Photochemical Genetics. II. The Kinetic Role of Water in the

30. Photochemical Genetics. II. The Kinetic. Role of Water in the Photohydration of ... Science Center/Aerospace and Systems Group, North American Roc...
1 downloads 0 Views 1018KB Size
30 Photochemical Genetics. II. The Kinetic Role of Water in the Photohydration of

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

Uracil and 1,3-Dimethyluracil J. G. BURR and E. H. PARK Science Center/Aerospace and Systems Group, North American Rockwell Corporation, Thousand Oaks, Calif. 91360

The rate of photohydration of uracil with light of 265 n.m. in mixtures of acetonitrile and water is a linear function of the water content of the mixture; the deuterium isotope effect, R /R , is 1.18. These observations are shown to be consistent with the mechanism for uracil photohydrate formation proposed to explain the p H dependence of the rates. The rate of photohydrate formation for 1,3-dimethyuracil is approximately proportional to the square of the water concentration in acetonitrile-H O mixtures, acetonitrile-D O, and in dioxane-water mixtures, R /R = 2.84. These data are also interpretable in terms of a common photohydration mechanism. H2O

D2O

2

2

H2o

D2o

he effect of p H changes a n d n e u t r a l salt c o n c e n t r a t i o n u p o n t h e rate A

of u r a c i l p h o t o h y d r a t i o n has b e e n r e p o r t e d (together w i t h s i m i l a r

d a t a f o r some 1 - a l k y l u r a c i l s a n d u r i d i n e ) i n t h e first p a p e r of the series (3).

It w a s c o n c l u d e d f r o m those observations that t h e p r o d u c t - f o r m i n g

reaction was one between a n excited ( U H ) * , formed b y e q u i l i b r i u m +

p r o t o n a t i o n of singlet e x c i t e d u r a c i l , a n d a n e u t r a l w a t e r species. T h e m o l e c u l a r i t y of this n e u t r a l w a t e r species has n o w b e e n e x a m i n e d b y m e a s u r i n g the rate of u r a c i l p h o t o h y d r a t i o n i n mixtures of acetonitrile a n d w a t e r , a n d acetonitrile a n d D 0 . P h o t o h y d r a t e f o r m a t i o n i n 1,32

d i m e t h y l u r a c i l ( D M U ) i n s i m i l a r mixtures, as w e l l as i n mixtures of d i o x a n e a n d w a t e r has also b e e n s t u d i e d . T h e results of these studies are r e p o r t e d i n this p a p e r . 435 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

436

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

Materials

RADIATION CHEMISTRY

and

Sample

1

Preparation

D i o x a n e f r o m a v a r i e t y of m a n u f a c t u r e r s a n d of v a r i o u s degrees of p u r i t y w e r e a l l unsatisfactory w i t h o u t extensive p u r i f i c a t i o n ; the measure of q u a l i t y was a sharp u l t r a v i o l e t cutoff at 203 n . m . a n d a l o w a n d r e p r o ­ d u c i b l e rate of D M U p h o t o l y s i s i n the neat solvent. T h i s c o u l d o n l y be a c h i e v e d i n d i o x a n e f r a c t i o n a t e d i n a n i t r o g e n atmosphere five times f r o m sodium through a ten plate packed c o l u m n a n d distilled immediately i n t o flask c o n t a i n i n g the p y r i m i d i n e . D i o x a n e w a s not c o n s i d e r e d a satisfactory solvent. Acetonitrile ( E a s t m a n Spectrograde) was used without further p u r i f i c a t i o n , since f r a c t i o n a l d i s t i l l a t i o n h a d little effect o n the s p e c t r u m of the solvent or u p o n t h e rate of p y r i m i d i n e p h o t o l y s i s i n the neat solvent. Some photolyses w e r e a t t e m p t e d w i t h bis ( d i m e t h o x y e t h y l ) ether a n d w i t h t e t r a h y d r o f u r a n , b u t these w e r e even m o r e unsatisfactory t h a n d i o x a n e a n d no r e l i a b l e q u a n t i t a t i v e measurements of p y r i m i d i n e p h o ­ tolysis rates w e r e o b t a i n e d . U r a c i l a n d 1 , 3 - d i m e t h y l u r a c i l w e r e C y c l o C h e m i c a l C o m p a n y stock. Solutions w e r e p r e p a r e d i n the neat solvents at 1 0 ~ M , a n d d i l u t e d w i t h a d d i t i o n a l solvent to m a k e 1 0 ~ M solutions; these w e r e t h e n d i l u t e d w i t h the a p p r o p r i a t e a m o u n t of w a t e r . T h e densities of b o t h d i o x a n e - w a t e r a n d a c e t o n i t r i l e - w a t e r s h o w slight ( 4 % ) d e v i a t i o n s f r o m i d e a l i t y (12, 13), so that m i n o r corrections w e r e necessary i n c a l c u l a t i n g p y r i m i d i n e concentrations. B o t h d i o x a n e a n d acetonitrile are w e a k e r bases t h a n w a t e r ( a c e t o n i t r i l e is m u c h w e a k e r ) (8); acetonitrile has a h i g h d i e l e c t r i c constant (10) of 37.5 a n d d i o x a n e a l o w one of 2.209. If d i l u t i o n w e r e s i m p l y the o n l y f a c t o r the p H of 5 . 6 M w a t e r i n acetonitrile s h o u l d b e 8; a c t u a l l y the p H of u n ­ b u f f e r e d o x y g e n - b u b b l e d w a t e r was 6.3 a n d that of o x y g e n - b u b b l e d 5 . 6 M (10 V o l . % ) w a t e r i n acetonitrile w a s 5 ( B e c k m a n p H M e t e r ) . T h i s a d m i t t e d l y c r u d e measurement is t a k e n o n l y to i n d i c a t e that large changes i n h y d r o g e n i o n a v a i l a b i l i t y d o not o c c u r w h e n w a t e r is d i l u t e d to this extent b y acetonitrile. T h e p r o p e r v a l u e w o u l d b e p a , as d e f i n e d b y R . G . Bates (2), b u t the necessary d a t a are not a v a i l a b l e f o r m i x t u r e s of acetonitrile a n d w a t e r . W e s h a l l assume that the p H changes i n the a c e t o n i t r i l e - w a t e r a n d i n the d i o x a n e - w a t e r system are insufficient to affect p h o t o h y d r a t i o n rates ( 3 ) . 3

4

H

Irradiations. T h e source of l i g h t w a s a 1000 w a t t G E B H 6 h i g h pressure m e r c u r y arc, filtered t h r o u g h a B a u s c h a n d L o m b H i g h Intensity M o n o c h r o m a t o r . D e t a i l s of this a p p a r a t u s a n d i r r a d i a t i o n p r o c e d u r e s are d e s c r i b e d i n the p r e v i o u s p a p e r (3). Product Analysis. A n a l y s i s of the p h o t o l y z e d solutions for p h o t o ­ h y d r a t e content w a s c a r r i e d out b y a c i d i f i c a t i o n a n d h e a t i n g , as d e s c r i b e d p r e v i o u s l y (3). T h e f r a c t i o n of p h o t o h y d r a t e f o r m e d i n p h o t o l y s i s of D M U a n d u r a c i l i n air-saturated a c e t o n i t r i l e - w a t e r a n d a c e t o n i t r i l e - D 0 solutions thus d e t e r m i n e d is s h o w n i n F i g u r e 1. S u b s t a n t i a l a m o u n t s of p r o d u c t s , r e p o r t e d as d i m e r s ( 9 ) , are f o r m e d f r o m u r a c i l a n d t h y m i n e i n a c e t o n i t r i l e — t h a t f r o m t h y m i n e d i f f e r i n g f r o m the t h y m i n e d i m e r p r o ­ d u c e d i n D N A or f r o z e n t h y m i n e solutions ( 9 ) . H o w e v e r , the rates of p h o t o l y s i s of u r a c i l , t h y m i n e a n d D M U i n neat acetonitrile f o l l o w first 2

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

30.

BURR A N D PARK

Photochemical

437

Genetics

Figure 1. The fraction of photohydrate formed in mixtures of acetonitrile and H 0 or D 0; initial pyrimidine concentrations 10~ M 2

2

4

order kinetics, F i g u r e 2, a g r e e i n g w i t h the observations of L a m o l a a n d M i t t a l ( 9 ) . F i r s t o r d e r k i n e t i c s f o r d i m e r f o r m a t i o n i n acetonitrile are difficult to u n d e r s t a n d since i n o u r photolysis system p h o t o h y d r a t e f o r ­ m a t i o n i n u r a c i l f o l l o w e d s i m i l i a r first o r d e r k i n e t i c s ; d i m e r f o r m a t i o n thus s h o u l d b e i n i t i a l l y at least second order i n p y r i m i d i n e c o n c e n t r a t i o n as o b s e r v e d b y S z t u m p f - K u l i k o w s k a et al, (11) f o r orotic a c i d d i m e r i z a t i o n , a n d b y us f o r u r a c i l d i m e r i z a t i o n i n w e l l degassed aqueous s o l u t i o n ( 3 ) . G r e e n s t o c k et al, i n d i c a t e that p r o d u c t s other t h a n d i m e r s a r e f o r m e d i n acetonitrile (7); w e h a v e some i n d i c a t i o n that acetonitrile m a y be r e a c t i n g w i t h the excited p y r i m i d i n e m o l e c u l e s u n d e r c e r t a i n c o n d i ­ tions. W e are c o n t i n u i n g o u r i n v e s t i g a t i o n of the n a t u r e of these p r o d u c t s , w i t h the t h o u g h t that t h e y m a y not b e the p h o t o d i m e r . T h e nature of the p r o d u c t s f o r m e d f r o m D M U i n d i o x a n e w i t h less than 4 0 % water were complicated. Products were formed i n pure d i ­ oxane w h i c h o n a c i d i f i c a t i o n a n d h e a t i n g r e v e r t e d to D M U b u t w h i c h d i d not have the same R as D M U o n p a p e r c h r o m a t o g r a m s . T h e s e p r o d u c t s persisted u p to about 30 to 4 0 % w a t e r ; above this w a t e r c o n ­ centration, the p h o t o p r o d u c t w a s e n t i r e l y the k n o w n p h o t o h y d r a t e . It is p r o b a b l e that c a r b i n o l s a n d peroxides present i n the d i o x a n e w e r e react­ i n g w i t h the excited D M U molecules, since c a r b i n o l s a n d other n e u t r a l n u c l e o p h i l e s are k n o w n to b e c a p a b l e of s u c h reactions (4). f

Calculation of Rates.

T h e relative rates of p y r i m i d i n e p h o t o l y s i s

i n these solvent m i x t u r e s g i v e n i n F i g u r e s 3 a n d 4 w e r e o b t a i n e d b y

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

438

RADIATION

CHEMISTRY

1

o b s e r v i n g t h e a b s o r b a n c e changes f o r a s t a n d a r d photolysis t i m e ( u s u a l l y 20 m i n u t e s ) , after i t w a s d e t e r m i n e d that t h e reactions w e r e first o r d e r i n p y r i m i d i n e — i . e . , plots of l o g A /A Q

values of A A coefficient. X

10

2 0

2 0

were linear w i t h time.

These

w e r e c o n v e r t e d to rates, u s i n g k n o w n values of the e x t i n c t i o n

T h e rates w e r e n o r m a l i z e d t o a s t a n d a r d v a l u e of I

quanta liter

- 1

G

== 5.36

m i n . " , as i n t h e p r e v i o u s s t u d y ( 3 ) . N o r m a l i z e d 1

s t a n d a r d rates of p h o t o h y d r a t e f o r m a t i o n w e r e t h e n o b t a i n e d b y m u l t i ­ p l y i n g t h e photolysis rate at e a c h solvent c o m p o s i t i o n b y t h e f r a c t i o n of p h o t o h y d r a t e f o r m e d i n a m i x t u r e of that c o m p o s i t i o n , t a k e n f r o m F i g u r e 1. Rates of D M U p h o t o h y d r a t e f o r m a t i o n i n t h e r e g i o n 0 to 4 0 % w a t e r

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

c o u l d o n l y b e estimated f r o m t h e p a p e r c h r o m a t o g r a m s ; t h e v a r i a t i o n of p h o t o h y d r a t e f o r m a t i o n rate w a s a p p r o x i m a t e l y l i n e a r w i t h w a t e r c o n ­ c e n t r a t i o n i n this range.

A s c a n b e seen f r o m F i g u r e 4, some p r o d u c t

y i e l d u n c e r t a i n t y i n this r e g i o n o f w a t e r c o n c e n t r a t i o n d i d n o t h a v e m u c h effect o n t h e final result.

0

10

20

30

40

50

60

70

Minutes

Figure 2. Rates of photolysis of several pyrimidines in neat acetonitrile; initial pyrimidine concentrations about 10 *M Results and Discussion T h e rate of u r a c i l p h o t o h y d r a t e f o r m a t i o n is a l i n e a r f u n c t i o n of t h e H 0 o r t h e D 0 c o n c e n t r a t i o n i n acetonitrile, F i g u r e 3. T h i s v a r i a t i o n i n rate is n o t c a u s e d b y a v a r i a t i o n i n h y d r o g e n ion—i.e., s o l v a t e d h y d r o g e n i o n — b e c a u s e t h e estimated v a r i a t i o n i n p H over this solvent range ( 1 2

2

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

30.

BURR AND PARK

Fhotochemicol

—I

I —

1

— I

50 Volume

— I — 100

f—

60 HgO

70

R~

1

40

m

1

40 50 Volume %

20

439

Genetics

60 %

70

80

D 0 2

O

Uracil in Acetonitrile - H 0



Uracil in Acetonitrile - D 0

2

2

2

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

o

20

30

60

40

W , Moles per Liter

Figure 3. Rates of photohydration of uracil (10~*M) in mixtures of acetonitrile and H 0 or D 0. The rates are all normalized to l = 5.36 X 10 quanta liter' min.' 2

0

2

20

1

1

u n i t ) is insufficient to cause s u c h a rate v a r i a t i o n ( 3 ) ; f u r t h e r m o r e , the t r e n d is opposite to that w h i c h w o u l d be p r e d i c t e d b y the p H v a r i a t i o n . T h e l i n e a r i t y a n d d i r e c t i o n of the t r e n d i n rate is not i n c o n f o r m i t y w i t h trends p r e d i c t e d for variations of c a t i o n - d i p o l e r e a c t i o n rates or d i p o l e d i p o l e r e a c t i o n rates w i t h v a r i a t i o n of d i e l e c t r i c strength.

T h e fastest

p r o d u c t - f o r m i n g step i n u r a c i l p h o t o h y d r a t i o n was s h o w n i n the

first

p a p e r of this series ( 3 ) to b e p r o p o r t i o n a l to the c o n c e n t r a t i o n of e x c i t e d p r o t o n a t e d u r a c i l ( U H ) * a n d a n e u t r a l w a t e r species. +

T h e rate c o n ­

stants of reactions b e t w e e n cations a n d n e u t r a l d i p o l a r molecules s h o u l d increase

as the d i e l e c t r i c constant of the m e d i u m decreases ( I ) .

The

effects of d i e l e c t r i c constant o n reactions b e t w e e n t w o n e u t r a l d i p o l a r m o l e c u l e s — i . e . , b e t w e e n excited u r a c i l , U * , a n d a n e u t r a l w a t e r s p e c i e s — are d i f f i c u l t to d i s t i n g u i s h f r o m other solvent a n d s t r u c t u r a l effects, b u t i f this c a n be done, t h e n the l o g of the rate constant s h o u l d b e i n v e r s e l y p r o p o r t i o n a l to the d i e l e c t r i c constant

of the m e d i u m ( I ) .

the v a r i a t i o n of the p h o t o h y d r a t i o n rate of D M U w i t h w a t e r

However, concentra-

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

440

RADIATION CHEMISTRY

1

t i o n ( F i g u r e 4 ) is the same i n mixtures of d i o x a n e - w a t e r , D == 2.21-78.54, as i t is i n m i x t u r e s of acetonitrile a n d w a t e r , D = 37.5-78.54. T h i s c o i n c i ­ dence

also excludes m a n y other properties of the m i x e d solvents as

sources of the rate v a r i a t i o n s . T h e rate trends i n d i c a t e d i n F i g u r e s 3 a n d 4 m a y b e u s e d w i t h g o o d assurance, therefore, to d e t e r m i n e the m o l e c u l a r i t y of the n e u t r a l w a t e r species c o n c e r n e d i n t h e p h o t o h y d r a t i o n reactions.

T h e linear variation

of u r a c i l p h o t o h y d r a t i o n rate w i t h w a t e r c o n c e n t r a t i o n indicates that this r e a c t i o n is first o r d e r i n w a t e r c o n c e n t r a t i o n .

T h e p r o d u c t f o r m i n g step

i n this r e a c t i o n c a n n o w b e w r i t t e n w i t h assurance, e m p l o y i n g the nota­

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

t i o n f r o m o u r first p a p e r ( 3 ) , as E q u a t i o n 1. (dU )/dt

fc,(UH )*(H 0)

=

mo

+

(1)

2

Figure 4. Rates of photohydration of DMU (10~ M) in mixtures of water with dioxane or acetonitrile and in mixtures of acetonitrile and D 0; I = 5.36 X 10 quanta liter' min' 4

2

0

20

1

1

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

30.

BURR A N D PARK

Photochemical

441

Genetics

T h i s c o n c l u s i o n is r e i n f o r c e d b y the d i r e c t i o n of t h e d e u t e r i u m iso­ tope effects f o r p h o t o h y d r a t e f o r m a t i o n i n b o t h u r a c i l a n d D M U :

fc An H

is 1.18 f o r u r a c i l p h o t o h y d r a t i o n a n d 2.8 f o r D M U p h o t o h y d r a t i o n ( F i g ­ ures 3 a n d 4 ) . T h e f a c t that

fc An

is greater t h a n 1.0 f o r u r a c i l p h o t o ­

H

h y d r a t i o n is significant because i n that photolysis t h e p r i n c i p a l p r o d u c t forming

reaction

rium between

mechanism

was shown

(2)

to i n c l u d e

excited uracil a n d hydrogen ion.

a equilib­

T h i s is n o w s h o w n

U * + H ^± ( U H ) * +

(UH )* + H +

2

+

O ^ U

H

2

+ H

0

+

Downloaded by UNIV LAVAL on July 14, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch030

to b e f o l l o w e d b y r e a c t i o n b e t w e e n the e x c i t e d p r o t o n a t e d u r a c i l a n d H 0.

Ionic

2

reactions

such

as this

i n w h i c h the water

is i n v o l v e d

o n l y i n e q u i l i b r i u m p r o t o n a t i o n of a base, a n d i n w h i c h t h e p r o d u c t for­ m a t i o n f r o m the p r o t o n a t e d base is r e l a t i v e l y s l o w e r t h a n t h e p r o t o n a t i o n —i.e., a c i d - c a t a l y z e d reactions w i t h a " p r e - e q u i l i b r i u m , " g e n e r a l l y a r e faster i n D 0 t h a n i n H 0 because D 0 is a better p r o t o n d o n o r t h a n H 0 2

(pK

I ) 2 0

=

2

14.955, p K

H 2

2

o =

p r o t o n a t e d base is thus h i g h e r i n D (5)—i.e., k /k H

B

2

13.997 at 2 5 ° C . ) 2

( 6 ) ; the concentration of

0 t h a n i n H 0 , a n d t h e rate is faster 2

is less t h a n 1.0. T h e m a g n i t u d e of t h e isotope effects i n

these photolyses is, h o w e v e r , characteristic of a k i n e t i c isotope effect i n w h i c h m o l e c u l a r w a t e r w o u l d b e i n v o l v e d i n t h e p r o d u c t - f o r m i n g step. T h e m a g n i t u d e of the v a l u e f o r u r a c i l is that of a secondary isotope effect, a n d m a g n i t u d e f o r D M U is that n o r m a l l y f o u n d i n a p r i m a r y isotope effect. T h e rate of p h o t o h y d r a t i o n of D M U i n either

dioxane-water or

acetonitrile-water is, h o w e v e r , n o t l i n e a r i n t h e w a t e r c o n c e n t r a t i o n b u t m o r e n e a r l y p r o p o r t i o n a l to t h e square of t h e w a t e r c o n c e n t r a t i o n .

It

s h o u l d b e s a i d at once that t h e reasons f o r t h e differences b e t w e e n t h e k i n e t i c b e h a v i o r of u r a c i l a n d D M U i n these solvent mixtures is n o t c o m p l e t e l y u n d e r s t o o d , a n d m a y e v e n t u a l l y b e f o u n d to reflect s i m p l y u n d i s c o v e r e d features of photolyses i n s u c h m i x e d solvent systems. nevertheless

I t is

i n s t r u c t i v e to examine these differences i n t h e l i g h t o f t h e a U

l

U *

b 0 !U* -» U(+ U* -» U) 2

3

c *U* + H ^ d +

(UH )* +

e ( U H ) * -> U + H +

f ( U H ) * + H 0 -> U +

2

H 2 G

+

+H

+

Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.

442

RADIATION CHEMISTRY

1

r e a c t i o n m e c h a n i s m w h i c h has b e e n p r o p o s e d f o r u r a c i l p h o t o h y d r a t i o n (3),

c o n s i s t i n g o f r e a c t i o n steps ( a ) - ( f ) .

T h e o v e r a l l rate of p h o t o ­

h y d r a t i o n , w r i t t e n as E q u a t i o n 2 i n t h e earlier p a p e r , c a n b e r e w r i t t e n as E q u a t i o n 3. (H )

k W