from alginate-chitosan nanopartculate carriers under simulated gastrointestinal conditions. Other examples of work related to insulin include studies of its relaxation in lyophilized formulations (A43, A44) and the determination of protamine peptides in insulin drug products (A45). In the first study, insulin-dextran lyophilized formulations were found to be less stable thermally than insulintrehalose lyophilized formulations below the glass transition temperature of the matrix Tg. In addition, the degradation rates of insulin-dextran lyophilized formulations were found not to be affected significantly by the Tg of the matrix. A potential mechanism that explains the increased stability of insulin in trehalose has been proposed by the investigators carrying out the study. Additional reports on work related to nanoparticle delivery include papers that describe HPLC procedures and their use to study naloxone/poly--caprolactone (A46), paclitaxel/poly(D,L-lactic-coglycolic acid), and paclitaxel/poly(L-lactic acid) (A47) and tobramycin/lipid (A48) coformulations. The use of semisolid topical delivery also has been studied in a number of instances in terms of both the effectiveness of the delivery and the relative stability of the analyte(s). In one case, a gradient RP-HPLC method was developed for measuring benzocaine, coingredients, and potential degradation impurities in medium-chain triglycerides-colloidal silicon dioxide gels (A2). In another study, the transdermal permeation enhancer properties of dodecyl-6-aminohexanoate (DDEAC) were measured using a reversed-phase HPLC procedure (A49). It was proposed that DDEAC reacts with CO2 present in the air resulting in the formation of transkarbam 12, the compound responsible for the observed enhanced transdermal effects. In a third study, HPLC procedures were used to characterize the drug delivery of triphosphate anticancer drugs encapsulated in 100-300-nm nanogels composed of cationic polyethylenimine and amphiphilic polymers prepared by two routes (i.e., micellar and emulsification/ evaporation approaches) (A50). The cited papers are only a few examples of the large amount of interest and work that is being carried out to enhance drug delivery of problematic pharmaceuticals. By far, the greatest numbers of published procedures are for assaying formulated products in terms of unit-to-unit or batch-tobatch content variability of the active ingredient(s). Typically, isocratic eluent conditions and conventional packed column technology have been employed to make the measurements. However, the uses of monolithic columns (A10, A36, A51-A55) and packed columns containing sub-3-µm particle-based materials (A56-A60) are increasing in popularity. The typical use of both of these column technologies is to decrease sample analysis time and increase sample throughput via increasing eluent flow rates, an approach sometimes referred to as “rapid” or “high-throughput” analysis. Rapid analysis is not a new concept, but one that dates back to the late 1970s; however, improvements in column

Table 1. Examples of HPLC Assays for Measuring Bulk Pharmaceuticals and Formulated Products compound amoxicillin benzocaine, benzyl alcohol, and propylparaben budesonide butylhydroxyanisol, dexamethasone, calcium dobesilate, and lidocaine C1311, (5-[[2-(diethylamino)ethyl]amino]-8hydroxyimidazo [4,5,1-de]-acridin-6-onedihydrochloride trihydrate celecoxib, nabumetone, nimesulide, rofecoxib, and valdecoxib chlortetracycline chondroitin chromium picolinate dexamethasone, prednisolone, and triamcinolone didanosine docetaxel and nonpolar impurities domperidone, methylparaben, and propylparaben droperidol, haloperidol, and spiperone fluticasone propionate and salmeterol xinafoate gatifloxacin, levofloxacin, and lomefloxacin gemfibrozil glimepride and metformin guaifenesin, methylparaben and propylparaben hydrocortisone acetate, hydrocortisone alcohol, and preservatives hydrochlorothiazide, losartan potassium, and ramipril imexon and degradation products insulin indinavir sulfate and impurities lamivudine, nevirapine, and stavudine leflunomide Nicorandil (Nitrate Impurity) NPC 1161C (8-[(4-amino-1-methylbutyl)amino 5-(3,4-dichlorophenoxy)-6-methoxy-4methylquinoline succinate]) ofloxacin and degradation products orlistat oseltamivir oxymetazoline hydrochloride and triamcinolon acetonide parbens, C1 to C5 ramipril salinomycin and related compounds SJG-136, 8,8′-[[propane-1,3-diyl)dioxy]bis[(11a S)-7-methoxy-2-methylidene-1,2,3,11atetrahydro-5H-pyrrolo[2,1-c][1,4] benzodiazepine-5-one] tramadol and impurities triclocarban, and triclosan tropicamide zonisamide

sample

study

premixes bioadhesive gels bulk and dosage forms suppositories and ointments

quantitation quantitation purity/stability purity/stability

A1 A2 A3 A4

bulk and dosage forms

quantitation

A5

bulk and dosage forms

quantitaion

A6

granular premixes bulk, ophthalmic solutions, capsules, and liquids nutraceuticals tablets tablets bulk dosage forms saline dosage forms tablets and injections tablets dosage forms syrups emulsions

purity/stability quantitation

A7 A8

quantitation quantitation quantitation purity/stability quantitation quantitation quantitation quantitation quantitation quantitation quantitaion quantitation

A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

dosage forms

quantitation

A21

bulk triblock copolymer beads bulk dosage forms tablets Tablets bulk

purity/stability quantitation purity/stability quantitation quantitation Quantitation quantitation

A22 A23 A24 A25, A26 A27 A28 A29

bulk capsules powder nasal sprays

purity/stability quantitation identification quantitation

A30 A31 A32 A33

capsules aqueous solutions fermentation media

quantitation stability quantitation

A34 A35 A36 A37

oral drops topicals dosage forms bulk and dosage forms

quantitation quantitation quantitation purity/stability

A38 A39 A40 A41

efficiency via the use of monoliths and ultrasmall particles allows a large number of compounds (i.e., more complex mixtures) to be separated in a given time. With the increasing use of newer combinatorial synthetic approaches, greater demands are being placed on the analytical chemist to increase the sample throughput rate. Monolithic columns are being used to separate a variety of compounds in a range of sample types from simple tablet formulations (A10) to more complex natural product mixtures such as found in fermentation broths (A36, A52). A paper has appeared that describes three approaches for synthesizing acrylicbased monolithic columns that are designed for capillary RP-LC and electrochromatography (A51). Depending on the particular polymerization process used to produce the monoliths, the reported efficiencies for methyl-p-hydroxybenzoate were 70k, 90k,

ref

and 110k plates/m with corresponding methylene selectivities of 1.9, 1.2, and 1.8, respectively. In another study, a comparison was carried out between particle-based and monolithic columns versus capillary electrophoresis to evaluate which of the approaches provided the best performance for carrying out the rapid assay of the cholesterol lowering statin drug (i.e., pravastatin) in production media (A52). Although all three approaches were shorter than 1 min, the particle-based method provided over 1 order of magnitude greater sensitivity than either of the other two procedures. Other work has appeared that discusses the characterization and optimization of monolithic-based separations in terms of material selection and operating parameters (A53, A54). In the first citation, a detailed comparison is made between silica-based and polymer-based monolithic columns for carrying out both Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4277

HPLC and capillary electrochromatography (CEC) separations. Silica monoliths performed best for the HPLC separations and low-density methacrylate ester monoliths for CEC separations. In the latter citation, an orthogonal array design was employed to select the significant parameters for optimization. A narrow-bore conventionally packed diol column, in combination with a reversedphase monolithic column, has been used to develop a twodimensional (i.e., normal-phase × reversed-phase) separation approach for assaying pharmaceutical mixtures and extracts (A55). The procedure is reported to have a high degree of orthogonality with a peak capacity of ∼300. Gaining in popularity are columns packed with smaller particles in combination with higher solvent delivery pressures. Up to pressures of ∼1000 bar, this technique is now known as ultrahigh-performance liquid chromatography (UPLC). Operationally, it is relatively new in terms of its increasing application in the general analytical/pharmaceutical laboratory (A59). However, the underlying theoretical considerations date back several decades (A60). The motivating force behind the increasing uses of UPLC has been the commercial introduction of higher pressure solvent delivery systems, injectors, and columns packed with smaller particles, as well as the increasing desire to analyze more complex mixtures faster. In addition to the UPLC, even higher pressures are being employed in some laboratories that have designed and assembled custom instrumentation for carrying out untra-high-pressure liquid chromatography. Questions related to fundamental physicochemical considerations arising from pressure compression and expansion of the eluent when separations are carried out using higher pressures have been considered by a number of investigators including those in refs A56-A60. However, from some of the published accounts that have appeared in the literature, it appears that a number of investigators are unfamiliar with the nonlinear effects present at ultrahigh pressures that are not significant when conventional HPLC is employed and solvent compressibility can be ignored. The use of secondary eluent additives continues to be an important approach for separating many pharmaceutical compounds with problematic equilibria (A61-A80). In a majority of cases, these compounds are employed as either ion pairing or as silanol masking reagents for separating basic and highly acidic pharmaceuticals. To a much lesser extent, secondary additives also continue to be used at higher concentrations for carrying out micellar separations. In part, the limited use of micellar separations is due to higher eluent back pressures and in some cases accelerated column aging. A paper has appeared that reviews the application micellar HPLC in the pharmaceutical industry (A63). It considers drug formulations, as well as clinical applications of the technique. In a second paper, the use of micelles in combination with monolithic columns has been discussed (A70). A principle advantage of monolithic columns over conventionally packed columns is much lower back pressures, which allows separations to be completed in much shorter times. Under the conditions employed, a 4-fold advantage was observed. A number of other papers have been published that deal with multidimentional separation protocols (A81-A84), various physicochemical aspects of separation design (A85-A90), and the use of HPLC to the measure physical properties of an analyte 4278

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

(A91-A93). Among the cited examples are two papers that discuss the use of RP-LC to evaluate the lipophilicity of various R-aryl-N-cyclopropylnitrones (A91) and penicillins (A93). In the first instance, the relationship between solute retention and calculated log P values was studied for both acetonitrile/water and methanol/water on two different packings and in the second for methanol/water in combination with an octadecyl surface. In another account, the use of an automated HPLC method development strategy, which employs commercially available optimization software, has been considered (A94). The chiral purity of drug substances continues to be an important area of pharmaceutical research and development efforts, and liquid chromatographic procedures continue to be the most often utilized approaches for evaluating it. Many papers have been published over the last 2 years that describe HPLCbased chiral assays for a host of medically important compounds (A95-A125). Among them are those that consider the following: (1) general aspects of the technique (A95-A99), (2) questions related to the selection of separation media and other operating conditions (A100-A107), and (3) separations of targeted analytes like atropine (A108), β-blockers (A109), β-lactams (A110), 1,4-disubstituted piperazine derivatives (A111), levodopa methyl esters (A112), ornidazole (A113), rabeprazole (A114), and timolol (A115-A117). In one of these methods, response surface methodology was used to optimize the selection of operating conditions (A105), and in another, both direct and indirect procedures were investigated including the application of different column types and derivatizing reagents (A101). Of the surfaces characterized, β-cyclodextrin, vancomycin, and teicoplanin-containing macrocycline glycopeptides derivatized materials provided the best performance. Two additional papers have considered the separation of racemic acidic (A96, A106) and basic (A96) pharmaceuticals by nanoLC using vanomycin and tert-butylbenzoylated tartardiamide chiral phases, respectively. The use of evaporative light scattering detection (ELSD) has increased considerably in the past few years. It has been found to be especially useful for assaying various antibiotics (A126-A130) and natural products (A131-A135). Likewise, ELSD has been used to characterize the degree of hydrolysis of phospholipid-based emulsions (A136), as well as to measure bisphosphonates (A137), mannitol (A138), β-sitosterol, and stigmastanol (A139) in formulated products. Besides evaporative light scattering, fluorescence (A140-A146), and to lesser extents, chemiluminescence (A147-A149) and electrochemical (A150-A154) methods of detection have been employed in a variety of pharmaceutical assays to measure compounds like amantadine, topiramate, neomycin, and PET radiopharmaceuticals. In one instance, the use of anisoin as a prechromatographic fluorometric reagent for measuring guanidino compounds has been evaluated (A145). Similarly, phanquinone has been employed as a preseparation fluorogenic reagent for quantifying leuprolide component amino acids in injectable solutions (A143). Although all of the above detection methods continue to be used as alternate approaches to UV measurements, by far, mass spectrometric detection is increasing at a much faster rate. This is discussed later in the Hyphenated Techniques subsection of this review. Capillary Electrophoresis and Electrochromatography. During the last 2 years, one of the principle pharmaceutical

Table 2. Examples of CE and CEC Assays for Measuring Chiral Purity of Bulk Pharmaceuticals Formulated Products compound S-adenosylmethionine adrenaline ageneric agents, β-agonists, and antifungal agents atenolol, chlorpheniramine, propranolol, and tryptophan methyl ester baclofen biperiden bupivacaine and salbutamol cetirizine cetirizine citalopram 2,3-dihydroxy-3-phenyl-propionate compounds epinephrine, isoprinaline, and norepinephrine epinephrine, norepinephrine, norphenilephrine, and terbutaline etodolac etomidate frovatriptan gatifloxacin, lomefloxacin, ofloxacin, and pazufloxacin glucopyranosyl compounds moxifloxacin omeprazole pheniramine d-phenylalanine products tamsulosin timolol TMC114

chiral additive heptakis(2,6-di-O-methyl)-β-cyclodextrin 2-O-(2-hydroxybutyl)-β-cyclodextrin highly sulfated cyclodextrins

ref B1 B2 B3 B4

highly sulfated cyclodextrins carboxymethyl)-β-cyclodextrin and β-cyclodextrin (2-hydroxy)propyl-β-cyclodextrin and dimethylβ-cyclodextrin β-cyclodextrin heptakis(2,3-diacetyl-6-sulfato)-β-cyclodextrin carboxymethyl-γ-cyclodextrin β-cyclodextrin (2-hydroxy)propyl-β-cyclodextrin and heptakis (2,6-di-O-methyl)-β-cyclodextrin 6-O-succinil-β-cyclodextrin

B5 B6 B7

(2-hydroxy)propyl-β-cyclodextrin β-cyclodextrin sulfobutyl ether β-cyclodextrin (2-hydroxy)propyl-β-cyclodextrin

B14 B15 B16 B17

carboxymethyl-β-cyclodextrin and (2-hydroxy) propyl-β-cyclodextrin sulfated γ-cyclodextrin methyl-β-cyclodextrin β-cyclodextrin β-cyclodextrin sulfated β-cyclodextrin heptakis(2,3-diacetyl-6-sulfato)-β-cyclodextrin

B18

applications of capillary electrophoresis has been to measure chiral purity. A majority of the published methods employ either native β-cyclodextrin or a derivatized form of it as the chiral selector/ differential migration additive. Examples of some of these assays are summarized in Table 2 (B1-B26). In most cases, the separations are carried out with a single additive; however, the application of coadditives has been found to be useful for separating the enantiomers of bupivacaine and salbutamol (B7), epinephrine, isoprinaline, and norepinephrine (B12), and 2-O-β-D-glucopyranosyl-2H-1,4-benzoxazin-3(4H)-one and its 7-chloro derivative (B18). In the first instance, the simultaneous separation of the enantiomers of both analytes was possible using a blend of 20 mM dicarboxymethyl-β-cyclodextrin and 20 mM (2-hydroxy)propyl-β-cyclodextrin (HP-β-CD) in a pH 2.5 triethanolamine/phosephate buffer. During the latter investigation, several native cyclodextrins and their derivatives were evaluated as potential chiral selectors and a combination of carboxymethylβ-cyclodextrin and HP-β-CD were found to produce the optimum chiral resolution. Development of new or improved procedures for carrying out enantiomeric separations continues to be an important area of research. In the case of EC methodology, most of the work has been directed toward procedures that employ soluble chiral additives. However, in at least one instance, dispersed nanoparticles modified with β-cyclodextrin have been used to enhance the CE separation of clenbuterol (B27). During the initial stages of the assay development work, four types of nanoNparticles were investigated, polystyrene, Al2O3, TiO2, and multiwalled nanotubes, each of which was modified with a single layer of the chiral selector. The best separation results were obtained with the later material.

B8 B9 B10 B11 B12 B13

B19 B20 B21 B22 B23 B24, B25 B26

In addition to the many compound-specific chiral CE assays appearing in the literature, a number of reviews and comprehensive papers have been published that discuss more general aspects of the chiral analysis of pharmaceuticals by capillary electrophoresis (B28-B31), as well as strategy for separating the enantomers of acidic (B32, B33) and basic (B34-B36) drugs. One of these papers summarizes the applications and developments that occurred in 2004 and 2005 (B30), and another discusses different classes of chiral selectors used during the same time period (B29). Several other articles have focused on the chiral purity of peptides (B37), advances in the enantiomeric separation of secondgeneration antidepressant drugs (B38), and strategies for developing rapid chiral CE separations (B39). In addition to these reports, the results from a comprehensive interlaboratory study to evaluate the precision and practicality of a cyclodextrin-based assay for assaying the timolol enantomeric purity was published (B25). A total of 11 laboratories located in North America and Europe were participants in the study. In addition to reviews that specifically address chiral purity, several others were published that are more general in nature and cover recent advances in capillary electrochromatography (B40) and the electrophoresic separation of small-molecule pharmaceuticals (B41), as well as the analysis of amino acids (B42), antibiotics (B43), and peptides and proteins (B44). Likewise, a paper has appeared that considers the use of capillary electrophoretic approaches for characterizing enzymatic reactions and analyte derivatization and related chemical reactions (B45). An emerging topic in capillary electrophoresis is the development and application of microchip-based technology. Various methods of fabrication and detection have been explored by several investigators (B46-B51). Included among the construcAnalytical Chemistry, Vol. 79, No. 12, June 15, 2007

4279

tion methods are laser ablation of poly(dimethylsiloxane) (B46), low-temperature cofiring of ceramics (B47), and pyrolysis of photoresist films (B50). In the latter work, dual microelectrodes were integrated into the microchip as part of the fabrication process and electrochemical detection used to measure dopamine and related compounds. In another one of the accounts, the microchip-based CE device was coupled to a fluorescence detector and the analytes measured using an indirectly approach. In a third, the technology was used to assay atorvastatin in Lipitor tablets (B51). Miniaturization, including the development of microchip technology, is an expanding area of importance, which is opening new possibilities in terms of highly automated rapid analysis. A final area that continues to receive considerable attention in the literature is micellar electrokinetic capillary chromatography. Examples of some of the many assays that use this approach include one for simultaneously determining 14 active ingredients that are used in cough-cold medications (B52), 5 coumarins in Cnidii fructus (B53), 5 anthraquinones in Cassia obtusifolia (B54), 8 corticosteroids in commercial formulations (B55), and various natural and synthetic estrogens (B56). The technique also continues to be used for assessing the purity and stability for a host of unformulated and formulated compounds including quantifying didanosine in the presence of 13 potential impurities (B57), measuring minoxidil in hair-growth products (B58), examining bromazepam for the presence of related compounds (B59), and assaying the enantimeric purity of oxprenolol (B60). In the latter assay, human serum albumin was used as the chiral selector. In one instance, log Poctanol-water values were determined for neutral and basic compounds using a combination of microchipmicroemulsion electrokinetic chromatography and indirect fluorometric detection (B61), and in a second case, a sulfonated capillary was used to improve the performance of both CE and MEKC separations (B62). The modified fused-silica capillary was produced in-house using 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane. Other Separation Techniques. As has been the general trend for a number of years, gas and thin-layer chromatography are decreasing in popularity as reflected by the number of new procedures being reported. One of the more important uses of gas chromatography (GC) has been for measuring moisture, solvents, and volatile breakdown products in formulated products (C1-C7). Three of these studies were concerned with quantifying residual solvents (C2-C4), and three with measuring lower molecular weight aldehydes produced as the result of excipient degradation (C5-C7). Gas chromatography also has been used in a limited number of cases to determine the active ingredients, excipients, or impurites in formulated products (C8-C17). Included among these examples of assay procedures were methods for measuring isotretinoin and its degradation products (C8), ephedrine alkaloids in dietary supplements (C10), isomeric tropane alkaloids in natural products (C13), and impurities in tablet preparations of benzodiazepines (C16). Two GC procedures have been developed for studying fatty acid esters as replacements for isopropyl myristate in ophthalmic ointments (C12) and evaluating the enantiomeric purity of the methyl esters of ibuprofen, fenoprofen, and ketoprofen (C14). In the latter procedure, a capillary column coated with heptakis(2,3di-O-methyl-6-O-tert-butydimethyl-silyl)-β-cyclodextrin was used to 4280

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

carry out the separation. In another study, GC was used to assess the degree of migration of diethylhexyl phthalate from poly(vinyl chloride) (PVC) bags into intravenous solutions containing cyclosporine (C15). During this study, measurements were made each half hour for a period of 6 h. A third important use of GC has been as a physicochemical characterization technique. Inverse GC approaches have been used to study dry powder inhalation formulations (C18), measure solubility parameters of excipients (C19), and evaluate the surface energy of lubricated pharmaceutical powders (C20), cellulose esters (C21), and powders of salmeterol xinafoate (C22). A paper has also appeared that discusses important aspects of finding a suitable reference material for use as an inverse GC system suitability test (C23). Although thin-layer chromatography (TLC) methods continue to be used widely in the pharmaceutical industry, most are employed as quick screens for evaluating the purity and stability of unformulated and formulated compounds. In cases where published methodology has appeared in the literature, many of the procedures have been carried out under high-performance (HP) conditions. Examples of these HP-TLC procedures are assays for alfuzosin (C24), cyclophosphamide (C25), glyburide and metformin (C26), phenothiazine derivatives (C27), and valdecoxib (C28) in the bulk or formulated products. Likewise, HP-TLC has been used to measure 6-gingerol (C29), harpagoside (C30), emodin, resveratrol, and polydatin (C31), and trigonelline (C32) in natural products. In addition to the high-performance methods, conventional TLC methods have been developed for piretanide in the presence of basic decomposition products (C33), colchicine in pharmaceuticals and natural extracts (C34), and risperidone in the bulk form and in tablets (C35). In the latter citation, a HPLC procedure also is given for the same analyte. Both the TLC and HPLC procedures are stability indicating. In addition to the use of TLC methodology to carry out standard assays, the feasibility of employing monolithic ultrathinlayer plates in combination with atmospheric pressure matrixassisted laser desorption/ionization (MALDI) mass spectrometry has been discussed (C36, C37). The approach (i.e., use of the monolithic plates) is reported to provide 10-100 times greater sensitivity compared to conventional HP-TLC plates. Other articles have appeared that discuss the general aspects of purity testing via TLC procedures (C38), the characterization of lipophilicity of new N-phenylaminoazapiranes (C39), the use of TLC and HPLC to investigate the affect of 10-MeV electron beam radiation on the stability of seven common steroids (C40), and the analysis of five androstane isomers (C41). Hyphenated Techniques. One of the more important trends in separation-based methodology has been the increasing use of mass spectrometry as a postseparation detection technique. A significant percentage of the newly published procedures and studies have used it. This emerging trend is the result of several important factors including (1) better interface/spectrometer design resulting in improved performance and reliability, (2) the increasing demand for higher sample throughput as the result of faster synthetic procedures, and (3) easier to operate instrumentation. A number of papers have appeared that cover a variety of topics ranging from general discussions of the important role HPLC-MS is playing in the drug discovery process (D1-D4) to

Table 3. Examples of HPLC-ESI-MS and HPLC-ESI-Tandem MS Assays for Bulk Pharmaceuticals and Formulated Products compound

sample

study

ref

amlodipine maleate benazepril benzoyl peroxide and erythromycin calcium folinate diclofenac glufosfamide methylxanthines and taurine pethidine hydrochloride, MPTP in simvastatin triclabendazole vinorelbine bitartrate amoxicillin clarithromycin clindamycin erythromycin and related substances midecamycin

bulk bulk topical gels bulk aqueous dosage forms phosphate buffers dietary supplements bulk bulk and tablets bulk bulk bulk bulk bulk commercial samples bulk

purity/stability purity/stability purity/stability purity/stability purity/stability purity/stability quantitaion quantitation purity/stability purity/stability purity/stability purity/stability purity/stability purity/stability purity/stability purity/stability

D41 D42 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 D55 D56

those that target specific problems associated with ion suppression (D5), chiral analysis (D6), analysis of nitrogen-containing compounds (D7), and miniaturization and chip-based sample introduction technologies (D8-D12). In the latter instance, two-dimensional nanoscale LC was used in combination with a triple quadrupole-linear ion trap mass spectrometer to analyze complex peptide mixtures. Likewise, two additional articles have appeared that discuss the combined use of LC-MS, GC/MS and LC-NMR for characterizing drug stability and identifying degradation products (D13) and isotopic labeling for extending the dynamic range in LC-ESI-MS (D14). Other general topics considered during the time of this review were the use of LC-inductively coupled MS in the pharmaceutical industry (D15, D16), the advantages of high-temperature LC separations in combination with electrospray ionization mass spectrometry (D17), and the analysis of formulated products using nanoESI and atmospheric pressure ion mobility spectrometry (D18). The second paper presents data for codeine, paracetamol, paroxetine, and timolol as examples of the general classes of analytes where the technique is useful. An important application of HPLC-MS has been for profiling the active ingredients in numerous natural products and nontraditional medicines (D19-D40). Examples of some of the many compounds studied by these procedures include flavonol glycosides and aglycons in Ginkgo biloba (D19), phloroglucinols and naphthodianthrones in St. John’s wort (D20), saponins in ginseng products (D21, D22), astragalosides in Radix astragali (D23), bufadienolides in natural sources (D24), and taxoids in plant materials (D25). Several natural product screening procedures have employed a combination of photodiode array detection and mass spectrometry for better postseparation identification and quantitation (D26-D31). Likewise, tandem mass spectrometry also has been used in a number of other cases (D19, D21, D22, D30-D36), including studying the adulteration of herbal products by a wide range of undeclared synthetic compounds (D36). Many standard assay procedures that employ a combination of reversed-phase HPLC and ESI-MS have been developed for a host of other pharmaceutical compounds. A few examples of these procedures, which have been used to characterize both the bulk material and formulated products containing it, are included in

the upper part of Table 3 (D41-D51). Similarly, examples of multidimensional/tandem MS methods are given in the lower part of Table 3 (D52-D56). Most of the cited work has been directed toward identifying potential impurities and decomposition products. In addition to these studies, chemical derivatization in combination with LC-MS has been used to differentiate between the three isomers of estriol glucuronide (D57), as well as to assay tobramycin (D58), voglibose (D59), and oxosteroids (D60). In the latter instance, a derivatization reagent, 2-hydrazino-1methylpyridine, was developed, which is reported to provide a 70-1600-fold higher sensitivity compared to direct measurements of the intact steroids. The reagent quantitatively reacts within 1 h at 60 °C producing monooxosteroid derivatives. Likewise, cholesterol oxidase in combination with high-performance liquid chromatography-atomspheric pressure ionization-mass spectrometry has been used to analyze 3β-hydroxy-5-ene (∆5)-steroids (D61). A 3-14-fold higher sensitivity is reported for the derivatized analytes compared to their native forms. Other means that have been used to enhance assay specificity include the use of deuterated additives in the mobile phase prior to MS analysis (D62) and the sequential application of evaporative light scattering (D63) and postcolumn derivatization-fluorescence (D59) detection. Columns packed with sub-2-µm particles (D64) and porous graphitic carbon (D65) also have been used with MS to improve the performance of assays for measuring respectively ranitidine and its impurities and four tropane alkaloid isomers from the stem-bark of Schizanthus grahamii. Similarly, ultra-performance liquid chromatography in combination with inductively coupled plasma mass spectrometry has been employed for quantifying bromine-containing preservatives (D66). Other miscellaneous applications of separation-mass spectrometric methodology includes a MALDI approach for investigating insulin release from poly(D,L-lactic-co-glycolic acid) nanoparticles using arg-insulin as an internal standard (D67), as well as the uses of HPLC-tandem MS to measure the migration of mono- and di(2-ethylhexyl) phthalate from PVC tubing during drug administration (D68) and a method for screening compound libraries using enzyme inhibitors (D69). Besides these methods, a Fourier transform ion cyclotron resonance mass spectrometric procedure has been published for characterizing designer drug analogues of tadalafil, Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4281

vardenafil, and sildenafil in herbal and pharmaceutical forms (D70). A number of other separation-hyphenated techniques have been reported including the use of GC/MS to quantify ephedrine alkaloids in dietary supplements (D71) and the use of CE-MS to measurement the trans-ketoconazole in cis-ketoconazole (D72). Likewise, two papers have been published that consider the general nature of purity profiling via CE-MS methods (D73, D74), two that deal with important aspects of quantitation in terms of sensitivity and reproducibility (D75, D76) and one that discusses the practicality of designing an integrated device that combines the sample injection, capillary electrophoretic separation, and electrospray emitter steps onto a single microchip (D77). The number of on-line LC-NMR procedures appearing in the literatue has increased significantly during this review period (D78-D89). Many of them have been concerned with assaying pharmaceutically active compounds in natural products and herbal formulations. Several papers have appeared that consider either the general aspects of this topic (D78-D80) or specific applications of LC-NMR for measuring specific compounds like the tropare alkaloids in S. grahamii (D81) and the carotenoids in spinach (D82). Other papers have appeared that address topics such as design and application of an on-line LC-solid-phase extraction-NMR system for assaying natural products (D83, D84), and the use of LC-NMR in combination with LC-MS to identify impurities or degradation products in various drug substances. A few examples of these latter types of procedures are assays for 5-aminosalicylic acid (D85), cefpodoxime proxetil (D86), ecalcidene (D87)m and risperidone (D88). Likewise, a paper has appeared that considers general aspects of the use of LC-NMR, LC-MS, and GC/MS for identifying drug degradation products during the drug development process (D89). SPECTROMETRIC-BASED METHODOLOGY Infrared and Raman Spectroscopy. One of the important applications of vibrational spectroscopy has been for studying the polymorphic behavior of many different classes of pharmaceutically active compounds. Many infrared (E1-E13) and Raman (E14-E23) approaches have been used either by themselves or in combination with other techniques, like differential scanning calorimetry and X-ray defraction spectroscopy, to characterize the drug substance prior to, during, and after it has been formulated into a final product. A few examples of specific compounds that have been reported in the recent literature are benzimidazole (E16), celecoxib (E8), chloramphenicol (E14), etoricoxib (E11), falicaine (E17), hydroxyprocaine (E18), mepivacaine hydrochloride (E6), ranitidine hydrochloride (E10), sulfathiazole (E7, E13, E23), and zolpidem tetrahydrate (E12). In addition to these examples, another paper has appeared that discusses the dependence of the Raman spectra of paracetamol, paroxetine, and ranitidine on the laser excitation wavelength used (E19). Besides the above procedures, general methods have been developed for studying the polymorphic behavior of the fenamates (E2) and local anesthetics (E5). In the first instance, the polymorphic purity and the thermal conversion of three of the more common fenamates between their different crystalline forms was characterized via measuring changes in the NH stretch region that occur between 3300 and 3350 wavenumbers, and the second 4282

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

paper examines the relationship between polymorphism and molecular structure, as does a third paper, which discusses the general application of tetrahertz pulsed spectroscopy to quantify crystallinity and polymorphism (E3). A number of other papers have considered various aspects of vibrational spectroscopy and its applications for measuring crystallinity and polymorphism (E1, E9, E11, E14, E20, E21). Included among these citations, are ones that deal with in-line process monitoring, statistical treatment of the data, and Raman wavelength considerations. Near-infrared spectroscopy (NIRS) has been found to be especially useful in terms of evaluating crystalline conversions during manufacturing. For example, the accelerated conversion of three azithromycin pseudopolymorphs (i.e., the anhydrous, monohydrate, and dihydrate forms) at high temperatures and moisture levels has been measured by observing spectral changes in the 1800-2200-nm region, which correspond to the first overtones for the analytes (E4). In two other accounts, the potential of usefulness of NIRS, for measuring the polymorphs of the active ingredient of commercial formulations, prior to and after the manufacturing process, has been considered (E1, E11). Another article has been published that examines the usefulness of Raman microscopy in increasing work flow in high-throughput crystallization laboratories (E21). In addition to characterizing polymorphic purity prior to and during manufacturing, NIRS has been used to carry out many other types of noninvasive process-related studies (E24-E50). Included among this body of work are the determination of protein conformation (E30), the evaluation of the influence of ambient moisture on the compaction of microcrystalline cellulose powder (E33), the assessment of ingredient homogeneity in pharmaceutical mixing (E35-E37, E42), and the characterization of various physical properties of the manufactured products, such as content uniformity, particle size, and hardness (E28, E40, E41, E45). Likewise, many NIRS assays have been developed for a variety of compounds including those for amantadine, ascorbic acid, busulfan, caffeine, and chlorpheniramine, crospovidone, dextrometorphan, erythromycin, paracetamol, riboflavin, roxithromycin, and sildenafil (E25, E27, E32, E39, E47-E50). In one of these procedures, NIRS was employed as a fast-screening technique for studying the authenticity of Viagra tablets versus counterfeit and imitation tablets (E47). The method involved both physical characterization and measurement of the active ingredient in the formulations. In two of the other procedures, mathematical algorithms were used to measure paracetamol and other active ingredients in combination products (E32, E39). In a fourth procedure, the mixing kinetics of riboflavin in low-dose tablets were evaluated (E49). A paper has been published that is concerned with the application of both near-infrared and mid-infrared Fourier transform vibrational circular dichroism to evaluate the enantiomeric purity of nine terpenes and related molecules (E44). It also contains information about the use of various light sources and detectors for carrying out the measurements. In addition to the many specific NIRS assays developed, a review has appeared that considers the basic principles and pharmaceutical applications of near-infrared spectroscopy and imaging (E29). A number of other articles have been published, which are concerned with more general aspects of vibrational spectroscopy and process analysis

(E51-E59). Most of them deal with various physical aspects of formulation including real-time monitoring. Nuclear Magnetic Resonance Spectroscopy. SSNMR spectroscopy has become an important technique for investigating the chemical and physical properties of numerous medically important compounds. Two compreshenisve reviews have been published, one of which covers the uses of SSNMR spectroscopy in pharmaceutical analysis (F1) and, the other, its application for studying polymorphs and related solvates of active compounds (F2). These works present an overview of important aspects of the technique, including basic concepts and applications. A number of other reviews and articles have appeared that cover a particular use of NMR spectroscopy. Among them are ones that are concerned with the analysis of carbohydrate-based vaccines (F3), instrumental aspects of the technique including probe design and miniaturization and use of mulitiple receiver coils (F4, F5), quantiation and validation (F6, F7), and data handling and interpretation (F8). In the first instance, NMR has been found to be an especially useful technique for characterizing a number of existing vaccine products that are difficult to assay by other approaches. In addition to discussing these applications, the article also considers areas where future developments may occur. Two important physical parameters being evaluated by SSNMR methods are crystallinity and polymorphism (F9-F14). In the first citation, 13C labeling was used to enhance the sensitivity of the NMR measurements to a level where tablets containing less than 3% of the active ingredient could be characterized in terms of the polymorphic composition (F9). Subsequently, the method was used to measure the polymorphic purity of the freshly prepared product and to study changes in it with aging. In the second citation (F10), the polymorphic behavior of three crystalline forms of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile were investigated via a combination of multidimensional solid-state NMR and molecular modeling via using electronic structure calculations. In the third article (F11), the crystallinity and amorphous content of micronized pharmaceuticals were determined using both SSNMR and X-ray powder diffraction methods, and the final three references (F12-F14), describe methods for measuring the polymorphism of indomethacin, salicaine, and troglitazone, respectively. In another study, pure nuclear quadrupole resonance (NQR) spectroscopy was evaluated as a technique for characterizing crystallinity using chlorpropamide and diclofenac sodium as example analytes (F15). A stated advantage the NQR approach compared to competing approaches is that the polymorphic measurements are not perturbed by formulation excipients or other substances unless the coadditives possess resonance frequencies in the same range as the target analyte. A number of other NMR methods have been developed for investigating other important properties of pharmaceuticals including evaluating the extent of drug-drug interactions between cetirizine, diclofenac, and ranitidine (F16), purity profiling of gentamicin (F17) and poloxamer (F18), and measuring the pore size distributions in biodegradable polymers (F19). The latter paper discusses important aspects of NMR cryoporometry and its usefulness for characterizing microporosity and mesoporosity in samples that are in aqueous environments. Likewise, other

Table 4. Examples of Spectrometric Assays for Measuring Bulk Pharmaceuticals and Formulated Products compound acetyl-L-carnitine acetylcysteine alendronic acid aminocaproic acid amoxicillin bambuterol ciprofloxacin diniconazole and uniconazole enalapril fluoroquinolones fenfluramine, paroxetine, sertraline iejimalides indole derivatives isoxsuprine ketoprofen levofloxacin and rifampicin methyldopa β-methylphenylalanine metronidazole, miconazole, sulfamethoxazole penicillamine sildenafil ritodrine tricyclic antidepressants vitamins B1

sample

technique

ref

bulk dosage forms dosage forms dosage forms aqueous solutions dosage forms dosage forms bulk

NMR FIA FIA FIA FIA

F29 G30 G39 G40 G31

NMR NMR NMR

F30 F31 F32

tablets dosage forms bulk

NMR NMR NMR

F33 F34 F35

bulk bulk dosage forms gels and ampules dosage forms dosage forms bulk dosage forms

NMR FIA and NMR FIA FIA

F36 G32 G33 G34

NMR FIA NMR NMR

F37 G35, G36 F38 F39

dosage forms bulk dosage forms dosage forms dosage forms

FIA NMR FIA FIA FIA

G37 F40 G38 G41 G42

papers have appeared that disscuss the use of NMR methods for evaluating polymer concentration profiles during swelling (F20), imaging the relative density distributions of the active ingredients in tablets (F21), and characterizing the sublimation process during freeze-drying (F22). Another important application of NMR techniques has been to investigate drugs-β-cyclodextrin inclusion complexes of many compounds including alprostadil (F23), benzocaine (F24), celecoxib (F25), disoxaril (F26), quercetin (F27), and prednisolone (F28). Likewise, a number of papers have appeared that describe NMR-based methodology for assaying formulated products and measuring chiral purity. Some examples of these are given in Table 4 (F29-F40). Besides these examples, a paper has appeared that discusses the use of 13C NMR in combination with scanning electron microscopy and FT-IR spectroscopy to investigate the interactions of the enantiomeric forms of ibuprofen and naproxen with physical mixtures and solid dispersions of poly(vinylprrolidone) (F41). Although many other drug formulation investigations were carried out using NMR techniques during the review period, it is possible to cite only a few additional examples as representative of the large body of work in this area. Some of the formulated products studied where those containing diclofenac sodium (F42), flurbiprofen (F43), ibuprofen (F44, F45), indomethacin (F46, F47), neotame (F48), nifedipine and phenobarbital (F49), and paclitaxel (F50). Ultraviolet, Visible, Fluorescence, and Chemiluminesence Techniques. The number of new ultraviolet (UV) and visible methods being published has decreased considerably. For the most part, a majority of the published UV methods involved relatively standard approaches in terms of sample workup, as well as the measurement approach and data analysis in terms of either Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4283

using the spectrum directly or a derivative of it. The most common types of studies being carried out involved the analysis of inorganics found in pharmacuticals like bismuth and zinc (G1) and many of the older compounds like ascorbic acid (G2), barbital and phenytion (G3), diclofenac (G4), gatifloxacin (G5), sulfonamides (G6), and theophylline (G7). Other types of studies included measuring the photostability of tretinoin and isotretinoin in liposome formulations (G8) and the dissolution of theophylline and nitrofurantion (G9) and common over-the-counter drugs (G10) in formulated products. In several cases, UV procedures were used to examine guesthost complexes of compounds like hesperetin (G11) and trimethoprim (G12, G13), including the use of modified cyclodextrins to measure enantiomeric purity (G14). Likewise, UV-visible spectroscopy in combination with synchronous fluorescence spectroscopy has been employed to investigate the interaction of chlorpromazine with the deoxyribonucleic acid double helix (G15). Also, a spectrofluorometric assay has been published for common fluoroquinolones that is based on the formation of a chargetransfer complex with 7,7,8,8-tetracyanoquinodimethane (G16) and one for sulfathiazole and sulfanilamide that employs photochemically induced fluorescence (G17). A few examples of colorimetric assays published are ones for measuring captopril following oxidation with acidic potassium permanganate (G18), levofloxacin by acid-dye complexation (G19), oxiconazole with methyl orange (G20), and roxatidine using 2,3-dichloro-5,6-dicyano-1,4-benzoquione and p-chloranilic acid (G21). In the case of levofloxacin, the method involved the formation of chloroform-extractable 1:1 and 1:2 colored ion-pair complexes with bromophenol blue and bromocresol green. In addition to the above static measuring procedures, a number of UV-visible and fluorometric-based flow injection analysis (FIA) methods have been published. For the most part, these methods have been developed for quantifying the active ingredients in various dosage formulations. In one case, turbidimetric detection was used after treating the analyte, homatropine methyl bromide, with silicotungstic acid (G22), and in another instance; fluorometic detection was employed to assay dopamine after formation of a photoinduced electron-transfer derivative (G23). In two other examples of published work, specially designed microsystems were developed for assaying indomethacin (G24) and paracetamol (G25) in formulated products. Likewise, a multicommuted fluorescence system was used for simultaneously quantifying vitamins B2 and B6 (G26). In three final examples, metoclopramide and tetracaine hydrochloride were assayed by a nonequilibrium approach that involved the measurement of an unstable red intermediate (G27), gold quantified in pharmaceutical samples after complexing it with 3,5-dimethoxy-4-hydroxy-2-aminoacetophenone isonicotinoyl hydrazone (G28), and the dissolution of famotidine tablets evalutated by a direct UV-FIA procedure (G29). A few other examples of UV-visible (G30-G38) and fluorometric (G39-G42) FIA assays are given in Table 4. A large number of the FIA assays published during the last 2 years have been based on chemiluminescence. Two of the more common approaches have involved reactions with either luminol or tris(2,2′-bipyridine)ruthenium. Examples of the first type of approach include assays for single analytes like cefmetazole (G43), clindamycin (G44), dobutamine (G45), phentolamine (G46), Rhein 4284

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

(G47), riboflavin (G48), synephrine (G49), thyroxine (G50), and urapidil (G51) or groups of anaytes such as estrogens (G52), fluoroquinolones (G53), β-lactam antibiotics (G54), and tetracyclines (G55). Likewise, examples of the second type of method are procedures for amiodarone (G56), cefprozil (G57), paracetamol (G58), cephalosporins (G59), oxytetracycline (G60), and tetracycline (G61). In addition to these two basic types of procedures, some of the other FIA chemiluminescence approaches used include the measurement of tryptophan after peroxidation and epoxidation with hydrogen peroxide-nitrite-sulfuric acid (G62), the determination of meloxicam after oxidation with N-bromosuccinimide (G63), and the quantitation of fluoroquinolone antibiotics using several different reactions (G64-G66) including manganese(IV) and Ce(IV) systems. OTHER METHOLODGY Electroanalytical Techniques. Many of the electroanalytical methods published during the review period employ differential pulse polargraphy (DPP) in combination with either glassy carbon or mercury electrodes to assay the active ingredient in various formulated products. Examples of these types of procedures are summarized in Table 5 (H1-H14). In addition to these, DPP has been used in combination with a boron-doped diamond to assay naproxen (H15), a nanogold modified indium tin oxide electrode to measure atenolol (H16) and paracetamol (H17), and a cobalt tetrasulfonated phthalocyanine-poly(L-lysine)-modified glassy carbon electrode to quantify diospyrin (H18). In the latter case, the electrode was found to produce much higher peak currents resulting in enhanced analyte sensitivity. Besides the above studies, the electrochemical behavior of analogues of megazol (H19), cefixime (H20), danazol (H21), montelukast sodium (H22), and pyrantel pamoate (H23) have been characterized using DPP in combination with several other voltammetric techniques. In many of the reported cases, the influence of pH on the electrochemical behavior of the analytes was investigated. For danaznol and montelukast, the optimum analytical pH was 1.0. Danaznol also has been measured in capsule formulations using square-wave adsorptive stripping voltammetry (H24) as has other analytes such as paroxetine (H25), penicillamine (H26), pravastatin (H27), and Rutin (H28, H29) in formulated products. Other examples of stripping voltammetric (SV) assays are included in Table 5, as well as other voltammetric (V) approaches for characterizing the electrochemical properties of a number of other analytes (H30-H45). In the latter cases, a common approach has been to use either a glassy carbon electrode, a modified form of it, or a carbon paste electrode to carry out the assays. Some of the unique types of electrode construction that have been reported include surface modifications with carbon nanotubes (H41, H46, H47), La(OH)3 nanowires (H48), and various polymers and films (H40, H42, H49, H50). A number of other types of electrodes have been used including one modified with a lithium tetracyanoethylenide film for determining dopamine (H51), a gold screen-printed electrode for measuring levadopa (H52), and a microfluidic chip for paracetamol (H37, H53). Another important area of research has been the development of electrochemical sensors for many classes of pharmaceuticals. In one account, an aminoglycoside antibiotic-selective electrode

Table 5. Example of Electroanalytical Assays for Measuring Bulk Pharmaceuticals and Formulated Products compound

sample

method

ref

albendazole p-aminobenzoic acid ascorbates artemether bromocriptine carbidopa and levadopa captopril

bulk dosage forms dosage forms dosage forms bulk dosage forms dosage forms

V SB DPP DPP DPP DPP SV and V

carvedilol

tablets

DPP and SV

cefazolin

bulk and dosage forms dosage forms dosage forms dosage forms dosage forms tablets bulk dosage forms

SV

H30 H61 H1 H2 H3 H4 H31, H32 H5, H33 H34

ISE and FIA SB FIA SB DPP SB V

H65 H62 H66 H63 H6 H64 H35

dosage forms dosage forms dosage forms tablets dosage forms dosage forms bulk dosage forms bulk acidic solutions dosage forms dosage forms dosage forms dosage forms dosage forms tablets dosage forms dosage forms bulk dosage forms tablets

DPP V ISE and FIA V DPP SV V DPP V DPP V FIA FIA FIA ISE and FIA DPP FIA V SV DPP SV and V

dosage forms dosage forms dosage forms

FIA DPP DDP

H7 H36 H67 H37 H8 H38 H39 H9 H40 H10 H41 H68 H69 H70 H71 H11 H72 H42 H43 H12 H44, H45 H73 H13 H14

chlorpromazine ciprofloxacin clobutinol diclofenac domperidone dopamine gallamine triethiodide and pancuronium bromide ganciclovir guaifenesin hyoscyamine isoniazid lamivudine lamotrigine mefloquine nimesulide norepinephrine omeprazole procaine piribedil paracetamol sertraline sildenafil tianeptine timolol tinidazole tobramycin trimebutine triprolidine verapamil vitamin C and B6 zafirlukast

has been described based on the formation of ion pairs between the target antibiotic (i.e., either gentamycin or kanamycin) and tetraphenyl borate (H54). In a second paper, a theophylline PVC membrane sensor has been described that is based on using dibutyl phthalate, 2,6-bis(phenyl)-4(phenyl)-3H-thiopyran and oleic acid (H55). The latter electrode is reported to have a linear response from 1.0 × 10-6 to 1.0 × 10-2 M of the analyte. PVCmodified electrodes also have been fabricated for amodiaquine (H56), drotaverine (H57), and hyoscyamine (H58). Last, a solidstate valproate ion-selective sensor has been constructed by an electrochemically anodic polymerization process (H59), and a cyclodextrin-based potentiomeric sensor has been developed to carry out the enantioanalysis of S-peridopril (H60). A few additional examples of sensor-based (SB) assays are given in Table 5 (H61-H64) along with examples of FIA electroanalytical-based methods (H65-H73). In addition to the listed FIA methods, two flow injection assays have appeared that employ fast Fourier transform cyclic voltammetry in combination with a gold microelectrode to assay amikacin (H74) and salbuta-

mol (H75). In two other cases, fast stripping continuous cyclic voltammetry has been used to measure methoclopramide (H76) and irreversible biamperometry for quantifying ethamsylate (H77). Other miscellaneous flow injection techiques have been used in combination with MS to study the electrochemical oxidation of zotepine (H78) and in tandem with monolithic columns to assay ambroxol (H79), betamethasone, and chloramphenicol (H80). Thermal and Miscellaneous Techniques. An important use of differential scanning calorimetry (DSC) has been to study the chemical stability of the bulk drug substances and formulated forms of it, including drug-drug and drug-excipient interactions. Examples of these types of studies include measurements of the (1) compatibility between various pharmaceutical excipients and glibenclamide (I1), glimepiride (I2), metronidazole (I3), and paracetamol (I4), (2) thermal decomposition quinoline compounds (I5), and (3) solid-state interactions between ibuprofen and nicotinamide (I6). In several of these investigations, thermogravimetry (TG) was used as a coevaluation technique. This latter technique also has been used to measure the kinetics and thermodynamics of the thermal decomposition of AZT (I7). DSC and TG have been used to investigate the dehydration of cephalosporin S-3578 (I8), risedronate hemipentahydrate (I9), and variable hydration states of topotecan hydrochloride (I10). In addition to these reports, a paper has appeared that discusses general aspects of the use of thermal methods to characterize hydration states of pharmaceuticals (I11). Other papers that deal with the general aspect of TG-DSC include one that addresses calibration aspects of high-pressure differential scanning calorimetry (I12), one that deals with the characterization the amorphous conetent of cephalosporins (I13) and one that considers the combined use of the two techniques with microscopy (I14). Another important use of DSC has been to investigate crystallinity and polymorphism. Examples of some of the compounds studied include local anaesthetics (I15), paracetamol (I16), and tranilast (I17), as well as many of the compounds previously discussed in the above subsections that deal with vibrational and nuclear magnetic resonance techniques. Besides all of these approaches, X-ray diffraction continues to be used widely singularly and in combination with other techniques to characterize pharmaceutical polymorphs. Four examples where X-ray elucitation has been the primary method of characterizing polymorphic behavior are papers that deal with acitretin (I18), leflunomide (I19), sibenadet hydrochloride (I20), and terfenadine (I21). Roger K. Gilpin is the Mead Distinguished Professor and Executive Director of Brehm Research Laboratories. Prior to this he was Dean of the College of Science and Mathematics at Wright State University. He also is Director of the Consortium for Environmental and Process Technologies. Dr. Gilpin received his B.S. degree in chemistry from Indiana State University in 1969 and his Ph.D. degree in analytical chemistry from the University of Arizona in 1973. From 1973 to 1978, he was employed as Senior Scientist and then as Group Leader of Analytical Chemistry in the Research Division of McNeil Laboratories. In 1978, Dr. Gilpin joined the faculty of Kent State University and was Professor and Chairman of the department for 1985 to 1996. His research interests are in fundamental and applied gas and liquid chromatography, chromatographic and spectrometric studies of chemically modified surfaces, characterization of the interfacial properties of materials, fundamental and applied aspects of electrospray ionization mass spectrometry, and environmental, pharmaceutical, and biomedical analysis. He has published over 200 papers and presented nearly 500 talks at national and international scientific conferences, is Associate Editor of the Journal of Chromatographic Science, and is a member of the Special Emphasis Panel for NIH related to technology transfer where he has served for 24 years.

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4285

Christina S. Gilpin is a Senior Scientist with Brehm Environmental Research Laboratories. Prior to this, she was a Research Librarian specializing in science with Ohio University and the Air Force Institute of Technology. She received her B.S. degree in psychology/sociology and her Masters in library science from Kent State specializaing in the science and technology areas. While a graduate student, she worked in the analytical instrumentation laboratory at Kent State as an analytical laboratory technician. More recently, she has earned a Masters in science teaching from Wright State University and currently acts as a facilitator for the online web-based general chemistry courses (CHEM 121 and CHEM 122). Additionally, she is co-owner of Select-O-Sep, LLC and Head of its Educational Software and Services Division. Over the last 15 years, she has given numerous presentations at regional, national, and international scientific conferences based on both her laboratory work and, more recently, research relating to the online courses and student performance/acceptance, as well as co-authored several book chapters. Most recently, she has been the PI on a SBIR contract from the U.S. Department of Education to develop an interactive electronic chemistry laboratory workbook.

LITERATURE CITED (1) Gilpin, R. K.; Pachla, L. A. Anal. Chem. 2005, 77 (12), 37553770. (2) Bosch, M. E.; Sanchez, A. J. R.; Rojas, F. S.; Ojeda, C. B. J. Pharm. Biomed. Anal. 2006, 42 (3), 291-321. (3) Nageswara Rao, R.; Meena, S.; Raghuram Rao, A. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 349-363. (4) Camarasu, C.; Madichie, C.; Williams, R. Trends Anal. Chem. 2006, 25 (8), 768-777. (5) Airaksinen, S.; Karjalainen, M.; Shevchenko, A.; Westermarck, S.; Leppanen, E.; Rantanen, J.; Yliruusi, J. J. Pharm. Sci. 2005, 94 (10), 2147-2165. (6) Waterman, K. C.; Adami, R. C. Int. J. Pharm. 2005, 293 (1-2), 101-125. (7) Buhse, L.; Kolinski, R.; Westenberger, B.; Wokovich, A.; Spencer, J.; Chen, C. W.; Turujman, S.; Gautam-Basak, M.; Kang, G. J.; Kibbe, A.; Heintzelman, B.; Wolfgang, E. J. Pharm. Biomed. Anal. 2005, 295 (8) (1-2), 101-112. (8) Westenberger, B. J.; Ellison, C. D.; Fussner, A. S.; Jenney, S.; Kolinski, R. E.; Lipe, T. G.; Lyon, R. C.; Moore, T. W.; Revelle, L. K.; Smith, A. P.; Spencer, J. A.; Story, K. D.; Toler, D. Y.; Wokovich, A. M.; Buhse, L. F. Int. J. Pharm. 2005, 306 (1-2), 56-70. (9) Shah, B.; Kakumanu, V. K.; Bansal, A. K. J. Pharm. Sci. 2006, 95 (8), 1641-1665. (10) Pudipeddi, M.; Serajuddin, A. T. M. J. Pharm. Sci. 2005, 94 (5), 929-939.

SEPARATION-BASED METHODOLOGY Liquid Chromatography (A1) Dousa, M.; Hosmanova, R. J. Pharm. Biomed. Anal. 2005, 37 (2), 373-377. (A2) Perez-Lozano, P.; Garcia-Montoya, E.; Orriols, A.; Minarro, M.; Tico, J. R.; Sune-Negre, J. M. J. Pharm. Biomed. Anal. 2005, 39 (5), 920-927. (A3) Gupta, M.; Bhargava, H. N. J. Pharm. Biomed. Anal. 2006, 40 (2), 423-428. (A4) Zivanovic, L.; Zecevic, M.; Markovic, S.; Petrovic, S.; Ivanovic, I. J. Chromatogr., A 2005, 1088 (1-2), 182-186. (A5) den Brok, M. W. J.; Nuijen B.; Hillebrand, M. J. X.; Grieshaber, C. K.; Harvey, M. D.; Beijnen, J. H. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 46-53. (A6) Nageswara R., R.; Meena, S.; Nagaraju, D.; Raghu, R. R. A. Biomed. Chromatogr. 2005, 19 (5), 362-368. (A7) Diana, J.; Vandenbosch, L.; De Spiegeleer, B.; Hoogmartens, J.; Adams, E. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 523530. (A8) Sim, J.-S.; Jun, G.; Toida, T.; Cho, S. Y.; Choi, D. W.; Chang, S.-Y.; Linhardt, R. J.; Kim, Y. S. J. Chromatogr., B 2005, 818 (2), 133-139. (A9) Koll, M.; Hoenen, H.; Aboul-Enein, H. Y. Biomed. Chromatogr. 2005, 19 (2), 119-122. (A10) Hashem, H.; Jira, T. Chromatographia 2005, 61 (3-4), 133136. (A11) de Oliveira, A. M. C.; Lowen, T. C. R.; Cabral, L. M.; dos Santos, E. M.; Rodrigues, C. R.; Castro, H. C.; dos Santos, T. C. J. Pharm. Biomed. Anal. 2005, 38 (4), 751-756. (A12) Vasu, D. R.; Moses, B. J.; Vyas, K.; Sai, P.; Ramachandra, P.; Sekhar, N. M.; Mohan, R. D. N.; Srinivasa, R. N. J. Pharm. Biomed. Anal. 2006, 40 (3), 614-622. (A13) Ali, M. S.; Ghori, M.; Khatri, A. R. J. Pharm. Biomed. Anal. 2006, 41 (2), 358-365. (A14) Higashi, Y.; Kitahara, M.; Fujii, Y. Biomed. Chromatogr. 2006, 20 (2), 166-172. (A15) Murnane, D.; Martin, G. P.; Marriott, C. J. Pharm. Biomed. Anal. 2006, 40 (5), 1149-1154. 4286

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

(A16) Santoro, M. I. R.M.; Kassab, N. M.; Singh, A. K.; KedorHackmam, E. R. M. J. Pharm. Biomed. Anal. 2006, 40 (1), 179-184. (A17) Ulu, S. T. Chromatographia 2006, 64 (7-8), 447-451. (A18) Kolte, B. L.; Raut, B. B.; Deo, A. A.; Bagool, M. A.; Shinde, D. B. J. Sep. Sci. 2005, 28 (16), 2076-2079. (A19) Grosa, G.; Del Gross, E.; Russo, R.; Allegrone, G. J. Pharm. Biomed. Anal. 2006, 41 (3), 798-803. (A20) Chauhan, V.; Conway, B. Chromatographia 2005, 61 (1112), 555-559. (A21) Baing, M. M.; Vaidya, V. V.; Sane, R. T.; Menon, S. N.; Dalvi, K. Chromatographia 2006, 64 (5-6), 293-296. (A22) den Brok, M. W. J.; Nuijen, B.; Hillebrand, M .J. X.; Lutz, C.; Opitz, H.-G.; Beijnen, J. H. J. Pharm. Biomed. Anal. 2005, 38 (4), 686-694. (A23) Xu, X.; Fu, Y.; Hu, H.; Duan, Y.; Zhang, Z. J. Pharm. Biomed. Anal. 2006, 41 (1), 266-273. (A24) Yekkala, R.; Lei, H.; Hoogmartens, J.; Adams, E. J. Pharm. Biomed. Anal. 2006, 42 (1), 71-80. (A25) Kapoor, N.; Khandavilli, S.; Panchagnula, R. Anal. Chim. Acta 2006, 570 (1), 41-45. (A26) Sarkar, M.; Khandavilli, S.; Panchagnula, R. J. Chromatogr., B 2006, 830 (2), 349-354. (A27) Yeniceli, D.; Dogrukol-Ak, D.; Tuncel, M. J. Pharm. Biomed. Anal. 2006, 40 (1), 197-201. (A28) Mehta, T. N.; Gadhvi, M. P.; Subbaiah, G. J. Chromatogr., A 2006, 1101 (1-2), 153-157. (A29) Dutta, A. K.; Avery, B. A.; Wyandt, C. M. J. Chromatogr., A 2006, 1110 (1-2), 35-45. (A30) Zivanovic, L.; Zigic, G.; Zecevic, M. J. Chromatogr., A 2006, 1119 (1-2), 224-230. (A31) Mohammadi, A.; Haririan, I.; Rezanour, N.; Ghiasi, L.; Walker, R. B. J. Chromatogr., A 2006, 1116 (1-2), 153-157. (A32) Lindegardh, N.; Hien, T. T.; Farrar, J.; Singhasivanon, P.; White, N. J.; Day, N. P. J. J. Pharm. Biomed. Anal. 2006, 42 (4), 430433. (A33) Sudsakorn, S.; Kaplan, L.; Williams, D. A. J. Pharm. Biomed. Anal. 2006, 40 (5), 1273-1280. (A34) Lian, H.; Li, D.; Wu, X.; Tian, L. J. Pharm. Biomed. Anal. 2005, 37 (2), 369-372. (A35) Hanysova, L.; Vaclavkova, M.; Dohnal, J.; Klimes, J. J. Pharm. Biomed. Anal. 2005, 37 (5), 1179-1183. (A36) Blazsek, M.; Kubis, M. J. Pharm. Biomed. Anal. 2005, 39 (34), 564-571. (A37) Cheung, A.; Struble, E.; He, J.; Yang, C.; Wang, E.; Thurston, D. E.; Liu P. J. Chromatogr., B 2005, 822 (1-2), 10-20. (A38) Zecevie, M.; Stankovic, Z.; Zivanovic, L.; Jocic, B. J. Chromatogr., A 2006, 1119 (1-2), 251-256. (A39) Wang, L.-H.; Tso, M.; Chin, C.-Y. Int. J. Cosmet. Sci. 2005, 27 (6), 354-354. (A40) Amanlou, M.; Asmardi, G.; Andalibi, P.; Javadi, N.; Khodadady, F.; Omarny, Z. B. J. Chromatogr., A 2005, 1088 (1-2), 136139. (A41) Rao, D. V. G.; Chakravarthy, I. E.; Kumar, S. R. Chromatographia 2006, 64 (5-6), 261-266. (A42) Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D. Biomed. Chromatogr. 2006, 20 (9), 898-903. (A43) Yoshioka, S.; Aso, Y. Pharm. Res. 2005, 22 (8), 1358-1364. (A44) Yoshioka, S.; Miyazaki, T.; Aso, Y. Pharm. Res. 2006, 23 (5), 961-966. (A45) Hvass, A.; Skelbaek-Pedersen, B. J. Pharm. Biomed. Anal. 2005, 37 (3), 551-557. (A46) Gil-Alegre, M. E.; Barone, M. L.; Torres-Suarez, A. I. J. Sep. Sci. 2005, 28 (16), 2086-2093. (A47) Xie, J.; Wang, C.-H. Pharm. Res. 2005, 22 (12), 2079-2090. (A48) Pilcer, G.; Sebti, T.; Amighi, K. Pharm. Res. 2006, 23 (5), 931940. (A49) Hrabalek, A.; Dolezal, P.; Vavrova, K.; Zbytovska, J.; Holas, T.; Klimentova, J.; Novotny, J. Pharm. Res. 2006, 23 (5), 912919. (A50) Vinogradov, S. V.; Kohli, E.; Zeman, A. D. Pharm. Res. 2006, 23 (5), 920-930. (A51) Kornysova, O.; Maruska, A.; Owens, P .K.; Erickson, M. J. Chromatogr., A 2005, 1071 (1-2), 171-178. (A52) Kocijan, A.; Grahek, R.; Bastarda, A.; Kralj, L. Z. J. Chromatogr., B 2005, 822 (1-2), 311-315. (A53) Eeltink, S.; Desmet, G.; Vivo-Truyols, G.; Rozing, G. P.; Schoenmakers, P. J.; Kok, W. T. J. Chromatogr., A 2006, 1104 (1-2), 256-262. (A54) Wang, Y.; Harrison, M.; Clark, B. J. J. Chromatogr., A 2006, 1105 (1-2), 199-207. (A55) Francois, I.; de Villiers, A.; Sandra, P. J. Sep. Sci. 2006, 29 (4), 492-498. (A56) Wren, S. A. C. J. Pharm. Biomed. Anal. 2005, 38 (2), 337343. (A57) Murata, K.; Mano, N.; Asakawa, N.; Ishihama, Y. J. Chromatogr., A 2006, 1123 (1), 47-52. (A58) Nguyen, D. T.-T.; Guillarme, D.; Rudaz, S.; Veuthey, J.-L. J. Chromatogr., A 2006, 1128 (1-2), 105-113. (A59) Novakova, L.; Matysova, L.; Solich, P. Talanta 2006, 68 (3), 908-918. (A60) Nguyen, D. T.-T.; Guillarme, D.; Rudaz, S.; Veuthey, J.-L. J. Sep. Sci. 2006, 29 (12), 1836-1848.

(A61) Kulikov, A. U.; Verushkin, A. G.; Loginova, L. P. Chromatographia 2005, 61 (9-10), 455-463. (A62) Momenbeik, F.; Momeni, Z.; Khorasani, J. H. J. Pharm. Biomed. Anal. 2005, 37 (2), 383-387. (A63) Esteve-Romero, J.; Carda-Broch, S.; Gil-Agusti, M.; CapellaPeiro, M.-E.; Bose, D. Trends Anal. Chem. 2005, 24 (2), 7591. (A64) El-Sherbiny, D. T.; Eid, M. I.; El-Wasseef, D. R.; Al-Ashan, R. M.; Belal, F. J. Sep. Sci. 2005, 28 (2), 197-202. (A65) Jaworska, M.; Szulinska, Z.; Wilk, M.; Anuszewska, E. J. Chromatogr., A 2005, 1081 (1), 42-47. (A66) Martinez-Algaba, C.; Bermudez-Saldana, J. M.; VillanuevaCamanas, R. M.; Sagrado, S.; Medina-Hernandez, M. J. J. Pharm. Biomed. Anal. 2006, 40 (2), 312-321. (A67) Gil-Agusti, M.; Carda-Broch, S.; Capella-Peiro, M. E.; EsteveRomero, J. J. Pharm. Biomed. Anal. 2006, 41 (4), 1235-1242. (A68) Marsh, A.; Clark, B. J.; Altria, K. D. Chromatographia 2005, 61 (11-12), 539-547. (A69) Jancic, B.; Medenica, M.; Ivanovic, D.; Malenovic, A.; Markovic, S. Anal. Bioanal. 2005, 383 (4), 687-694. (A70) Altria, K. D.; Marsh, A.; Clark, B. J. Chromatographia 2006, 63 (7-8), 309-314. (A71) Malenovic, A.; Medenica, M.; Ivanovic, D.; Jancic, B. Chromatographia 2006, 63 (13), S95-S100. (A72) Qi, M.; Wang, P.; Geng, Y. J. Pharm. Biomed. Anal. 2005, 38 (2), 355-359. (A73) Pistos, C.; Tsantili-Kakoulidou, A.; Koupparis, M. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 438-443. (A74) Liu, Z.; Duan, G. J. Pharm. Biomed. Anal. 2005, 37 (3), 577583. (A75) Kazakevich, Y. V.; LoBrutto, R.; Vivilecchia, R. J. Chromatogr., A 2005, 1064 (1), 9-18. (A76) Yang, B.; Gao, M. J.; Duan, G. L. Chromatographia 2006, 63 (9-10), 431-436. (A77) Yalcin, G.; Yuktas, F. N. J. Pharm. Biomed. Anal. 2006, 42 (4), 434-440. (A78) Garcia, J.; Marquez, A.; Ruiz, R.; Lopez, L. F.; Claro, C.; Lucero, M. J. Biomed. Chromatogr. 2006, 20 (10), 1024-1027. (A79) Zawilla, N. H.; Diana, J.; Hoogmartens, J.; Adams, E. J. Pharm. Biomed. Anal. 2006, 40 (4), 815-821. (A80) Vrakas, D.; Giaginis, C.; Tsantili-Kakoulidou, A. J. Chromatogr., A 2006, 1116 (1-2), 158-164. (A81) Wang, X.; Li, W.; Rasmussen, H. T. J. Chromatogr., A 2005, 1083 (1-2), 58-62. (A82) Marunouchi, T.; Ono, M.; Nakajima, T.; Ito, Y.; Aketo, T. J. Pharm. Biomed. Anal. 2006, 40 (2), 331-337. (A83) Pellett, J.; Lukulay, P.; Mao, Y.; Bowen, W.; Reed, R.; Ma, M.; Munger, R. C.; Dolan, J. W.; Wrisley, L.; Medwid, K.; Toltl, N. P.; Chan, C. C.; Skibic, M.; Biswas, K.; Wells, K. A.; Snyder, L. R. J. Chromatogr., A 2006, 1101 (1-2), 122-135. (A84) Knecht, D.; Rittig, F.; Lange, R. F. M.; Pasch, H. J. Chromatogr., A 2006, 1130 (1), 43-53. (A85) Lestremau, F.; Cooper, A.; Szucs, R.; David, F.; Sandra, P. J. Chromatogr., A 2006, 1109 (2), 191-196. (A86) Heinisch, S.; Puy, G.; Barrioulet, M.-P.; Rocca, J.-L. J. Chromatogr., A 2006, 1118 (2), 234-243. (A87) Hashem, H.; Jira, T. J. Chromatogr., A 2006, 1133 (1-2), 6975. (A88) Davies, N. H.; Euerby, M. R.; McCalley, D. V. J. Chromatogr., A 2006, 1119 (1-2), 11-19. (A89) Fornal, E.; Borman, P. Luscombe, C. Anal. Chim. Acta 2006, 570 (2), 267-276. (A90) Subirats, X.; Bosch, E.; Roses, M. J. Chromatogr., A 2006, 1121 (2), 170-177. (A91) Balogh, G. T.; Szanto, Z.; Forrai, E.; Gyorffy, W.; Lopata, A. J. Pharm. Biomed. Anal. 2005, 39 (5), 1057-1062. (A92) Vrakas, D.; Panderi, I.; Hadjipavlou-Litina, D.; Tsantili-Kakoulidou, A. QSAR Comb. Sci. 2005, 24 (2), 254-260. (A93) Grover, M.; Gulati, M.; Singh, B.; Singh, S. QSAR Comb. Sci. 2005, 24 (5), 639-648. (A94) Hewitt, E. F.; Lukulay, P.; Galushko, S. J. Chromatogr., A 2006, 1107 (1-2), 79-87. (A95) Zhang, Y.; Wu, D.-R.; Wang-Iverson, D. B.; Tymiak, A. A. Drug Discovery Today 2005, 10 (8), 571-577. (A96) D’Orazio, G.; Aturki, Z.; Cristalli, M.; Quaglia, M. G.; Fanali, S. J. Chromatogr., A 2005, 1081 (1), 105-113. (A97) Caetano, S.; Aires-de-Sousa, J.; Daszykowski, M.; Heyden, V. Y. Anal. Chim. Acta 2005, 544 (1-2), 315-326. (A98) Matthijs, N.; Maftouh, M.; Vander Heyden, Y. J. Sep. Sci. 2006, 29 (10), 1353-1362. (A99) Gubitz, G.; Schmid, M. G. Mol. Biotechnol. 2006, 32 (2), 159180. (A100) Sajonz, P.; Natishan, T. K.; Antia, F. D.; Frenette, R. J. Chromatogr., A 2005, 1089 (1-2), 135-141. (A101) Peter, A.; Peter, M.; Ilisz, I.; Fulop, F. Biomed. Chromatogr. 2005, 19 (6), 459-465. (A102) Li, Y.; Shi, Q.-H.; Sun, Y. Chromatographia 2005, 61 (5-6), 213-217. (A103) Sellers, J. A.; Olsen, B. A.; Owens, P. K.; Gavin, P. F. J. Pharm. Biomed. Anal. 2006, 41 (4), 1088-1094. (A104) Ghanem, A.; Naim, L. J. Chromatogr., A 2006, 1101 (1-2), 171-178.

(A105) Donato, P.; Stancanelli, R.; Calabro, M. L.; Tommasini, S.; Cutroneo, P.; Guardo, M.; Pagano, B.; Chimirri, A.; Ficarra, P.; Ficarra, R. J. Pharm. Biomed. Anal. 2006, 42 (5), 543548. (A106) Fanali, S.; D’Orazio, G.; Rocco, A. J. Sep. Sci. 2006, 29 (10), 1423-1431. (A107) Kimura, T.; Shibukawa, A.; Matsuzaki, K. Pharm. Res. 2006, 23 (5), 1038-1042. (A108) Breton, D.; Buret, D.; Clair, P.; Lafosse, M. J. Chromatogr., A 2005, 1088 (1-2), 104-109. (A109) Zhang, D.; Li, F.; Kim, D. H.; Choi, H. J.; Hyun, M. H. J. Chromatogr., A 2005, 1083 (1-2), 89-95. (A110) Peter, A.; Arki, A.; Forro, E.; Fulop, F.; Armstrong, D. W. Chirality 2005, 17 (4), 193-200. (A111) Chilmonczyk, Z.; Ksycinska, H.; Lisowaka-Kuzmicz, M.; Jonczyk, A.; Mazgajska, M.; Jaronczyk, M.; Strzelczyk, A.; AboulEnein, H. Y. Anal. Chim. Acta 2005, 536 (1-2), 7-13. (A112) Wang, J.; Fang, Y. Biomed. Chromatogr. 2006, 20 (9), 904910. (A113) Huang, J.; Cao, G.; Hu, X.; Sun, C.; Zhang, J. Chirality 2006, 18 (8), 587-591. (A114) Nageswara R., R.; Narasa Raju, A.; Nagaraju, D. Talanta 2006, 70 (4), 805-810. (A115) Marini, R. D.; Boulanger, B.; Heyden, V. Y.; Chiap, P.; Crommen, J.; Hubert, P. Anal. Chim. Acta 2005, 531 (1), 131140. (A116) Marini, R. D.; Matthijs, N.; Heyden, V. Y.; Smeyers-Verbeke, J.; Dehouck, P.; Hoogmartens, J.; Silvestre, P.; Ceccato, A. et al. Anal. Chim. Acta 2005, 546 (2), 182-192. (A117) Marini, R. D.; Chiap, P.; Boulanger, B.; Rudaz, S.; Rozet, E.; Crommen, J.; Hubert, P. Talanta 2006, 68 (4), 1166-1175. (A118) Chen, Z.; Yu, Y.; Li, L. J. Sep. Sci. 2005, 28 (2), 193-196. (A119) Ghanem, A.; Hoenen, H.; Muller, P.; Aboul-Enein, H. Y. Anal. Chim. Acta 2005, 538 (1-2), 15-24. (A120) Berkecz, R.; Sztojkov-Ivanov, A.; Ilisz, I.; Forro, E.; Fulop, F.; Hyun, M. H.; Peter, A. J. Chromatogr., A 2006, 1125 (1), 138143. (A121) Chafer-Pericas, C.; Campins-Falco, P.; Herraez-Hernandez, R. J. Pharm. Biomed. Anal. 2006, 40 (5), 1209-1217. (A122) de Veredas, V.; Carpes, M. J. S.; Correia, C. R. D.; Santana, C. C. J. Chromatogr., A 2006, 1119 (1-2), 156-162. (A123) Donato, P.; Stancanelli, R.; Calabro, M. L.; Tommasini, S.; Cutroneo, P.; Guardo, M.; Pagano, B.; Chimirri, A.; et al. J. Pharm. Biomed. Anal. 2006, 42 (5), 543-548. (A124) Lorin, M.; Delepee, R.; Maurizot, J.-C.; Ribet, J.-P.; Morin, P. Chirality 2007, 19 (2), 106-113. (A125) Yu, L.; Mei-Li, F.; Jie-Guo, X. Arch. Pharm. 2006, 339 (8), 461-465. (A126) Clarot, I.; Regazzeti, A.; Auzeil, N.; Laadani, F.; Citton, M.; Netter, P.; Nicolas, A. J. Chromatogr., A 2005, 1087 (1-2), 236-244. (A127) Megoulas, N. C.; Koupparis, M. A. Anal. Bioanal. Chem. 2005, 382 (2), 290-296. (A128) Sarri, A. K.; Megoulas, N. C.; Koupparis, M. A. Anal. Chim. Acta 2006, 573-574, 250-257. (A129) Wang, J.; Hu, X.; Tu, Y.; Ni, K. J. Chromatogr., B 2006, 834 (1-2), 178-182. (A130) Sarri, A. K.; Megoulas, N. C.; Koupparis, M. A. J. Chromatogr., A 2006, 1122 (1-2), 275-278. (A131) Liao, L.-P.; Li, S.-L.; Li, P. J. Sep. Sci. 2005, 28 (16) 20612066. (A132) Peng, C. Y. A.; Ferreira, J. F. S.; Wood, A. J. J. Chromatogr., A 2006, 1133 (1-2), 254-258. (A133) Yan, S.; Luo, G.; Wang, Y.; Cheng, Y. J. Pharm. Biomed. Anal. 2006, 40 (4), 889-895. (A134) Qi, L.-W.; Yu, Q.-T.; Li, P.; Li, S.-L.; Wang, Y.-X.; Sheng, L.-H.; Yi, L. J. Chromatogr., A 2006, 1134 (1-2), 162-169. (A135) Wan, J. B.; Yang, F. Q.; Li, S. P.; Wang, Y. T.; Cui, X. M. J. Pharm. Biomed. Anal. 2006, 41 (5), 1596-1601. (A136) Rabinovich-Guilatt, L.; Dubernet, C.; Gaudin, K.; Lambert, G.; Couvreur, P.; Chaminade, P. Eur. J. Pharm. Biopharm. 2005, 61 (1-2), 69-76. (A137) Xie, Z.; Jiang, Y.; Zhang, D.-Q. J. Chromatogr., A 2006, 1104 (1-2), 173-178. (A138) Risley, D. S.; Yang, W. Q.; Peterson, J. A. J. Sep. Sci. 2006, 29 (2), 256-264. (A139) Nair, V. D. P.; Kanfer, I.; Hoogmartens, J. J. Pharm. Biomed. Anal. 2006, 41 (3), 731-737. (A140) Hirano, Y.; Tsunoda, M.; Funatsu, T.; Imai, K. J. Chromatogr., B 2005, 819 (1), 41-46. (A141) Nonaka, S.; Tsunoda, M.; Imai, K.; Funatsu, T. J. Chromatogr., A 2005, 1066 (1-2), 41-45. (A142) Gioia, M. G.; Gatti, R.; Minarini, A. J. Pharm. Biomed. Anal. 2005, 37 (5), 1135-1141. (A143) Higashi, Y.; Nakamura, S.; Matsumura, H.; Fujii, Y. Biomed. Chromatogr. 2006, 20 (5), 423-428. (A144) Gatti, R.; Gioia, M. G. J. Pharm. Biomed. Anal. 2006, 42 (1), 11-16. (A145) Duh, T.-H.; Wu, H.-L.; Pan, C.-W.; Kou, H.-S. J. Chromatogr., A 2005, 1088 (1-2), 175-181. (A146) Lin, M.-C.; Wu, H.-L.; Kou, H.-S.; Wu, S.-M. J. Chromatogr., A 2006, 1119 (1-2), 264-269.

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4287

(A147) Styslo-Zalasik, M.; Li, W. J. Pharm. Biomed. Anal. 2005, 37 (3), 529-534. (A148) Tsunoda, M.; Imai, K. Anal. Chim. Acta 2005, 541 (1-2), 13-23. (A149) Ahmed, S.; Fujii, S.; Kishikawa, N.; Ohba, Y.; Nakashima, K.; Kuroda, N. J. Chromatogr., A 2006, 1133 (1-2), 76-82. (A150) Marszall, M. L.; Lebiedzinska, A.; Czarnowski, W.; Szefer, P. J. Chromatogr., A 2005, 1094 (1-2), 91-98. (A151) Yan, X.; Wang, W.; Xing, D.; Zhao, Y.; Du, L. J. Chromatogr., A 2005, 1077 (1), 44-48. (A152) Zawilla, N. H.; Diana, J.; Hoogmartens, J.; Adams, E. J. Chromatogr., B 2006, 833 (2), 191-198. (A153) Xia, J.; Kotani, A.; Hakamata, H.; Kusu, F. J. Pharm. Biomed. Anal. 2006, 41 (4), 1401-1405. (A154) Nakao, R.; Furutuka, K.; Yamaguchi, M.; Suzuki, K. Nucl. Med. Bio. 2006, 33 (3), 441-447. Capillary Electrophoresis and Electrochromatography (B1) Desiderio, C.; Cavallaro, R. A.; De Rossi, A.; D’Anselmi, F.; Fuso, A.; Scarpa, S. J. Pharm. Biomed. Anal. 2005, 38 (3), 449-456. (B2) Sanger-van de Griend, C. E.; Ek, A. G.; Widahl-Nasman, M. E.; Andersson, E. K. M. J. Pharm. Biomed. Anal. 2006, 41 (1), 77-83. (B3) Lin, X.; Zhu, C.; Hao, A. Electrophoresis 2005, 26 (20), 38903896. (B4) Matthijs, N.; Heyden, Y. V. Biomed. Chromatogr. 2006, 20 (8), 696-709. (B5) Kavran-Belin, G.; Rudaz, S.; Veuthey, J.-L. J. Sep. Sci. 2005, 28 (16), 2187-2192. (B6) Mandrioli, R.; Musenga, A.; Lasaponara, S. S.; Saracino, M. A.; Fanali, S.; Raggi, M. A. Anal. Chim. Acta 2006, 560 (12), 57-63. (B7) Wei, S.; Guo, H.; Lin, J.-M. J. Chromatogr., B 2006, 832 (1), 90-96. (B8) Mikus, P.; Valaskova, I.; Havranek, E. J. Sep. Sci. 2005, 28 (12), 1278-1284. (B9) Van Eeckhaut, A.; Michotte, Y. Electrophoresis 2006, 27 (12), 2376-2385. (B10) Berzas Nevado, J. J.; Guiberteau Cabanillas, C.; Villasenor Llerena, M. J.; Rodriguez Robledo, V. J. Chromatogr., A 2005, 1072 (2), 249-257. (B11) Zhao, Y.; Yang, X.; Sun, X.; Jiang, R.; Zhang, S. J. Chromatogr., A 2006, 1108 (2), 258-262. (B12) Wei, S.; Song, G.; Lin, J.-M. J. Chromatogr., A 2005, 1098 (12), 166-171. (B13) Cucinotta, V.; Giuffrida, A.; Maccarrone, G.; Messina, M.; Puglisi, A.; Torrisi, A.; Vecchio, G. J. Pharm. Biomed. Anal. 2005, 37 (5), 1009-1014. (B14) de Pablos, R. R.; Garcia-Ruiz, C.; Crego, A. L.; Marina, M. L. Electrophoresis 2005, 26 (6), 1106-1113. (B15) Hammitzsch, M.; Rao, R. N.; Scriba, G. K. E. Electrophoresis 2006, 27 (21), 4334-4344. (B16) Khan, M.; Viswanathan, B.; Rao, D. S.; Reddy, G. S. J. Pharm. Biomed. Anal. 2006, 41 (4), 1447-1452. (B17) Zhou, S.; Ouyang, J.; Baeyens, W. R. G.; Zhao, H.; Yang, Y. J. Chromatogr., A 2006, 1130 (2), 296-301. (B18) Shi, Y.; Huo, C.; Yao, H.; Gao, R.; Zhao, Y.; Xu, B. J. Chromatogr., A 2005, 1072 (2), 279-282. (B19) Cruz, L. A.; Hall, R. J. Pharm. Biomed. Anal. 2005, 38 (1), 8-13. (B20) Nevado, J. J. B.; Penalvo, G. C.; Dorado, R. M. R. Anal. Chim. Acta 2005, 533 (2), 127-133. (B21) Mikus, P.; Valaskova, I.; Havranek, E. J. Pharm. Biomed. 2005, 38 (3), 442-448. (B22) Zhao, Y.; Yang, X.-B.; Jiang, R.; Sun, X.-L.; Li, X.-Y.; Liu, W.M.; Zhang, S.-Y. Chirality 2006, 18 (2), 84-90. (B23) Maier, V.; Horakova, J.; Petr, J.; Tesarova, E.; Coufal, P.; Sevcik, J. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 691-696. (B24) Marini, R. D.; Servais, A.-C.; Rozet, E.; Chiap, P.; Boulanger, B.; Rudaz, S.; Crommen, J.; Hubert, P.; Fillet, M. J. Chromatogr., A 2006, 1120 (1-2), 102-111. (B25) Marini, R. D.; Groom, C.; Doucet, F. R.; Hawari, J.; Bitar, Y.; Holzgrabe, U.; Gotti, R.; Schappler, J.; Rudaz, S.; Veuthey, J.C.; Moi, R.; Somsen, G. W.; de Jong, G. J.; Ha, P. T. T.; Zhang, J.; Van Schepdael, A.; Hoogmartens, J.; Brione, W.; Ceccato, A.; Boulanger, B.; Mangelings, D.; Vander, H. Y.; Van Aei, W.; Jimidar, I.; Pedrini, M.; Servais, A.-C.; Fillet, M.; Crommen, J.; Rozet, E.; Hubert, P. Electrophoresis 2006, 27 (12), 23862399. (B26) Leonard, S.; Van Schepdael, A.; Ivanyi, T.; Lazar, I.; Rosier, J.; Vanstockem, M.; Vermeersch, H.; Hoogmartens, J. Electrophoresis 2005, 26 (3), 627-632. (B27) Na, N.; Hu, Y.; Jin, O. Y.; Baeyens, W. R. G.; Delanghe, J. R.; Taes, Y. E. C.; Xie, M.; Chen, H. Talanta 2006, 69 (4), 866872. (B28) Gubitz, G.; Schmid, M. G. Mol. Biotechnol. 2006, 32 (2), 159180. (B29) Van Eeckhaut, A.; Michotte, Y. Electrophoresis 2006, 27 (14), 2880-2895. (B30) Ha, P. T. T.; Hoogmartens, J.; Van Schepdael, A. J. Pharm. Biomed. Anal. 2006, 41 (1), 1-11. 4288

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

(B31) Rocheleau, M.-J. Electrophoresis 2005, 26 (12), 2320-2329. (B32) Mangelings, D.; Tanret, I.; Matthijs, N.; Maftouh, M.; Massart, D. L.; Heyden, V. Y. Electrophoresis 2005, 6 (4-5), 818-832. (B33) Fradi, I.; Servais, A.-C.; Pedrini, M.; Chiap, P.; Ivanyi, R.; Crommen, J.; Fillet, M. Electrophoresis 2006, 27 (17), 34343442. (B34) Sokoliess, T.; Koller, G. Electrophoresis 2005, 26 (12), 23302341. (B35) Mangelings, D.; Discry, J.; Maftouh, M.; Massart, D. L.; Heyden, V. Y. Electrophoresis 2005, 26 (20), 3930-3941. (B36) Servais, A.-C.; Fillet, M.; Chiap, P.; Dewe, W.; Hubert, P.; Crommen, J. J. Chromatogr., A 2005, 1068 (1), 143-150. (B37) Scriba, G. K. E. Electrophoresis 2006, 27 (1), 222-230. (B38) Mandrioli, R.; Raggi, M. A. Electrophoresis 2006, 27 (1), 213221. (B39) Souverain, S.; Geiser, L.; Rudaz, S.; Veuthey, J.-L. J. Pharm. Biomed. Anal. 2006, 40 (2), 235-241. (B40) Eeltink, S.; Kok, W. T. Electrophoresis 2006, 27 (1), 84-96. (B41) Altria, K.; Marsh, A.; Sanger-van de Griend, C. Electrophoresis 2006, 27 (12), 2263-2282. (B42) Poinsot, V.; Lacroix, M.; Maury, D.; Chataigne, G.; Feurer, B.; Couderc, F. Electrophoresis 2006, 27 (1), 176-194. (B43) Garcia-Ruiz, C.; Marina, M. L. Electrophoresis 2006, 27 (1), 266-282. (B44) Stroink, T.; Ortiz, M. C.; Bult, A.; Lingeman, H.; de Jong, G. J.; Underberg, W. J. M. J. Chromatogr., B 2005, 817 (1), 4966. (B45) Zhang, J.; Hoogmartens, J.; Van Schepdael, A. Electrophoresis 2006, 27 (1), 35-43. (B46) Fogarty, B. A.; Heppert, K. E.; Cory, T. J.; Hulbutta, K. R.; Martin, R. S.; Lunte, S. M. Analyst 2005, 130 (6), 924-930. (B47) Goldbach, M.; Axthelm, H.; Keusgen, M. Sens. Actuators, B: Chem. 2006, 120 (1), 346-351. (B48) Liu, A.-L.; He, F.-Y.; Hu, Y.-L.; Xia, X.-H. Talanta 2006, 68 (4), 1303-1308. (B49) Currie, C. A.; Heineman, W. R.; Halsall, H. B.; Seliskar, C. J.; Limbach, P. A.; Arias, F.; Wehmeyer, K. R. J. Chromatogr., B 2005, 824 (1-2), 201-205. (B50) Fischer, D. J.; Vandaveer, W. R.; Grigsby, R. J.; Lunte, S. M. Electroanalysis 2005, 17 (13), 1153-1159. (B51) Guihen, E.; Sisk, G. D.; Scully, N. M.; Glennon, J. D. Electrophoresis 2006, 27 (12), 2338-2347. (B52) Okamoto, H.; Nakajima, T.; Ito, Y.; Aketo, T.; Shimada, K.; Yamato, S. J. Pharm. Biomed. Anal. 2005, 37 (3), 517-528. (B53) Wu, M. H.; Zhao, L. H.; Song, Y.; Zhang, W.; Xiang, B. R.; Mei, L. H. Planta Med. 2005, 71 (12), 1152-1156. (B54) Jiang, T.-F.; Lv, Z.-H.; Wang, Y.-H. J. Sep. Sci. 2005, 28 (16), 2225-2229. (B55) Kuo, C.-Y.; Wu, S.-M. J. Sep. Sci. 2005, 28 (2), 144-148. (B56) Tripodi, V.; Flor, S.; Carlucci, A.; Lucangioli, S. Electrophoresis 2006, 27 (22), 4431-4438. (B57) Mallampati, S.; Leonard, S.; De Vulder, S.; Hoogmartens, J.; Van Schepdael, A. Electrophoresis 2005, 26 (21), 4079-4088. (B58) Gibson, G.; Ramstad, T.; Mills, K. A.; Dunn, M. J. Farmaco 2005, 60 (10), 847-853. (B59) Hansen, S. H.; Sheribah, Z. A. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 322-327. (B60) Martinez-Gomez, M. A.; Martinez-Pla, J. J.; Sagrado, S.; Villanueva-Camanas, R. M.; Medina-Hernandez, M. J. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 76-81. (B61) Tu, J.; Halsall, H. B.; Seliskar, C. J.; Limbach, P. A.; Arias, F.; Wehmeyer, K. R.; Heineman, W. R. J. Pharm. Biomed. Anal. 2005, 38 (1), 1-7. (B62) Kodama, S.; Yamamoto, A.; Terashima, H.; Honda, Y.; Taga, A.; Honda, S. Electrophoresis 2005, 26 (21), 4070-4078. Other Separation Techniques (C1) Xu, H.; Templeton, A. C.; Zwierzynski, M.; Mahajan, R.; Reed, R. A. J. Pharm. Biomed. Anal. 2005, 38 (2), 225-231. (C2) Wang, X.; Jiang, T.; Yuan, J.; Cheng, C.; Liu, J.; Shi, J.; Zhao, R. Anal. Bioanal. Chem. 2006, 385 (6), 1082-1086. (C3) Wang, X.; Jiang, T.; Yuan, J.; Cheng, C.; Liu, J.; Shi, J.; Zhao, R. Anal. Bioanal. Chem. 2006, 386 (2), 399. (C4) Michulec, M.; Wardencki, W. Chromatographia 2006, 64 (34), 191-197. (C5) del Barrio, M.-A.; Hu, J.; Zhou, P.; Cauchon, N. J. Pharm. Biomed. Anal. 2006, 41 (3), 738-743. (C6) Li, Z.; Jacobus, L. K.; Wuelfing, W. P.; Golden, M.; Martin, G. P.; Reed, R. A. J. Chromatogr., A 2006, 1104 (1-2), 1-10. (C7) Bishop, E. J.; Mitra, S. J. Pharm. Biomed. Anal. 2005, 37 (1), 81-86. (C8) Lima, E. M.; Diniz, D. G. A.; Antoniosi-Filho, N. R. J. Pharm. Biomed. Anal. 2005, 38 (4), 678-685. (C9) Nevado, J. J. B.; Villasenor Llerena, M. J.; Contento Salcedo, A. M.; Aguas Nuevo, E. J. Pharm. Biomed. Anal. 2005, 38 (1), 52-59. (C10) Marchei, E.; Pellegrini, M.; Pacifici, R.; Zuccaro, P.; Pichini, S. J. Pharm. Biomed. Anal. 2006, 41 (5), 1633-1641. (C11) Bakhbakhi, Y.; Charpentier, P. A.; Rohani, S. Int. J. Pharm. 2006, 309 (1-2), 71-80. (C12) Cardoso, V. M.; Solano, A. G. R.; Prado, M. A. F.; Nunan, E. de A. J. Pharm. Biomed. Anal. 2006, 42 (5), 630-634.

(C13) Bieri, S.; Munoz, O.; Veuthey, J.-L.; Christen, P. J. Sep. Sci. 2006, 29 (1), 96-102. (C14) Petrovic, M.; Debeljak, Z.; Blazevic, N. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 531-534. (C15) Gotardo, M. A.; Monteiro, M. J. Pharm. Biomed. Anal. 2005, 38 (4), 709-713. (C16) Bochkareva, N. L.; Glazkov, I. N.; Revelsky, I. A. J. Anal. Chem. 2006, 61 (11), 1082-1089. (C17) Jones, M. D.; Price, R. Pharm. Res. 2006, 23 (8), 1665-1674. (C18) Tong, H. H. Y.; Shekunov, B. Y.; York, P.; Chow, A. H. L. J. Pharm. Sci. 2006, 95 (1), 228-233. (C19) Adamska, K.; Voelkel, A. Int. J. Pharm. 2005, 304 (1-2), 1117. (C20) Swaminathan, V.; Cobb, J.; Saracovan, I. Int. J. Pharm. 2006, 312 (1-2), 158-165. (C21) Sasa, B.; Odon, P.; Stane, S.; Julijana, K. Eur. J. Pharm. Sci. 2006, 27 (4), 375-383. (C22) Tong, H. H. Y.; Shekunov, B. Y.; York, P.; Chow, A. H. L. J. Pharm. Sci. 2005, 94 (3), 695-700. (C23) Stapley, J.; Buckton, G.; Merrifield, D. Int. J. Pharm. 2006, 318 (1-2), 22-27. (C24) Shehata, M. A.; Abdel-Aaty Shehata, M.; Hassan, N. Y.; ElWeshahy, S. A. J. Sep. Sci. 2006, 29 (18), 2716-2724. (C25) Bouligand, J.; Storme, T.; Laville, I.; Mercier, L.; Oberlin, O.; Vassal, G.; B., P.; Paci, A. J. Pharm. Biomed. Anal. 2006, 38 (1), 180-185. (C26) Ghassempour, A.; Ahmadi, M.; Ebrahimi, S. N.; Aboul-Enein, H. Y. Chromatographia 2006, 64 (1-2), 101-104. (C27) Wojciak-Kosior, M.; Skalska, A.; Matysik, A. J. Pharm. Biomed. Anal. 2006, 41 (1), 286-289. (C28) Ravi, T. K.; Gandhimathi, M.; Suganthi, A.; Sarovar, S. J. Sep. Sci. 2006, 29 (11), 1647-1652. (C29) Rai, S.; Mukherjee, K.; Mal, M.; Wahile, A.; Saha, B. P.; Mukherjee, P. K. J. Sep. Sci. 2006, 29 (15), 2292-2295. (C30) Gunther, M.; Schmidt, P. C. J. Pharm. Biomed. Anal. 2005, 37 (4), 817-821. (C31) Zhao, R.-Z.; Liu, S. J.; Zhou, L. L. Chromatographia 2005, 61 (5-6), 311-314. (C32) Chopra, S.; Ahmad, F. J.; Khar, R. K.; Motwani, S. K.; Mahdi, S.; Iqbal, Z.; Talegaonkar, S. Anal. Chim. Acta 2006, 577 (1), 46-51. (C33) Youssef, N. F. J. Pharm. Biomed. Anal. 2005, 39 (5), 871876. (C34) Bodoki, E.; Oprean, R.; Vlase, L.; Tamas, M.; Sandulescu, R. J. Pharm. Biomed. Anal. 2005, 37 (5), 971-977. (C35) El-Sherif, Z. A.; El-Zeany, B.; El-Houssini, O. M. J. Pharm. Biomed. Anal. 2005, 36 (5), 975-981. (C36) Salo, P. K.; Salomies, H.; Harju, K.; Ketola, R. A.; Kotiaho, T.; Yli-Kauhaluoma, J.; Kostiainen, R. J. Am. Soc. Mass Spectrom. 2005, 16 (6), 906-915. (C37) Kauppila, T. J.; Talaty, N.; Salo, P. K.; Kotiaho, T.; Kostiainen, R.; Cooks, R. G. Rapid Commun. Mass Spectrom. 2006, 20 (14), 2143-2150. (C38) Ferenczi-Fodor, K.; Vegh, Z.; Renger, B. Trends Anal. Chem. 2006, 25 (8), 778-789. (C39) Obniska, J.; Kaminski, K. Biomed. Chromatogr. 2006, 20 (11), 1185-1191. (C40) Marciniec, B.; Ogrodowczyk, M.; Dettlaff, K. Radiat. Phys. Chem. 2005, 72 (4), 517-524. (C41) Cimpoiu, C.; Hosu, A.; Hodisan, S. J. Pharm. Biomed. Anal. 2006, 41 (2), 633-637. Hyphenated Techniques (D1) Korfmacher, W. A. Drug Discovery Today 2005, 10 (20), 13571367. (D2) Cai, Y.; Kingery, D.; McConnell, O.; Bach, A. C. Rapid Commun. Mass Spectrom. 2005, 19 (12), 1717-1724. (D3) Deng, G.; Sanyal, G. J. Pharm. Biomed. Anal. 2006, 40 (3), 528-538. (D4) Yang, Z. J. Pharm. Biomed. Anal. 2006, 40 (3), 516-527. (D5) Larger, P. J.; Breda, M.; Fraier, D.; Hughes, H.; James, C. A. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 206-216. (D6) Chen, J.; Korfmacher, W. A.; Hsieh, Y. J. Chromatogr., B 2005, 820 (1), 1-8. (D7) Smyth, W. F. J. Chromatogr., B 2005, 824 (1-2), 1-20. (D8) Kranendijk, M.; Waterval, J. C. M.; Somsen, G. W.; de Jong, G. J. J. Sep. Sci. 2005, 28 (14), 1796-1802. (D9) Corkery, L. J.; Pang, H.; Schneider, B. B.; Covey, T. R.; Siu, K.W. M. J. Am. Soc. Mass Spectrom. 2005, 16 (3), 363-369. (D10) Balimane, P. V.; Pace, E.; Chong, S.; Zhu, M.; Jemal, M.; Van Pelt, C. K. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 8-16. (D11) Ostman, P.; Jantti, S.; Grigoras, K.; Saarela, V.; Ketola, R. A.; Franssila, S.; Kotiaho, T.; Kostiainen, R. Lab Chip 2006, 6 (7), 948-953. (D12) Tschappat, V.; Varesio, E.; Signor, L.; Hopfgartner, G. J. Sep. Sci. 2005, 28 (14), 1704-1711. (D13) Pan, C.; Liu, F.; Ji, Q.; Wang, W.; Drinkwater, D.; Vivilecchia, R. J. Pharm. Biomed. Anal. 2006, 40 (3), 581-590. (D14) Tsukamoto, Y.; Santa, T.; Yoshida, H.; Miyano, H.; Fukushima, T.; Hirayama, K.; Imai, K.; Funatsu, T. Biomed. Chromatogr. 2006, 20 (10), 1049-1055.

(D15) Marshall, P. S.; Leavens, B.; Heudi, O.; Ramirez-Molina, C. J. Chromatogr., A 2004, 1056 (11), 3-12. (D16) Carr, J. E.; Kwok, K.; Webster, G. K.; Carnahan, J. W. J. Pharm. Biomed. Anal. 2006, 40 (1), 42-50. (D17) Albert, M.; Cretier, G.; Guillarme, D.; Heinisch, S.; Rocca, J.L. J. Sep. Sci. 2005, 28 (14), 1803-1811. (D18) Budimi, N.; Westo, D. J.; Crease, C. S. Analyst 2006, 132 (1), 34-40. (D19) Dubber, M.-J.; Sewram, V.; Mshicileli, N.; Shephard, G. S.; Kanfer, I. J. Pharm. Biomed. Anal. 2005, 37 (4), 723-731. (D20) Liu, F.; Pan, C.; Drumm, P.; Ang, C. Y. W. J. Pharm. Biomed. Anal. 2005, 37 (2), 303-312. (D21) Zhang, H.; Cheng, Y. J. Pharm. Biomed. Anal. 2006, 40 (2), 429-432. (D22) Liu, Y.; Yang, J.; Cai, Z. J. Pharm. Biomed. Anal. 2006, 41 (5), 1642-1647. (D23) Wang, D.; Song, Y.; Li, S.-L.; Bian, Y.-Y.; Guan, J.; Li, P. J. Sep. Sci. 2006, 29 (13), 2012-2022. (D24) Ye, M.; Guo, D-a. Rapid Commun. Mass Spectrom. 2005, 19 (13), 1881-1892. (D25) Ye, M.; Guo, D.-a. Rapid Commun. Mass Spectrom. 2005, 19 (6), 818-824. (D26) Guo, F.-Q.; Li, A.; Huang, L.-F.; Liang, Y.-Z.; Chen, B.-M. J. Pharm. Biomed. Anal. 2006, 40 (30), 623-630. (D27) Assimopoulou, A. N.; Karapanagiotis, I.; Vasiliou, A.; Kokkini, S.; Papageorgiou, V. P. Biomed. Chromatogr. 2006, 20 (12), 1359-1374. (D28) Liang, M.; Zhang, W.; Hu, J.; Liu, R.; Zhang, C. J. Pharm. Biomed. Anal. 2006, 42 (2), 178-183. (D29) He, Q.; Hu, X.-J.; Cheng, Y.-Y. J. Pharm. Biomed. Anal. 2006, 41 (2), 485-492. (D30) Zhang, G.; Zhang, F.; Yang, L.; Zhu, E.; Wang, Z.; Xu, L.; Hu, Z. Anal. Chim. Acta 2006, 571 (1), 17-24. (D31) Zhang, Y.; Shi, Q.; Shi, P.; Zhang, W.; Cheng, Y. Rapid Commun. Mass Spectrom. 2006, 20 (15), 2328-2342. (D32) Zhao, L.; Huang, C.; Shan, Z.; Xiang, B.; Mei, L. J. Chromatogr., B 2005, 821 (1), 67-74. (D33) Van Nieuwerburgh, F. C. W.; Van Casteele, S. R.; Maes, L.; Goossens, A.; Inze, D.; Van Bocxlaer, J.; Deforce, D. L. D. J. Chromatogr., A 2006, 1118 (2), 180-187. (D34) Yang, M.; Liu, A.; Guan, S.; Sun, J.; Xu, M.; Guo, D. Rapid Commun. Mass Spectrom. 2006, 20 (8), 1266-1280. (D35) Grosa, G.; Allegrone, G.; Del Grosso, E. J. Pharm. Biomed. Anal. 2005, 38 (1), 79-86. (D36) Bogusz, M. J.; Hassan, H.; Al-Enazi, E.; Ibrahim, Z.; Al-Tufail, M. J. Pharm. Biomed. Anal. 2006, 41 (2), 554-564. (D37) Smyth, W. F.; McClean, S.; Hack, C. J.; Ramachandran, V. N.; Doherty, B.; Joyce, C.; O’Donnell, F.; Smyth, T. J.; O’Kane, E.; Brooks, P. Trends Anal. Chem. 2006, 25 (6), 572-582. (D38) Koh, H. L.; Wang, H.; Zhou, S.; Chan, E.; Woo, S. O. J. Pharm. Biomed. Anal. 2006, 40 (3), 653-661. (D39) Xu, S.-J.; Yang, L.; Zeng, X.; Zhang, M.; Wang, Z.-T. Rapid Commun. Mass Spectrom. 2006, 20 (22), 3275-3288. (D40) de Jong, C. F.; Derks, R. J. E.; Bruyneel, B.; Niessen, W.; Irth, H. J. Chromatogr., A 2006, 1112 (1-2), 303-310. (D41) Sudhakar, P.; Nirmala, M.; Moses B. J.; Vyas, K.; Madhusudan, R. G.; Vijaya Bhaskar, B.; Pratap, R. P.; Mukkanti, K. J. Pharm. Biomed. Anal. 2006, 40 (3), 605-613. (D42) Shinde, V. R.; Trivedi, A.; Upadhayay, P. R.; Gupta, N. L.; Kanase, D. G.; Chikate, R. C. J. Pharm. Biomed. Anal. 2006, 42 (3), 395-399. (D43) Haghedooren, E.; Raju, V. S. K. K. R. B.; Dehouck, P.; Govaerts, C.; Schepdael, A. V.; Hoogmartens, J.; Adams, E. J. Pharm. Biomed. Anal. 2006, 41 (1), 165-175. (D44) Francese, G.; Corana, F.; Meneghetti, O.; Marazza, F. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 757-763. (D45) Galmier, M.-J.; Bouchon, B.; Madelmont, J.-C.; Mercier, F.; Pilotaz, F.; Lartigue, C. J. Pharm. Biomed. Anal. 2005, 38 (4), 790-796. (D46) Sun, Y.; Chen, X.; Xu, H.; Guan, Z.; Zhong, D. J. Chromatogr., B 2006, 832 (2), 224-230. (D47) Marchei, E.; Pellegrini, M.; Pacifici, R.; Palmi, I.; Pichini, S. J. Pharm. Biomed. Anal. 2005, 37 (3), 499-507. (D48) Farina, A.; Gostoli, G.; Bossu, E.; Montinaro, A.; Lestingi, C.; Lecce, R. J. Pharm. Biomed. Anal. 2005, 37 (5), 1089-1093. (D49) Vuletic, M.; Cindric, M.; Koruznjak, J. D. J. Pharm. Biomed. Anal. 2005, 37 (4), 715-721. (D50) Zhou, H.; Tai, Y.; Sun, C.; Pan, Y. J. Pharm. Biomed. Anal. 2005, 37 (1), 97-107. (D51) Cao, X.; Tai, Y.; Sun, C.; Wang, K.; Pan, Y. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 39-45. (D52) Na¨gele, E.; Moritz, R. J. Am. Soc. Mass Spectrom. 2005, 16 (10), 1670-1676. (D53) Leonard, S.; Ferraro, M.; Adams, E.; Hoogmartens, J.; Schepdael, A. V. Rapid Commun. Mass Spectrom. 2006, 20 (20), 3101-3110. (D54) Zhou, H.; Zheng, Z.; Wu, S.; Tai, Y.; Cao, X.; Pan, Y. J. Pharm. Biomed. Anal. 2006, 41 (4), 1116-1123. (D55) Deubel, A.; Fandino, A. S.; Sorgel, F.; Holzgrabe, U. J. Chromatogr., A 2006, 1136 (1), 39-47. (D56) Hu, M.; Hu, C.-Q. Anal. Chim. Acta 2005, 535 (1-2), 8999.

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4289

(D57) Lampinen-Salomonsson, M.; Bondesson, U.; Petersson, C.; Hedeland, M. Rapid Commun. Mass Spectrom. 2006, 20 (9), 1429-1440. (D58) Guo, M. X.; Wrisley, L.; Maygoo, E. Anal. Chim. Acta 2006, 571 (1), 12-16. (D59) Woo, J. S.; Ryu, J. K. J. Pharm. Biomed. Anal. 2006, 42 (3), 328-333. (D60) Higashi, T.; Yamauchi, A.; Shimada, K. J. Chromatogr., B 2005, 825 (2), 214-222. (D61) Higashi, T.; Takayama, N.; Shimada, K. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 718-723. (D62) Novak, T. J.; Helmy, R.; Santos, I. J. Chromatogr., B 2005, 825 (2), 161-168. (D63) Nair, L. M.; Konkel, J.; Thomas, M.; Koberda, M. J. Pharm. Biomed. Anal. 2006, 41 (3), 725-730. (D64) Jones, M. D.; Plumb, R. S. J. Sep. Sci. 2006, 29 (16), 24092420. (D65) Bieri, S.; Varesio, E.; Munoz, O.; Veuthey, J.-L.; Christen, P. J. Pharm. Biomed. Anal. 2006, 40 (3), 545-551. (D66) Bendahl, L.; Hansen, S. H.; Gammelgaard, B.; Sturup, S.; Nielsen, C. J. Pharm. Biomed. Anal. 2006, 40 (3), 648-652. (D67) Bilati, U.; Pasquarello, C.; Corthals, G. L.; Hochstrasser, D. F.; Allemann, E.; Doelker, E. J. Pharm. Sci. 2005, 94 (3), 688694. (D68) Ito, R.; Seshimo, F.; Miura, N.; Kawaguchi, M.; Saito, K.; Nakazawa, H. J. Pharm. Biomed. Anal. 2005, 39 (5), 10361041. (D69) Mathur, S.; Park, J. D.; Kim, D. H.; Hartmann, R. W. J. Biomol. Screening 2005, 10 (1), 30-35. (D70) Gratz, S. R.; Gamble, B. M.; Flurer, R. A. Rapid Commun. Mass Spectrom. 2006, 20 (15), 2317-2327. (D71) Marchei, E.; Pellegrini, M.; Pacifici, R.; Zuccaro, P.; Pichini, S. J. Pharm. Biomed. Anal. 2006, 41 (5), 1633-1641 (D72) Castro-Puyana, M.; Garcia-Ruiz, C.; Cifuentes, A.; Crego, A. L.; Marina, M. L. J. Chromatogr., A 2006, 1114 (1), 170177. (D73) Visky, D.; Jimidar, I.; Van Ael, W.; Vennekens, T.; Redlich, D.; De Smet, M. Electrophoresis 2005, 26 (7-8), 1541-1549. (D74) Vassort, A.; Barrett, D. A.; Shaw, P. N.; Ferguson, P. D.; Szucs, R. Electrophoresis 2005, 26 (9), 1712-1723. (D75) Ohnesorge, J.; Neususs, C.; Watzig, H. Electrophoresis 2005, 26 (21), 3973-3987. (D76) Ohnesorge, J.; Sanger-van de Griend, C.; Watzig, H. Electrophoresis 2005, 26 (12), 2360-2375. (D77) Thorslund, S.; Lindberg, P.; Andren, P. E.; Nikolajeff, F.; Bergquist, J. Electrophoresis 2005, 26 (24), 4674-4683. (D78) Yang, Z. J. Pharm. Biomed. Anal. 2006, 40 (3), 516-527. (D79) Jaroszewski, J. W. Planta Med. 2005, 71 (8), 691-700. (D80) Jaroszewski, J. W. Planta Med. 2005, 71 (9), 795-802. (D81) Bieri, S.; Varesio, E.; Veuthey, J.-L.; Munoz, O.; Tseng, L.-H.; Braumann, U.; Spraul, M.; Christen, P. Phytochem. Anal. 2006, 17 (2), 78-86. (D82) Putzbach, K.; Krucker, M.; Grynbaum, M. D.; Hentschel, P.; Webb, A. G.; Albert, K. J. Pharm. Biomed. Anal. 2005, 38 (5), 910-917. (D83) Sandvoss, M.; Bardsley, B.; Beck, T. L.; Lee-Smith, E.; North, S. E.; Moore, P. J.; Edwards, A. J.; Smith, R. J. Magn. Reson. Chem. 2005, 43 (9), 762-770. (D84) Xu, F.; Alexander, A. J. Mag. Reson. Chem. 2005, 43 (9), 776782. (D85) Novak, P.; Tepes, P.; Fistric, I.; Bratos, I.; Gabelica, V. J. Pharm. Biomed. Anal. 2006, 40 (5), 1268-1272. (D86) Fukutsu, N.; Kawasaki, T.; Saito, K.; Nakazawa, H. J. Chromatogr., A 2006, 1129 (2), 153-159. (D87) Zhang, F.; Nunes, M.; Segmuller, B.; Dunphy, R.; Hesse, R. H.; Setty, S. K. S. J. Pharm. Biomed. Anal. 2006, 40 (4), 850863. (D88) Pan, C.; Liu, F.; Ji, Q.; Wang, W.; Drinkwater, D.; Vivilecchia, R. J. Pharm. Biomed. Anal. 2006, 40 (3), 581-590. (D89) Sattanathan, P.; Babu, J. M.; Vyas, K.; Reddy, R. B.; Rajan, S. T.; Sudhakar, P. J. Pharm. Biomed. Anal. 2006, 40 (3), 598604. SPECTROMETRIC-BASED METHODOLOGY Infared and Raman Spectroscopy (E1) Li, W.; Worosila, G. D.; Wang, W.; Mascaro, T. J. Pharm. Sci. 2005, 94 (12), 2800-2806. (E2) Gilpin, R. K.; Zhou, W. J. Pharm. Biomed. Anal. 2005, 37 (3), 509-515. (E3) Strachan, C. J.; Taday, P. F.; Newnham, D. A.; Gordon, K. C.; Zeitler, J. A.; Pepper, M.; Rades, T. J. Pharm. Sci. 2005, 94 (4), 837-846. (E4) Blanco, M.; Valdes, D.; Llorente, I.; Bayod, M. J. Pharm. Sci. 2005, 94 (6), 1336-1342. (E5) Schmidt, A. C. Pharm. Res. 2005, 22 (12), 2121-2133. (E6) Giannellini, V.; Bambagiotti-Alberti, M.; Bartolucci, G.; Bruni, B.; Coran, S. A.; Costantino, F.; Di Vaira, M. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 444-454. (E7) Pollanen, K.; Hakkinen, A.; Huhtanen, M.; Reinikainen, S.-P.; Karjalainen, M.; Rantanen, J.; Louhi-Kultanen, M.; Nystrom, L. Anal. Chim. Acta 2005, 544 (1-2), 108-117. 4290

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

(E8) Lu, G. W.; Hawley, M.; Smith, M.; Geiger, B. M.; Pfund, W. J. Pharm. Sci. 2006, 95 (2), 305-317. (E9) Blanco, M.; Alcala, M.; Gonzalez, J. M.; Torras, E. Anal. Chim. Acta 2006, 567 (2), 262-268. (E10) McGoverin, C. M.; Ho, L.C.H.; Zeitler, J. A.; Strachan, C. J.; Gordon, K. C.; Rades, T. Vib. Spectrosc. 2006, 41 (2), 225231. (E11) Zhou, G. X.; Crocker, L.; Xu, J.; Tabora, J.; Ge, Z. J. Pharm. Sci. 2006, 95 (11), 2337-2347. (E12) Lawecka, M.; Kosmacinska, B.; Glice, M.; Korczak, K. J. Therm. Anal. Calorim. 2006, 83 (3), 583-585. (E13) Zeitler, J. A.; Newnham, D. A.; Taday, P. F.; Threlfall, T. L.; Lancaster, R. W.; Berg, R. W.; Strachan, C. J.; Pepper, M.; et al. J. Pharm. Sci. 2006, 95 (11), 2486-2498. (E14) Gamberini, M. C.; Baraldi, C.; Tinti, A.; Rustichelli, C.; Ferioli, V.; Gamberini, G. J. Mol. Struct. 2006, 785 (1-3), 216-224. (E15) Mehrens, S. M.; Kale, U. J.; Qu, X. J. Pharm. Sci. 2005, 94 (6), 1354-1367. (E16) De Spiegeleer, B.; Seghers, D.; Wieme, R.; Schaubroeck, J.; Verpoort, F.; Slegers, G.; Van Vooren, L. J. Pharm. Biomed. 2005, 39 (1-2), 275-280. (E17) Schmidt, A. C. Eur. J. Pharm. Sci. 2005, 25 (4-5), 407-416. (E18) Schmidt, A. C.; Schwarz, I. J. Mol. Struct. 2005, 748 (1-3), 153-160. (E19) Thorley, F. C.; Baldwin, K. J.; Lee, D. C.; Batchelder, D. N. J. Raman Spectrosc. 2006, 37 (1-3), 335-341. (E20) Jorgensen, A. C.; Miroshnyk, I.; Karjalainen, M.; Jouppila, K.; Siiria, S.; Antikainen, O.; Rantanen, J. J. Pharm. Sci. 2006, 95 (4), 906-916. (E21) Lowry, S.; Dalrymple, D.; Song, A.; Rosso, V.; Pommier, C.; Venit, J. J. Assoc. Lab. Autom. 2006, 11 (2), 75-84. (E22) Tian, F.; Zeitler, J. A.; Strachan, C. J.; Saville, D. J.; Gordon, K. C.; Rades, T. J. Pharm. Biomed. Anal. 2006, 40 (2), 271-280. (E23) Zeitler, J. A.; Newnham, D. A.; Taday, P. F.; Threlfall, T. L.; Lancaster, R. W.; Berg, R. W.; Strachan, C. J.; Pepper, M.; Gordon, K.; Rades, T. J. Pharm. Sci. 2006, 95 (11), 24862498. (E24) De Maesschalck, R.; Van den Kerkhof, T. J. Pharm. Biomed. Anal. 2005, 37 (1), 109-114. (E25) Li, W.; Worosila, G. D. Int. J. Pharm. 2005, 295 (1-2), 213219. (E26) Leion, H.; Folestad, S.; Josefson, M.; Sparen, A. J. Pharm. Biomed. Anal. 2005, 37 (1), 47-55. (E27) Chalus, P.; Roggo, Y.; Walter, S.; Ulmschneider, M. Talanta 2005, 66 (5), 1294-302. (E28) Szalay, A.; Antal, I.; Zsigmond, Z.; Marton, S.; Eros, I.; Regdon, G.; Pintye-Hodi, K. Part. Part. Syst. Charact. 2005, 22 (3), 219-222. (E29) Reich, G. Adv. Drug Delivery Rev. 2005, 57 (8), 1109-1143. (E30) Bai, S.; Nayar, R.; Carpenter, J. F.; Manning, M. C. J. Pharm. Sci. 2005, 94 (9), 2030-2038. (E31) Dumitrescu, O. R.; Baker, D. C.; Foster, G. M.; Evans, K. E. Polym. Test. 2005, 24 (3), 367-375. (E32) Dou, Y.; Sun, Y.; Ren, Y.; Ju, P.; Ren Y. J. Pharm. Biomed. Anal. 2005, 37 (3), 543-549. (E33) Gupta, A.; Peck, G. E.; Miller, R. W.; Morris, K. R. J. Pharm. Sci. 2005, 94 (10), 2301-2313. (E34) Li, W.; Johnson, M. C.; Bruce, R.; Ulrich, S.; Rasmussen, H.; Worosila, G. D. Int. J. Pharm. 2006, 326 (1-2), 182-185. (E35) Skibsted, E. T. S.; Boelens, H. F. M.; Westerhuis, J. A.; Witte, D. T.; Smilde, A. K. J. Pharm. Biomed. Anal. 2006, 41 (1), 26-35. (E36) El-Hagrasy, A. S.; Drennen, J. K. J. Pharm. Sci. 2006, 95 (2), 422-434. (E37) El-Hagrasy, A. S.; Delgado-Lopez, M.; Drennen, J. K. J. Pharm. Sci. 2006, 95 (2), 407-421. (E38) Otsuka, M. Chemom. Intell. Lab. Syst. 2006, 82 (1-2), 109114. (E39) Blanco, M.; Alcala, M. Eur. J. Pharm. Sci. 2006, 27 (2-3), 280-286. (E40) Blanco, M.; Alcala, M.; Gonzalez, J. M.; Torras, E. J. Pharm. Sci. 2006, 95 (10), 2137-2144. (E41) Blanco, M.; Alcala, M. Anal. Chim. Acta 2006, 557 (1-2), 353-359. (E42) El-Hagrasy, A. S.; D’Amico, F.; Drennen, J. K. J. Pharm. Sci. 2006, 95 (2), 392-406. (E43) Van den Kerkhof, T.; De Maesschalck, R.; Vanhoutte, K.; Coene, M. C. J. Pharm. Biomed. Anal. 2006, 42 (4), 517522. (E44) Guo, C.; Shah, R. D.; Dukor, R. K.; Freedman, T. B.; Cao, X.; Nafie, L. A. Vib. Spectros. 2006, 42 (2), 254-272. (E45) Otsuka, M.; Yamane, I. J. Pharm. Sci. 2006, 95 (7), 14251433. (E46) Medendorp, J.; Yedluri, J.; Hammell, D. C.; Ji, T.; Lodder, R. A.; Stinchcomb, A. L. Pharm. Res. 2006, 23 (4), 835-843. (E47) Vredenbregt, M. J.; Blok-Tip, L.; Hoogerbrugge, R.; Barends, D. M.; de Kaste, D. J. Pharm. Biomed. Anal. 2006, 40 (4), 840-849. (E48) Feng, Y.-C.; Hu, C.-Q. J. Pharm. Biomed. Anal. 2006, 41 (2), 373-384. (E49) Bodson, C.; Dewe, W.; Hubert, Ph.; Delattre, L. J. Pharm. Biomed. Anal. 2006, 41 (3), 783-790.

(E50) Paris, I.; Janoly-Dumenil, A.; Paci, A.; Mercier, L.; Bourget, P.; Brion, F.; Chaminade, P.; Rieutord, A. J. Pharm. Biomed. Anal. 2006, 41 (4), 1171-1178. (E51) Findlay, P. W.; Peck, G. R.; Morris, K. R. J. Pharm. Sci. 2005, 94 (3), 604-612. (E52) El-Hagrasy, A. S.; Drennen, J. K. J. Pharm. Sci. 2006, 95 (2), 422-434. (E53) El-Hagrasy, A. S.; Delgado-Lopez, M.; Drennen, J. K. J. Pharm. Sci. 2006, 95 (2), 407-421. (E54) Roggo, Y.; Jent, N.; Edmond, A.; Chalus, P.; Ulmschneider, M. Eu. J. Pharm. Biopharm. 2005, 61 (1-2), 100-110. (E55) Rantanen, J.; Wikstrom, H.; Turner, R.; Taylor, L. S. Anal. Chem. 2005, 77 (2), 556-563. (E56) Chan, K. L. A.; Kazarian, S. G. J. Comb. Chem. 2005, 7 (2), 185-189. (E57) El-Hagrasy, A. S.; D’Amico, F.; Drennen, J. K. J. Pharm. Sci. 2006, 95 (2), 392-406. (E58) Gupta, A.; Peck, G. E.; Miller, R. W.; Morris, K. R. J. Pharm. Sci. 2005, 94 (7), 1589-1597. (E59) Rodrigues, L. O.; Marques, J. L.; Cardoso, J. P.; Menezes, J. C. Chemom. Intell. Lab. Syst. 2005, 75 (1), 101-108. Nuclear Magnetic Resonance Spectroscopy (F1) Berendt, R. T.; Sperger, D. M.; Munson, E. J.; Isbester, P. K. Trends Anal. Chem. 2006, 25 (10), 977-984. (F2) Harris, R. K. Analyst 2006, 131 (3), 351-373. (F3) Jones, C. J. Pharm. Biomed. Anal. 2005, 38 (5), 840-850. (F4) Webb, A. G. J. Pharm. Biomed. Anal. 2005, 38 (5), 892-903. (F5) Nelson, B. N.; Schieber, L. J.; Barich, D. H.; Lubach, J. W.; Offerdahl, T. J.; Lewis, D. H.; Heinrich, J. P.; Munson, E. J. Solid State Nucl. Magn. Reson. 2006, 29 (1-3), 204-213. (F6) Bogdanova, S.; Pajeva, I.; Nikolova, P.; Tsakovska, I.; Muller, B. Pharm. Res. 2005, 22 (5), 806-815. (F7) Malz, F.; Jancke, H. J. Pharm. Biomed. Anal. 2005, 38 (5), 813-823. (F8) Malmstrom, J.; Hansen, L.; Ryager, A.; Olsen, H. J. Pharm. Sci. 2005, 94 (11), 2549-2567. (F9) Booy, K.-J.; Wiegerinck, P.; Vader, J.; Kaspersen, F.; Lambregts, D.; Vromans, H.; Kellenbach, E. J. Pharm. Sci. 2005, 94 (2), 458-463. (F10) Smith, J. R.; Xu, W.; Raftery, D. J. Phys. Chem. B 2006, 110 (15), 7766-7776. (F11) Byard, S. J.; Jackson, S. L.; Smail, A.; Bauer, M.; Apperley, D. C. J. Pharm. Sci. 2005, 94 (6), 1321-1335. (F12) Masuda, K.; Tabata, S.; Kono, H.; Sakata, Y.; Hayase, T.; Yonemochi, E.; Terada, K. Int. J. Pharm. 2006, 318 (1-2), 146-153. (F13) Schmidt, A. C.; Schwarz, I.; Mereiter, K. J. Pharm. Sci. 2006, 95 (5), 1097-1113. (F14) Suzuki, N.; Kawasaki, T. J. Pharm. Biomed. Anal. 2005, 37 (1), 177-181. (F15) Perez, S. C.; Cerioni, L.; Wolfenson, A. E.; Faudone, S.; Cuffini, S. L. Int. J. Pharm. 2005, 298 (1), 143-152. (F16) Kenawi, I. M.; Barsoum, B. N.; Youssef, M. A. J. Pharm. Biomed. Anal. 2005, 37 (4), 655-661. (F17) Winter, W.; Deubner, R.; Holzgrabe, U. J. Pharm. Biomed. Anal. 2005, 38 (5), 833-839. (F18) Forshed, J.; Erlandsson, B.; Jacobsson, S. P. Anal. Chim. Acta 2005, 552 (1-2), 160-165. (F19) Petrov, O.; Furo, I.; Schuleit, M.; Domanig, R.; Plunkett, M.; Daicic, J. Int. J. Pharm. 2006, 309 (1-2), 157-162. (F20) Baumgartner, S.; Lahajnar, G.; Sepe, A.; Kristl, J. Eur. J. Pharm. Biopharm. 2005, 59 (2), 299-306. (F21) Djemai, A.; Sinka, I. C. Int. J. Pharm. 2006, 319 (1-2), 5562. (F22) Li, X.; Nail, S. L. J. Pharm. Sci. 2006, 95 (11), 2516-2525. (F23) Ramstad, T.; Hadden, C. E.; Martin, G. E.; Speaker, S. M.; Teagarden, D. L.; Thamann, T. J. Int. J. Pharm. 2005, 296 (1-2), 55-63. (F24) Pinto, L. M. A.; Fraceto, L. F.; Santana, M. H. A.; Pertinhez, T. A.; Junior, S. O.; de Paula, E. J. Pharm. Biomed. Anal. 2005, 39 (5), 956-963. (F25) Sinha, V. R.; Anitha, R.; Ghosh, S.; Nanda, A.; Kumria, R. J. Pharm. Sci. 2005, 94 (3), 676-687. (F26) Ventura, C. A.; Giannone, I.; Musumeci, T.; Pignatello, R.; Ragni, L.; Landolfi, C.; Milanese, C.; Paolino, D.; Puglisi, G. Eur. J. Med. Chem. 2006, 41 (2), 233-240. (F27) Zheng, Y.; Haworth, I. S.; Zuo, Z.; Chow, M. S. S.; Chow, A. H. L. J. Pharm. Sci. 2005, 94 (5), 1079-1089. (F28) Larsen, K. L.; Aachmann, F. L.; Wimmer, R.; Stella, V. J.; Kjolner, U. M. J. Pharm. Sci. 2005, 94 (3), 507-515. (F29) Kagawa, M.; Machida, Y.; Nishi, H.; Haginaka, J. J. Pharm. Biomed. Anal. 2005, 38 (5), 918-923. (F30) Harris, R. K.; Hodgkinson, P.; Larsson, T.; Muruganantham, A. J. Pharm. Biomed. Anal. 2005, 38 (5), 858-864. (F31) Reinscheid, U. M. J. Pharm. Biomed. Anal. 2006, 40 (2), 447449. (F32) Sugiura, M.; Kimura, A.; Fujiwara, H. Magn. Reson. Chem. 2006, 44 (2), 121-126. (F33) Zoppi, A.; Linares, M.; Longhi, M. J. Pharm. Biomed. Anal. 2005, 37 (3), 627-630.

(F34) Michaleas, S.; Antoniadou-Vyza, E. J. Pharm. Biomed. Anal. 2006, 42 (4), 405-410. (F35) Salsbury, J. S.; Isbester, P. K. Magn. Reson. Chem. 2005, 43 (11), 910-917. (F36) Nozawa, K.; Tsuda, M.; Ishiyama, H.; Sasaki, T.; Tsuruo, T.; Kobayashi, J. Bioog. Med. Chem. 2006, 14 (4), 1063-1067. (F37) Salem, A. A.; Mossa, H. A.; Barsoum, B. N. Spectrochim. Acta A 2005, 62 (1-3), 466-472. (F38) Nogle, L. M.; Mann, C. W.; Watts, W. L.; Zhang, Y. J. Pharm. Biomed. Anal. 2006, 40 (4), 901-909. (F39) Salem, A. A.; Mossa, H. A.; Barsoum, B. N. J. Pharm. Biomed. Anal. 2006, 41 (2), 654-661. (F40) Wawer, I.; Pisklak, M.; Chilmonczyk, Z. J. Pharm. Biomed. Anal. 2005, 38 (5), 865-870. (F41) Holzgrabe, U.; Deubner, R.; Schollmayer, C.; Waibel, B. J. Pharm. Biomed. Anal. 2005, 38 (5), 806-812. (F42) Kahlig, H.; Valenta, C.; Dampfhart, U.; Auner, B. G. J. Pharm. Sci. 2005, 94 (2), 288-296. (F43) Mollica, G.; Geppi, M.; Pignatello, R.; Veracini, C. A. Pharm. Res. 2006, 23 (9), 2129-2140. (F44) Geppi, M.; Guccione, S.; Mollica, G.; Pignatello, R.; Veracini, C. A. Pharm. Res. 2005, 22 (9), 1544-1555. (F45) Barich, D. H.; Davis, J. M.; Schieber, L. J.; Zell, M. T.; Munson, E. J. J. Pharm. Sci. 2006, 95 (7), 1586-1594. (F46) Chen, X.; Griesser, U. J.; Te, R. L.; Pfeiffer, R. R.; Morris, K. R.; Stowell, J. G.; Byrn, S. R. J. Pharm. Biomed. Anal. 2005, 38 (4), 670-677. (F47) Holzgrabe, U. J. Pharm. Biomed. Anal. 2005, 38 (5), 797805. (F48) Offerdahl, T. J.; Salsbury, J. S.; Dong, Z.; Grant, D. J. W.; Schroeder, S. A.; Prakash, I.; Gorman, E. M.; Barich, D. H.; Munson, E. J. J. Pharm. Sci. 2005, 94 (12), 2591-2605. (F49) Aso, Y.; Yoshioka, S. J. Pharm. Sci. 2006, 95 (2), 318-325. (F50) Chen, J.-Z.; Ranade, S. V.; Xie, X.-Q. Int. J. Pharm. 2005, 305 (1-2), 129-144. Ultraviolet, Visible, Fluorescence, and Chemiluminesence Techniques (G1) Gumus, G.; Filik, H.; Demirata, B. Anal. Chim. Acta 2005, 547 (1), 138-143. (G2) Zeng, W.; Martinuzzi, F.; MacGregor, A. J. Pharm. Biomed. Anal. 2005, 36 (5), 1107-1111. (G3) Abbaspour, A.; Mirzajani, R. J. Pharm. Biomed. Anal. 2005, 38 (3), 420-427. (G4) Tubino, M.; de Souza, R. L. Talanta 2006, 68 (3), 776-780. (G5) Venugopal, K.; Saha, R. N. Farmaco 2005, 60 (11-12), 906912. (G6) Ni, Y.; Qi, Z.; Kokot, S. Chemom. Intell. Lab. Syst. 2006, 82 (1-2), 241-247. (G7) Culzoni, M. J.; De Zan, M. M.; Robles, J. C.; Mantovani, V. E.; Goicoechea, H. C. J. Pharm. Biomed. Anal. 2005, 39 (5), 1068-1074. (G8) Ioele, G.; Cione, E.; Risoli, A.; Genchi, G.; Ragno, G. Int. J. Pharm. 2005, 293 (1-2), 251-260. (G9) Aaltonen, J.; Heinanen, P.; Peltonen, L.; Kortejarvi, H.; Tanninen, V. P.; Christiansen, L.; H., J.; Yliruusi, J.; Rantanen, J. J. Pharm. Sci. 2006, 95 (12), 2730-2737. (G10) Markopoulou, C. K.; Malliou, E. T.; Koundourellis, J. E. Farmaco 2005, 60 (9), 755-762. (G11) Tommasini, S.; Calabro, M. L.; Stancanelli, R.; Donato, P.; Costa, C.; Catania, S.; Villari, V.; Ficarra, P.; Ficarra, R. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 572-580. (G12) Li, N.; Zhang, Y.-H.; Xiong, X.-L.; Li, Z.-G.; Jin, X.-H.; Wu, Y.N. J. Pharm. Biomed. Anal. 2005, 38 (2), 370-374. (G13) Li, N.; Zhang, Y.-H.; Wu, Y.-N.; Xiong, X.-L.; Zhang, Y.-H. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 824-829. (G14) Fakayode, S. O.; Swamidoss, I. M.; Busch, M. A.; Busch, K. W. Talanta 2005, 65 (4), 838-845. (G15) Ni, Y.; Lin, D.; Kokot, S. Talanta 2005, 65 (5), 1295-1302. (G16) Du, L. M.; Yao, H. Y.; Fu, M. Spectrochim. Acta Mol. Biomol. Spectrosc. 2005, 61 (1-2), 281-286. (G17) Garcia, M. M. M.; Diez, N. M.; Gil, D. B.; Lopez, F. S. J. Pharm. Biomed. Anal. 2005, 38 (2), 349-354. (G18) Shama, S. A.; Amin, E. S.; Omara, H. J. Quant. Spectrosc. Radiat. Transfer 2006, 102 (2), 261-268. (G19) Ashour, S.; Al-Khalil, R. Farmaco 2005, 60 (9), 771-775. (G20) Milano, J.; Cardoso, S. G. J. Pharm. Biomed. Anal. 2005, 37 (4), 639-642. (G21) Nafisur, R.; Mohammad, K. J. Anal. Chem. 2005, 60 (7), 636643. (G22) Canaes, L. S.; Leite, O. D.; Fatibello-Filho, O. Talanta 2006, 69 (1), 239-242. (G23) Seekin, Z. E.; Volkan, M. Anal. Chim. Acta 2005, 547 (1), 104-108. (G24) Pinto, P. C. A. G.; Saraiva, M.; Lucia, M. F. S.; Santos, J. L. M.; Lima, J. L. F. C. Anal. Chim. Acta 2005, 539 (1-2), 173179. (G25) Lavorante, A. F.; Pires, C. K.; Reis, B. F. J. Pharm. Biomed. Anal. 2006, 42 (4), 423-429. (G26) Llorent-Martinez, E. J.; Garcia-Reyes, J. F.; Ortega-Barrales, P.; Molina-Diaz, A. Anal. Chim. Acta 2006, 555 (1), 128133.

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4291

(G27) Fan, J.; Wang, A.; Feng, S.; Wang, J. Talanta 2005, 66 (1), 236-243. (G28) Babu, S. H.; Suvardhan, K.; Kumar, K. S.; Reddy, K. M.; Rekha, D.; Chiranjeevi, P. J. Hazard. Mater. 2005, 120 (1-3), 213218. (G29) Tzanavaras, P. D.; Verdoukas, A.; Balloma, T. J. Pharm. Biomed. Anal. 2006, 41 (2), 437-441. (G30) Suarez, W. T.; Vieira, H. J.; Fatibello-Filho, O. J. Pharm. Biomed. Anal. 2005, 37 (4), 771-775. (G31) Al-Abachi, M. Q.; Haddi, H.; Al-Abachi, A. M. Anal. Chim. Acta 2005, 554 (1-2), 184-189. (G32) Evgen’ev, M. I.; Garmonov, S. Yu.; Brysaev, A. S.; Gurevich, P. A. J. Anal. Chem. 2006, 61 (7), 694-701. (G33) Beyene, N. W.; Van Staden, J. F.; Stefan, R.-I.; Aboul-Enein, H. Y. Farmaco 2005, 60 (6-7), 613-619. (G34) Ozlu, C.; Basan, H.; Satana, E.; Ertas, N.; Goger, N. G. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 606-611. (G35) Ribeiro, P. R. S.; Neto Gomes, J. A.; Pezza, L.; Pezza, H. R. Talanta 2005, 67 (1), 240-244. (G36) Abdulrahman, L. K.; Al-Abachi, A. M.; Al-Qaissy, M. H. Anal. Chim. Acta 2005, 538 (1-2), 331-335. (G37) Corominas, B. G.-T.; Pferzschner, J.; Icardo, M. C.; Zamora, L. L.; Calatayud, J. M. J. Pharm. Biomed. Anal. 2005, 39 (12), 281-284. (G38) van Staden, J. F.; Beyene, N. W.; Stefan, R.-I.; Aboul-Enein, H. Y. Talanta 2005, 68 (2), 401-405. (G39) Tzanavaras, P. D.; Zacharis, C. K.; Theodoridis, G. A.; Kalaitzantonakis, E. A.; Voulgaropoulos, A. N. Anal. Chim. Acta 2005, 547 (1) 98-103. (G40) Pinto, P. C. A. G.; Saraiva, M. L. M. F. S.; Santos, J. L. M.; Lima, J. L. F. C. Talanta 2006, 68 (3), 857-862. (G41) Acedo-Valenzuela, M.-I.; Galeano-Diaz, T.; Mora-Diez, N.; SilvaRodriguez, A. Talanta 2005, 66 (4), 952-960. (G42) Alonso, A.; Almendral, M. J.; Porras, M. J.; Curto, Y. J. Pharm. Biomed. Anal. 2006, 42 (2), 171-177. (G43) Fukutsu, N.; Konse, T.; Kawasaki, T.; Saito, K.; Nakazawa, H. J. Pharm. Biomed. Anal. 2006, 41 (2) 599-602. (G44) Shao, X.; Xie, X.; Liu, Y.; Song, Z. J. Pharm. Biomed. Anal. 2006, 41 (2), 667-670. (G45) Liu, H.; Zhang, L.; Zhou, J.; Hao, Y.; He, P.; Fang, Y. Anal. Chim. Acta 2005, 541 (1-2), 23-127. (G46) Huang, Y.; Liu, W. J. Pharm. Biomed. Anal. 2005, 38 (3), 537542. (G47) Liu, E.; Xue, B. Microchim. Acta 2006, 153 (1-2), 51-56. (G48) Safavi, A.; Karimi, M. A.; Nezhad, M. R. H. Luminescence 2005, 20 (3), 170-175 (G49) Li, Q.; Huang, C.; Huang, Y. Luminescence 2006, 21 (1), 4348. (G50) Waseem, A.; Yaqoob, M.; Nabi, A. Luminescence 2006, 21 (3), 174-178. (G51) Yue, Q.; Song, Z.; Wang, C. J. Anal. Chem. 2006, 61 (3), 295299. (G52) Wang, L.; Yang, P.; Li, Y.; Zhu, C. Talanta 2006, 70 (1), 219224. (G53) Ma, H.; Zheng, X.; Zhang, Z. Luminescence 2005, 20 (4-5), 303-306. (G54) Li, Y.; Lu, J. Luminescence 2006, 21 (4), 251-255. (G55) Han, S.; Liu, E.; Li, H. Luminescence 2006, 21 (2), 106-111. (G56) Perez-Ruiz, T.; Martinez-Lozano, C.; Martin, J.; Ruiz, E. J. Pharm. Biomed. Anal. 2006 42 (1), 143-147. (G57) Alarfaj, N. A.; El-Razeq, S. A. A. J. Pharm. Biomed. Anal. 2006, 41 (4),1423-1427. (G58) Ruengsitagoon, W.; Liawruangrath, S.; Townshend, A. Talanta 2006, 69 (4), 976-983. (G59) Thongpoon, C.; Liawruangrath, B.; Liawruangrath, S.; Wheatley, R. A.; Townshend, A. Anal. Chim. Acta 2005, 553 (1-2), 123-133. (G60) Guo, L.; Xie, Z.; Bian, X.; Lin, X.; Zhang, W.; Liu, X.; Chen, G. Luminescence 2005, 20 (3), 129-134. (G61) Townshend, A.; Ruengsitagoon, W.; Thongpoon, C.; Liawruangrath, S. Anal. Chim. Acta 2005, 541 (1-2), 103-109. (G62) Liang, Y.-D.; Song, J.-F. J. Pharm. Biomed. Anal. 2005, 38 (1), 100-106. (G63) Liu, H.; Zhang, L.; Hao, Y.; Wang, Q.; He, P.; Fang, Y. Anal. Chim. Acta 2005, 541 (1-2), 185-190. (G64) Du, J.; Li, Y.; Lu, J. Luminescence 2005, 20 (1), 30-35. (G65) Xie, Z.; Liao, S.; Chen, G. Luminescence 2005, 20 (3), 220225. (G66) Sun, H.-W.; Li, L.-Q.; Chen, X.-Y. Anal. Bioanal. Chem. 2006, 384 (6), 1314-1319. OTHER METHOLODGY Electroanalytical Techniques (H1) Avramchik, O. A.; Korotkova, E. I.; Plotnikov, E. V.; Lukina, A. N.; Karbainov, Y. A. J. Pharm. Biomed. Anal. 2005, 37 (5), 1149-1154. (H2) Debnath, C.; Haslinger, E.; Likussar, W.; Michelitsch, A. J. Pharm. Biomed. Anal. 2006, 41 (2), 638-643. (H3) Radi, A.; El-Shahawi, M. S.; Elmogy, T. J. Pharm. Biomed. Anal. 2005, 37 (1), 195-198. 4292

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

(H4) Quintino, M. S. M.; Yamashita, M.; Angnes, L. Electroanal. 2006, 18 (7), 655-661. (H5) Radi, A.; Elmogy, T. Farmaco 2005, 60 (1), 43-46. (H6) Wahdan, T.; El-Ghany, N. A. Farmaco 2005, 60 (10), 830833. (H7) Uslu, B.; Dogan, B.; Ozkan, S. A. Anal. Chim. Acta 2005, 537 (1-2), 307-313. (H8) Dogan, B.; Uslu, B.; Suzen, S.; Ozkan, S. A. Electroanalysis 2005, 17 (20), 1886-1894. (H9) Wang, C.; Shao, X.; Liu, Q.; Qu, Q.; Yang, G.; Hu, X. J. Pharm. Biomed. Anal. 2006, 42 (2), 237-244. (H10) Qaisi, A. M.; Tutunji, M. F.; Tutunji, L. F. J. Pharm. Sci. 2006, 95 (2), 384-391. (H11) Gazy, A. A.; Mahgoub, H.; Khamis, E. F.; Youssef, R. M.; ElSayed, M. A. J. Pharm. Biomed. Anal. 2006, 41 (4), 11571163. (H12) Adhoum, N.; Monser, L. J. Pharm. Biomed. Anal. 2005, 38 (4), 619-623. (H13) Barthus, R. C.; Mazo, L. H.; Poppi, R. J. J. Pharm. Biomed. Anal. 2005, 38 (1), 94-99. (H14) Suslu, I.; Altinoz, S. J. Pharm. Biomed. Anal. 2005, 39 (3-4), 535-542. (H15) Suryanarayanan, V.; Zhang, Y.; Yoshihara, S.; Shirakashi, T. Electroanalysis 2005, 17 (11), 925-932. (H16) Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Electrochem. Commun. 2006, 8 (1), 65-70. (H17) Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Electrochem. Commun. 2005, 7 (8), 803-807. (H18) de Oliveira Costa, C.; Miranda, P. R. B.; Hazra, B.; Das Sarma, M.; de Cassia Silva Luz, R.; Kubota, L. T.; Goulart, M. O. F. Talanta 2006, 68 (4), 1378-1383. (H19) Bollo, S.; Gunckel, S.; Nunez-Vergara, L. J.; Chauviere, G.; Squella, J. A. Electroanalysis 2005, 17 (2), 134-139. (H20) Golcu, A.; Dogan, B.; Ozkan, S. A. Talanta 2005, 67 (4), 703712. (H21) Al-Omar, M.; Al-Majed, A.; Sultan, M.; Gadkariem, E. A.; Belal, F. J. Pharm. Biomed. Anal. 2005, 37 (1), 199-204. (H22) Alsarra, I.; Al-Omar, M.; Gadkariem, E. A.; Belal, F. Farmaco 2005, 60 (6-7), 563-567. (H23) Jain, R.; Jadon, N.; Radhapyari, K. Talanta 2006, 70 (2), 383386. (H24) Alghamdi, A. H.; Belal, F. F.; Al-Omar, M. A. J. Pharm. Biomed. Anal. 2006, 41 (3), 989-993. (H25) Nouws, H. P. A.; Delerue-Matos, C.; Barros, A. A.; Rodrigues, J. A. J. Pharm. Biomed. Anal. 2006, 42 (3), 341-346. (H26) Shahrokhian, S.; Bozorgzadeh, S. Electrochim. Acta 2006, 51 (20), 4271-4276. (H27) Nigovia, B. Anal. Bioanal. Chem. 2006, 384 (2), 431-437. (H28) Ensafi, A. A.; Hajian, R. Electroanalysis 2006, 18 (6), 579585. (H29) Temerk, Y. M.; Ibrahim, H. S. M.; Schuhmann, W. Microchim. Acta 2006, 153 (1-2), 7-13. (H30) Santos, A. L.; Takeuchi, R. M.; Mariotti, M. P.; De Oliveira, M. F.; Zanoni, M. V. B.; Stradiotto, N. R. Farmaco 2005, 60 (8), 671-674. (H31) Ziyatdinova, G. K.; Budnikov, G. K.; Pogorel’tsev, V. I. J. Anal. Chem. 2006, 61 (8), 798-800. (H32) Shahrokhian, S.; Karimi, M.; Khajehsharifi, H. Sens. Actuators, B: Chem. 2005, 109 (2), 278-284. (H33) Dogan, B.; Ozkan, S. A. Electroanalysis 2005, 17 (22), 20742083. (H34) El-Desoky, H. S.; Ghoneim, E. M.; Ghoneim, M. M. J. Pharm. Biomed. Anal. 2005, 39 (5), 1051-1056 (H35) Salem, A. A.; Barsoum, B. N.; El Said, D. M. Helv. Chim. Acta 2005, 88 (4), 861-872. (H36) Tapsoba, I.; Belgaied, J.-E.; Boujlel, K. J. Pharm. Biomed. Anal. 2005, 38 (1), 162-165. (H37) Messina, G. A.; De Vito, I. E.; Raba, J. Anal. Chim. Acta 2006, 559 (2), 152-158. (H38) Calvo, M. M. E. B.; Dominguez Renedo, O.; Arcos Martinez, M. J. Anal. Chim. Acta 2005, 549 (1-2), 74-80. (H39) Uslu, B.; Dogan, B.; Ozkan, S. A.; Aboul-Enein, H. Y. Electroanalysis 2005, 17 (17), 1563-1570. (H40) Chen, W.; Lin, X.; Luo, H.; Huang, L. Electroanalysis 2005, 17 (11), 941-945. (H41) Wu, K.; Wang, H.; Chen, F.; Hu, S. Bioelectrochemistry 2006, 68 (2), 144-149. (H42) Wang, C.; Wang, F.; Li, C.; Xu, X.; Li, T.; Wang, C. J. Pharm. Biomed. Anal. 2006, 41 (4), 1396-1400. (H43) Sun, N.; Mo, W.-M.; Shen, Z.-L.; Hu, B.-X. J. Pharm. Biomed. Anal. 2005, 38 (2), 256-262. (H44) Zayed, S. I. M.; Habib, I. H. I. Farmaco 2005, 60 (6-7), 621625. (H45) Ojani, R.; Raoof, J.-B.; Zamani, S. Electroanalysis 2005, 17 (19), 1740-1745. (H46) Zhang, H.; Hu, C.; Wu, S.; Hu, S. Electroanalysis 2005, 17 (9), 749-754. (H47) Wu, Y.; Ye, S.; Hu, S. S. J. Pharm. Biomed. Anal. 2006, 41 (3), 820-824. (H48) Liu, L.; Song, J.-F.; Yu, P.-F.; Cui, B. Electrochem. Commun. 2006, 8 (9), 1521-1526. (H49) Quintino, M. S. M.; Araki, K. i.; Toma, H. E.; Angnes, L. Talanta 2006, 68 (4), 1281-1286

(H50) Yang, X.; Wang, F.; Hu, S. Colloid. Surf. B 2006, 52 (1), 8-13. (H51) Luz, R. de C. S.; Damos, F. S.; Oliveira, A. B. de; Beck, J.; Kubota, L. T. Electrochim. Acta 2005, 50 (13), 2675-2683. (H52) Bergamini, M. F.; Santos, A. L.; Stradiotto, N. R.; Zanoni, M.; Valnice B. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 54-59. (H53) Liu, A.-L.; He, F.-Y.; Hu, Y.-L.; Xia, X.-H. Talanta 2006, 68 (4), 1303-1308. (H54) Kulapina, E. G.; Baraguzina, V. V.; Kulapina, O. I. J. Anal. Chem. 2005, 60 (6), 523-527. (H55) Riahi, S.; Mousavi, M. F.; Bathaie, S. Z.; Shamsipur, M. Anal. Chim. Acta 2005, 548 (1-2), 192-198. (H56) Malongo, T. K.; Blankert, B.; Kambu, O.; Amighi, K.; Nsangu, J.; Kauffmann, J.-M. J. Pharm. Biomed. Anal. 2006, 41 (1), 70-76. (H57) El-Saharty, Y. S.; Metwaly, F. H.; Refaat, M.; El-Khateeb, S. Z. J. Pharm. Biomed. Anal. 2006, 41 (3), 720-724. (H58) Badawy, S. S.; Issa, Y. M.; Mutair, A. A. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 117-124. (H59) Sabah, S.; Aghamohammadi, M.; Alizadeh, N. Sens. Actuators, B: Chem. 2006, 114 (1), 489-496. (H60) Ozoemena, K. I.; Stefan, R.-I.; van Staden, J. F.; Aboul-Enein, H. Y. Sens. Actuators, B: Chem. 2005, 105 (2), 425-429. (H61) Kotkar, R. M.; Srivastava, A. K. Sens. Actuators, B: Chem. 2006, 119 (2), 524-530. (H62) Torriero, A. A. J.; Ruiz-Diaz, J. J. J.; Salinas, E.; Marchevsky, E. J.; Sanz, M. I.; Raba, J. Talanta 2006, 69 (3), 691-699. (H63) Hassan, S. S. M.; Mahmoud, W. H.; Elmosallamy, M. A. F.; Almarzooqi, M. H. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 315-321. (H64) Lupetti, K. O.; Ramos, L. A.; Vieira, I. C.; Fatibello-Filho, O. Farmaco 2005, 60 (2), 179-183. (H65) Sales, M. G. F.; Tomas, J. F.C.; Lavandeira, S. R. J. Pharm. Biomed. Anal. 2006, 41 (4), 1280-1286. (H66) Issa, Y. M.; Zayed, S. I. M. Talanta 2006, 69 (2), 481-487. (H67) Badawy, S. S.; Issa, Y. M.; Mutair, A. A. J. Pharm. Bomed. Anal. 2005, 39 (1-2), 117-124. (H68) Ibrahim, H. J. Pharm. Biomed. Anal. 2005, 38 (4), 624-632. (H69) Pedrosa, V. A.; Lowinsohn, D.; Bertotti, M. Electroanalysis 2006, 18 (9), 931-934. (H70) Nouws, H. P. A.; Delerue-Matos, C.; Barros, A. A.; Rodrigues, J. A. J. Pharm. Biomed. Anal. 2005, 39 (1-2), 290-293. (H71) Hassan, S. S. M.; Elnemma, E. M.; Mahmoud, W. H.; Mohammed, A. H. K. J. Appl. Electrochem. 2006, 36 (2), 139-146. (H72) Norouzi, P.; Ganjali, M. R.; Sepehri, A.; Ghorbani, M. Sens. Actuators. B: Chem. 2005, 110 (2), 239-245. (H73) Ortuno, J. A.; Sanchez-Pedreno, C.; Gil, A. Anal. Chim. Acta 2005, 554 (1-2), 172-176. (H74) Norouzi, P.; Nabi Bidhendi, G.-R.; Ganjali, M. R.; Sepehri, A.; Ghorbani, M. Microchim. Acta 2005, 152 (1-2), 123-129. (H75) Ganjali, M. R.; Norouzi, P.; Ghorbani, M.; Sepehri, A. Talanta 2005, 66 (5), 1225-1233. (H76) Norouzi, P.; Ganjali, M. R.; Matloobi, P. Electrochem. Commun. 2005, 7 (4), 333-338. (H77) Chen, J.-Q.; Song, J.-F.; Chen, L.-F. Microchem. J. 2005, 80 (1), 65-70. (H78) Nozaki, K.; Kitagawa, H.; Kimura, S.; Kagayama, A.; Arakawa, R. J. Mass Spectrom. 2006, 41 (5), 606-612.

(H79) Satinsky, D.; Dos Santos, L. M. L.; Sklenarova, H.; Solich, P.; Montenegro, M. C. B. S. M.; Araujo, A. N. Talanta 2005, 68 (2), 214-218. (H80) Satinsky, D.; Huclova, J.; Ferreira, R. L. C.; Montenegro, M. C. B. S. M.; Solich, P. J. Pharm. Biomed. Anal. 2006, 40 (2), 287-293. Thermal and Miscellaneous Techniques (I11) Oliveira, G. G. G.; Ferraz, H. G.; Matos, J. S. R. J. Therm. Anal. Calorim. 2005, 79 (2), 267-270. (I12) Cides, L. C. S.; Araujo, A. A. S.; Santos-Filho, M.; Matos, J. R. J. Therm. Anal. Calorim. 2006, 84 (2), 441-445. (I13) Kiss, D.; Zelko, R.; Novak, Cs.; Ehen, Zs. J. Therm. Anal. Calorim. 2006, 84 (2), 447-451. (I14) Tomassetti, M.; Catalani, A.; Rossi, V.; Vecchio, S. J. Pharm. Biomed. Anal. 2005, 37 (5), 949-955. (I15) Lizarraga, E.; Zabaleta, C.; Palop, J. A. Thermochim. Acta 2005, 427 (1-2), 171-174. (I16) Oberoi, L. M.; Alexander, K. S.; Riga, A. T. J. Pharm. Sci. 2005, 94 (1), 93-101. (I17) Bruns, R. E. J. Therm . Anal. Calorim. 2005, 79 (3), 697-701. (I18) Kawakami, K.; Ida, Y.; Yamaguchi, T. Pharm. Res. 2005, 22 (8), 1365-1373. (I19) Lester, C.; Lubey, G.; Dicks, M.; Andol, G.; Vaughn, D.; Cambron, R. T.; Poiesz, K.; Redman-Furey, N. J. Pharm. Sci. 2006, 95 (12), 2631-2644. (I20) Vogt, F. G.; Dell’Orco, P. C.; Diederich, A. M.; Su, Q.; Wood, J. L.; Zuber, G. E.; Katrincic, L. M.; Mueller, R. L.; Busby, D. J.; DeBrosse, C. W. J. Pharm. Biomed. Anal. 2006, 40 (5), 1080-1088. (I21) Poiesz, K. B.; Grundner, C. L.; Redman-Furey, N. L. J. Therm. Anal. Calorim. 2006, 85 (1), 79-86. (I22) Ledru, J.; Imrie, C. T.; Hutchinson, J. M.; Hohne, G. W. H. Thermochim. Acta 2006, 446 (1-2), 66-72. (I23) Chadha, R.; Kashid, N.; Jain, D. V. S. J. Therm. Anal. Calorim. 2005, 81 (2), 277-284. (I24) Grundner, C. L.; Poiesz, K. B.; Redman-Furey, N. L. J. Therm. Anal. Calorim. 2006, 85 (1), 91-98. (I25) Schmidt, A. C.; Schwarz, I. Int. J. Pharm. 2006, 320 (1-2), 4-13. (I26) Espeau, P.; Ceolin, R.; Tamarit, J.-L.; Perrin, M.-A.; Gauchi, J.P.; Leveiller, F. J. Pharm. Sci. 2005, 94 (3), 524-539. (I27) Vogt, F. G.; Cohen, D. E.; Bowman, J. D.; Spoors, G. P.; Zuber, G. E.; Trescher, G. A.; Dell’Orco, P. C.; Katrincic, L. M.; DeBrosse, C. W.; Haltiwanger, R. C. J. Pharm. Sci. 2005, 94 (3), 651-665. (I28) Malpezzi, L.; Magnone, G. A.; Masciocchi, N.; Sironi, A. J. Pharm. Sci. 2005, 94 (5), 1067-1078. (I29) Vega, D.; Petragalli, A.; Fernandez, D.; Ellena, J. A. J. Pharm. Sci. 2006, 95 (5), 1075-1083. (I30) Cosgrove, S. D.; Steele, G.; Austin, T. K.; Plumb, A. P.; Stensland, B.; Ferrari, E.; Roberts, K. J. J. Pharm. Sci. 2005, 94 (11), 2403-2415. (I31) Yonemochi, E.; Hoshino, T.; Yoshihashi, Y.; Terada, K. Thermochim. Acta 2005, 432 (1), 70-75.

AC070708X

Analytical Chemistry, Vol. 79, No. 12, June 15, 2007

4293