8 Photoelectrochemistry and Spectroscopy of Metal Phthalocyanine Films on a Transparent
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
Semiconducting Electrode COOPER H . LANGFORD, BRYAN R. HOLLEBONE, and THEODORE VANDERNOOT Metal Ions Group, Chemistry Department, Carleton University, Ottawa, Canada K1S 5B6
The photoelectrochemistry of Mg, Fe, Ni, and Zn phthalo cyanine films on transparent n-type tin oxide electrodes is reported. Photocurrents of a type expected from a p-type semiconductingfilmare observed in all cases. These currents are small; slow electron transfer is indicated. There is some evidence of the retardation of the "dark couple" reaction without inhibition of the "photocouple" at the photoelectrode. The most effectivefilmis one containing the β-crystal modification of zinc phthalocyanine. This result is clarified by examination of magnetic circular dichroism spectra of metal phthalocyanine films. The broad line spectra reveal the solid state character of the films. Requirements for effi cient photoelectrochemistry in terms of electronic states are discussed.
Albery a n d A r c h e r have analyzed the i d e a l diffusion-controlled photogalvanic cell a n d indicated that i t c o u l d
achieve
c o m p a r a b l e w i t h t h a t o f g o o d p h o t o v o l t a i c devices (1,2).
a n efficiency I n i t there are
t w o r e d o x c o u p l e s , A/Β a n d Y / Z , w h e r e t h e e x c i t e d state o f A ( A * ) i s t h e p h o t o r e a c t i v e species i n t h e c e l l .
T h e reactions i n t h e c e l l c a n b e
s u m m a r i z e d as f o l l o w s . hp
A
>A*
(1)
A* + Ζ - » Β + Y o c c u r r i n g n e a r i l l u m i n a t e d electrode 0-8412-0474-8/80/33-184-139$05.00/0 © 1980 American Chemical Society Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
(2)
140
INTERFACIAL
(B +
PHOTOPROCESSES
y —> A + Z) energy wasting
(3)
B ± c" —» A occurring at illuminated electrode
(4)
Y
(5)
Z ± e~ occuring at dark electrode
F o r the o p e r a t i o n
of
a n efficient
cell, conditions
i l l u m i n a t e d electrode that c a n m e d i a t e the A/B
should include
an
c o u p l e b u t that is u n r e -
a c t i v e to the Y / Z c o u p l e p a i r e d w i t h a d a r k electrode t h a t c a n m e d i a t e the Y / Z c o u p l e .
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
inefficient. the
A d d i t i o n a l l y , the b a c k r e a c t i o n ( R e a c t i o n 3) m u s t b e
A n a l y s i s of the k i n e t i c s of h o m o g e n e o u s systems a i d e d
M a r c u s - W e l l e r theory
(3,4)
of
electron
transfer r e a c t i o n
suggests that these c r i t e r i a are v e r y h a r d to satisfy. W e m u s t look " n o n - M a r c u s i a n " e l e c t r o n transfer.
i n a l i m i t e d zone near
the
T o g e t h e r , a l l of these features suggest a h e t e r o
geneous system w i t h the A/B the i l l u m i n a t e d electrode. c o n d u c t o r cells (5)
for
A n a d d i t i o n a l feature is t h a t i t is
d e s i r a b l e to h a v e l i g h t a b s o r p t i o n o c c u r i l l u m i n a t e d electrode.
by
rates
c o u p l e i n c o r p o r a t e d i n t o a surface l a y e r of
S u c h a c e l l approaches the regenerative s e m i
b a s e d o n C d S or G a P a n d d i s c u s s e d elsewhere i n
this v o l u m e , b u t the use of m o l e c u l a r layers as absorbers has d i s t i n c t i v e features that l e a d us to p r e f e r m o d e l l i n g o u r discussions o n t h e p a r i s o n to h o m o g e n e o u s cells.
A third model, a
com
conductor-insulator-
c o n d u c t o r s a n d w i c h has r e c e n t l y b e e n c o n s i d e r e d b y L y o n ' s g r o u p
(6).
It turns out that there are r e l a t e d r e q u i r e m e n t s t h a t c a n be specified f o r a system that w i l l c a r r y out efficient p h o t o c h e m i c a l synthesis. E f f i c i e n t synthesis r e q u i r e s c o n c e n t r a t i o n of l i g h t a b s o r p t i o n i n t o a n a r r o w z o n e to a v o i d costly catalyst recovery. bility.
It also r e q u i r e s means of f a v o r i n g r e v e r s i
M o r e o v e r , e l e c t r o c h e m i c a l l y m e d i a t e d syntheses m a y p e r m i t a
l i g h t r e a c t i o n o n a w i d e area c o l l e c t o r to b e c o u p l e d to a m o r e
compact
a n d m a n a g e a b l e d a r k electrode r e a c t i o n w h e r e the d e s i r e d p r o d u c t is to be collected.
(It's a t t r a c t i v e to t h i n k that the m a i n l i n k to a l a r g e solar
c o l l e c t o r field c o u l d b e e l e c t r o l y t e a n d w i r e s o n l y ) . A g a i n , a n a t t r a c t i v e response
to these r e q u i r e m e n t s is to a t t e m p t to b u i l d
photosynthetic
e l e c t r o c h e m i c a l cells b a s e d o n heterogeneous systems. I t is clear i n the p h o t o g a l v a n i c c e l l case a n d p r o b a b l e i n the synthesis case, t h a t the r e q u i r e m e n t s specified l e a d to the i n v e s t i g a t i o n of w a y s of p r o d u c i n g a sort of " r e c t i f i c a t i o n ' at a p h o t o e l e c t r o d e .
T h e subject of this
c h a p t e r is o u r p r e l i m i n a r y w o r k o n s u c h r e c t i f i c a t i o n a n d its r e l a t i o n s h i p t o t h e e l e c t r o n i c p r o p e r t i e s of " s e m i s o l i d " m a t e r i a l s as r e v e a l e d b y t h e i r electronic spectra under magnetic circular dichroism ( M C D ) investiga tion.
R e l a t i o n s of r e a c t i v i t y to spectroscopic
information on
electronic
s t r u c t u r e is a l w a y s i m p o r t a n t to effective p h o t o c h e m i c a l a d v a n c e . experiments have employed metal phthalocyanine ( P c )
dyes.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
These
8.
LANGFORD E T AL.
Metal
Phthaloctjanine
141
Films
T h e c h o i c e of Pc's w a s m a d e for several reasons. Pc's h a v e a t t r a c t e d a t t e n t i o n as o r g a n i c s e m i c o n d u c t o r s f r o m a n e a r l y d a t e (7,8)
and the
r i c h l i t e r a t u r e c o n c e r n i n g m e c h a n i s m of c h a r g e transport i n these films invites a t t e n t i o n . P h o t o v o l t a i c cells b a s e d o n Pc's h a v e b e e n e x p l o r e d f o r some t i m e a n d several m e c h a n i s m s for p h o t o v o l t a i c a c t i o n h a v e proposed.
been
These include models based on Shottky barrier theory
d o p e d insulators (9,10,11).
for
H o w e v e r , results h a v e b e e n r e p o r t e d t h a t
d o not i n d i c a t e a p p r o p r i a t e d e p e n d e n c e o n w o r k f u n c t i o n of
electrode
metals a n d this leads to a n a l t e r n a t i v e m o d e l b a s e d o n single c a r r i e r t h e o r y (6).
O u r p h o t o g a l v a n i c w o r k to d a t e does not l e a d to a specific
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
c o n n e c t i o n w i t h p h o t o v o l t a i c experiments a l t h o u g h suggestive c o n n e c t i o n s exist. T h e m a i n factors r e l e v e n t to o u r present c h o i c e of Pc's for s t u d y of heterogeneous p h o t o g a l v a n i c a n d p h o t o s y n t h e t i c effects are t h e f o l l o w i n g . F i r s t , these m a t e r i a l s are i n t e r e s t i n g s p e c t r o s c o p i c a l l y .
Second, they
b e a r a r e l a t i o n s h i p to b o t h p h o t o s y n t h e t i c p i g m e n t s a n d t h e m e t a l d i i m i n e c o m p l e x e s , w h i c h h a v e a t t r a c t e d m u c h r e c e n t a t t e n t i o n as p h o t o c h e m i c a l e l e c t r o n transfer agents. dyes.
A d d i t i o n a l l y , t h e y are c o n v e n i e n t c o m m e r c i a l
T h e results suggest
t h a t there r e m a i n s c o n s i d e r a b l e
scope
for
s y n t h e t i c i n v e s t i g a t i o n s . W e e m p h a s i z e that o n l y the barest start has b e e n m a d e i n the field of o r g a n o m e t a l l i c Theoretical
film
photoelectrodes.
Remarks
T h e characteristics of a heterogeneous system m e e t i n g the A l b e r y A r c h e r c r i t e r i a c a n b e s k e t c h e d , at least i n p a r t .
L e t ' s suppose t h a t
R e a c t i o n 2 is r e d u c t i o n of Z b y a n e x c i t e d d y e A * i n the cathode.
A
c o n v e n i e n t w a y to b l o c k r e o x i d a t i o n of Y w o u l d be for the c a t h o d e to b e a p - t y p e s e m i c o n d u c t o r w i t h the b a n d b e n t to d e p l e t e the surface l a y e r of holes. T h i s is just the c o n d i t i o n f o r a p - t y p e s e m i c o n d u c t o r to a c t as a photoreductant
(5).
S e m i c o n d u c t o r p h o t o e l e c t r o c h e m i s t r y is p r o m o t e d
w h e n t h e h o l e - e l e c t r o n p a i r c r e a t e d b y p h o t o n a b s o r p t i o n is p r e v e n t e d f r o m r e c o m b i n i n g b y m i g r a t i o n of the m a j o r i t y c a r r i e r to the i n t e r i o r a n d t h e m i n o r i t y c a r r i e r (electrons i n o u r case) to the surface to r e a c t w i t h t h e electrolyte. N o t e also, that p h o t o n s a b s o r b e d at v a r i o u s d e p t h s i n t h e space c h a n g e l a y e r c a n b e h a r v e s t e d a n d d e l i v e r e d to the r e a c t i v e site ( s u r f a c e ) i f this m e c h a n i s m is sufficiently efficient. T h e r e is a n e l e m e n t f u n c t i o n a l l y analogous to l i g h t h a r v e s t i n g i n photosynthesis. F o r B to regenerate A , i t is necessary to h a v e a n e l e c t r o n underlying the semiconducting dye an n-type semiconductor.
film.
T h e l a t t e r p o s s i b i l i t y offers t h e p r o s p e c t of a n
n - p j u n c t i o n rectifier u n d e r l y i n g the p - e l e c t r o l y t e j u n c t i o n to rectification. T h e B
source
T h i s m a y be either a m e t a l or enhance
Y w a s t i n g r e a c t i o n is also i n h i b i t e d i f B is associ
ated w i t h a hole that migrates t o w a r d the semiconductor interior a n d away from Y.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
142
INTERFACIAL
PHOTOPROCESSES
A n i d e a l c e l l i s c o n c e i v a b l e as a n i l l u m i n a t e d e l e c t r o d e c o m p o s e d o f an n-type semiconductor ( o r perhaps a metal) coated b y a p-type d y e l a y e r t h a t is p h o t o c h e m i c a l l y a c t i v e ( t h e A/B c o u p l e ) i n c o n t a c t w i t h a n electrolyte containing t h e Y / Z couple.
T h e electrolyte makes
contact
w i t h a m e t a l electrode a t w h i c h t h e Y / Z c o u p l e i s r e v e r s i b l e . A n efficient cell based o n t h e diffusion of the Y / Z couple should b e t h i n a n d the m e t a l electrode is r a r e l y t r a n s p a r e n t . T h e r e f o r e , i t i s u s e f u l t o c o n s i d e r t r a n s p a r e n t n - t y p e s e m i c o n d u c t o r s c o a t e d o n glass as s u p p o r t s f o r t h e d y e l a y e r a n d e n t r y o f l i g h t to t h e i l l u m i n a t e d e l e c t r o d e f r o m t h e s u p p o r t s i d e r a t h e r t h a n t h e e l e c t r o l y t e side. T h i s h a s t h e a d d e d a d v a n t a g e o f
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
a l l o w i n g the use o f c o l o r e d electrolytes. I n t h e e x p e r i m e n t s d e s c r i b e d b e l o w , t h e barest s k e l e t o n o f s u c h a n i d e a l c e l l is v i s i b l e . a - C r y s t a l m o d i f i c a t i o n m e t a l p h t h a l o c y a n i n e d y e films have p-type moisture ( I I ) .
semiconducting properties w h e n equilibrated w i t h a i r / ( T h i s is i n d i c a t e d i n F i g u r e 1.) W h e n t h e y are s u b l i m e d
onto transparent n-doped conducting S n 0 a c t i v e p - t y p e s e m i c o n d u c t o r is f o r m e d .
2
o n glass electrodes, a p h o t o
C o n t a c t of this solid a n d semi
s o l i d ( t h e d y e l a y e r ) rectifier l a y e r c a k e w i t h a n e l e c t r o l y t e c o n t a i n i n g a c o u p l e s u c h as q u i n o n e / h y d r o q u i n o n e ( i n 1 . 0 M K C 1 as s u p p o r t i n g e l e c t r o l y t e ) , i n t u r n i n contact w i t h P t , c o m p l e t e s a p o t e n t i a l r e a l i z a t i o n o f t h e " i d e a l " c e l l . A f e w o f t h e i d e a l features are r e a l i z e d i n this c e l l b u t m a n y others are not. E s p e c i a l l y , t h e r e a c t i o n o f r e d u c t i o n r e m a i n s a s l o w 200
I
FRESH CELL
20
HR. ~ 100 C*
UJ 10
O
< CO UJ
a: 2 DAYS IN I AIR
3000-A
film
sandwiched two metals.
between
4 DAYS INAIR
SUCCESSIVE MEASUREMENTS ON ONE CELL
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
8.
LANGFORD E T AL.
Metal
p h o t o p r o c e s s at t h e electrodes. p h o t o n e n e r g y converter.
Phthalocyanine
143
Films
T h i s c a n n o t b e t o l e r a t e d f o r a n efficient
( I t is also p o s s i b l e t h a t t h e flaw i n the i d e a l
analysis as a p p l i e d to this c e l l is t h e use of t h e m o d e l of R e f . 5 r a t h e r t h a n the m o d e l of R e f . 6.) Experimental Materials. M e t a l Pc's w e r e o b t a i n e d f r o m E a s t m a n O r g a n i c C h e m i cals a n d p u r i f i e d b y s u b l i m a t i o n . T h e d o p e d S n 0 - c o a t e d glass w a s o b t a i n e d f r o m O . H . Johns L t d . T h e resistance w a s u n d e r 100 O m~ a n d l i g h t t r a n s m i s s i o n i n the v i s i b l e r e g i o n e x c e e d e d 8 0 % . E l e c t r o l y t e c o m p o n e n t s w e r e p r e p a r e d f r o m reagent g r a d e c h e m i c a l s w i t h o u t s p e c i a l purification. W a t e r was redistilled from potassium permanganate. Electrode Preparation. F i l m s of p h t h a l o c y a n i n e w e r e d e p o s i t e d o n n - d o p e d S n 0 - c o a t e d glass ( o r i n one e x p e r i m e n t , glass) b y s u b l i m a t i o n f r o m a q u a r t z vessel i n a t u b e f u r n a c e . T h e v a c u u m l i n e w a s e v a c u a t e d w i t h a n o i l d i f f u s i o n p u m p ( m i n i m u m pressure = 1 0 ' t o r r ) except i n e x p e r i m e n t s i n t e n d e d t o p r o d u c e t h e green « m o d i f i c a t i o n of Z n P c . T h e electrode substrate w a s m o u n t e d o n a " s l e d " t h a t c o u l d b e m a g n e t i c a l l y p u s h e d past a h i n g e d b a r r i e r to the m o u t h of t h e t u b e f u r n a c e . A t t h e ( u n d e t e r m i n e d ) o p e r a t i n g t e m p e r a t u r e , films of a p p r o x i m a t e l y 5 0 0 - A thickness w e r e d e p o s i t e d i n just over 15 m i n ; 1000-A films r e q u i r e d n e a r l y 30 m i n . F i l m thickness w a s e s t i m a t e d f r o m a b s o r b a n c e at t h e w a v e l e n g t h of m a x i m u m a b s o r b a n c e u s i n g e x t i n c t i o n coefficient d a t a f r o m R e f . 12 a n d a n a s s u m e d film d e n s i t y of 1.5 g c m ' . T h u s , t h e t h i c k nesses c i t e d are q u i t e a p p r o x i m a t e . T h i s seems a p p r o p r i a t e since t h e films w e r e , u n f o r t u n a t e l y , r e c o g n i z a b l y n o n u n i f o r m . R e p r o d u c i b i l i t y f r o m one p h t h a l o c y a n i n e to another is better. Electrochemical Studies. T h e c e l l w a s f a b r i c a t e d f r o m T e f l o n w i t h a n o p e n i n g to w h i c h the t r a n s p a r e n t electrode c o u l d b e h e l d b y a brass p l a t e . E l e c t r i c a l contact to the S n 0 w a s e s t a b l i s h e d b y a brass r i n g of d i a m e t e r l a r g e r t h a n the o p e n i n g i n the c e l l . A n e o p r e n e O - r i n g a n d s i l i c o n e grease e n s u r e d a seal f r o m the electrolyte. T h e c e l l a d m i t t e d a n i t r o g e n b u b b l e r p l a c e d to sparge the electrode surface; a s a t u r a t e d c a l o m e l reference electrode w a s u s e d i n t h e p o t e n t i o s t a t i c c i r c u i t a n d a b r i g h t , l a r g e a r e a , p l a t i n u m electrode f o r m e d t h e c o u n t e r electrode. C u r r e n t - v o l t a g e c u r v e s w e r e r e c o r d e d w i t h the a i d of a P A R M o d e l 364 p o l a r o g r a p h o p e r a t e d at a scan rate of 2 m V / s e c . S m a l l b a c k g r o u n d w a v e s w e r e o b s e r v e d w h e n d y e c o a t e d electrodes w e r e a n a l y z e d i n K C 1 s o l u t i o n . T h e s e a p p e a r e d to b e t i m e d e p e n d e n t a n d l e d to a d o p t i o n of a p r o c e d u r e i n w h i c h the first scan of a n y electrode-electrolyte combination was ignored. Photochemical Aspects. T h e l i g h t source i r r a d i a t i n g t h e m e t a l p h t h a l o c y a n i n e films t h r o u g h the glass a n d S n 0 p l a t e w a s a 1 0 0 0 - W H g - X e a r c l a m p . F i l t e r s w e r e p l a c e d i n the l i g h t p a t h as f o l l o w s . A 10-cm p a t h , w a t e r - f i l l e d q u a r t z a b s o r p t i o n c e l l r e d u c e d I R a n d h e a t i n g effects; a n d a U V cutoff filter t h a t w a s tested t o e s t a b l i s h t h a t i t e l i m i n a t e d the photoeffects t h a t arise f r o m S n 0 b a n d g a p a b s o r p t i o n . T h e i n t e n s i t y of t h e l i g h t r e a c h i n g t h e film w a s e s t i m a t e d u s i n g b r o a d b a n d R e i n e c k a t e c h e m i c a l a c t i n o m e t r y ( 1 3 ) as 1.6 X 10" e i n s t e i n sec" . 2
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
2
2
6
3
2
2
2
6
1
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
144
INTERFACIAL
PHOTOPROCESSES
M.C.D. FLOWCHART OF DATA AQUISITION POLARIZER MODULATOR MAGNET STEPPING SCAN MOTOR
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
SIGNAL
Data Processing
Operation Programme i ) Calculates and Sets position of Scan Motor and Modulator Control Volts ii) iii)
Reads Data at Fixed Scan Position Calculates Data Mean and S.D.
iv) Stores Data point and uses S.D. to calculate scan rate f o r ( i ) .
Figure 2.
i ) Assembles spectrum on l i n e a r energy axis with c a l i b r a t i o n points ready for p l o t t i n g i i ) Allows t r i a l f i t t i n g of spectrum with proposed assignment v i a MCDFIT iii)
Calculation of L.F. parameters from band positions
iv) Calculation of x, e t c . by Moments integration
Block diagram of the MCD spectrometer
M C D Spectra. M C D spectra were recorded o n a n i m p r o v e d design of t h e c r y o m a g n e t i n s t r u m e n t d e s c r i b e d i n R e f . 12. I t s g e n e r a l features are i n d i c a t e d i n F i g u r e 2. T h e s p e c t r a w e r e o b t a i n e d a t a field o f 4.7T. A b s o r p t i o n s p e c t r a w e r e r e c o r d e d o n a C a r y 14 spectrophotometer. M C D s p e c t r a w e r e r e c o r d e d f o r films o n q u a r t z plates. T h e t e c h n i q u e o f p r e p a r a t i o n w a s s i m i l a r t o t h a t a d o p t e d f o r electrode p r e p a r a t i o n . Survey of
Photoelectrochemistry
C u r r e n t - v o l t a g e curves have been recorded f o r n - S n 0 coated w i t h a - M g P c , a-FePc, a - N i P c , a-ZnPc, a n d £-ZnPc.
2
electrodes
I n a l l cases,
the s u p p o r t i n g e l e c t r o l y t e w a s L O O M K C 1 a n d r e a c t i v e species i n t h e
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
8.
LANGFORD E T A L .
Metal Phthalocyanine
145
Films
solution included the quinone/hydroquinone couple, the f e r r i c y a n i d e / f e r r i c y a n i d e c o u p l e , f m ( e t h y l e n e d i a m i n e ) c o b a l t ( I I I ) , a n d N,N' d i h e p t y l 5,5' d i p y r i d i n e ( h e p t y l v i o l o g e n ) . T h e g e n e r a l features are s i m i l a r o n a l l n-Sn0
2
electrodes; F i g u r e s 3, 4, a n d 5 p r o v i d e a s u m m a r y . A c u r v e o n
a - M g P c , w h i c h is r e p r e s e n t a t i v e f o r " t h i n " films of a p p r o x i m a t e l y 5 0 0 A , is s h o w n i n F i g u r e 3. F i g u r e 4 shows results o n N i P c t h a t p r o v i d e a c o m p a r i s o n of films of 500 A a n d 1000 A a n d F i g u r e 5 d i s p l a y s results f o r t h e ^ - c r y s t a l m o d i f i c a t i o n of Z n P c . S e v e r a l g e n e r a l observations m a y
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
be made. 1. P h o t o c u r r e n t s of t h e sort e x p e c t e d f o r p - t y p e s e m i c o n d u c t i n g films a r e seen i n a l l cases. I t s h o u l d b e n o t e d e s p e c i a l l y that this i n c l u d e s t h e l o w e r c o n d u c t i v i t y / J - Z n P c film.
450-
400-
Figure 3. Current-voltage curves for 5.00 X 10~ quinone/hydroqui none solutions in LOOM KCl at Mg and "green" (a) ZnPc electrodes. Curves are labelled as follows: (A) photo Zn; (B) dark Zn; (C) photo Mg; (D) dark Mg. The film thickness is near 500 A in both cases; V is in mV, I is in fiA. 4
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
146
INTERFACIAL
PHOTOPROCESSES
2. T h e p h o t o c u r r e n t s are s m a l l a n d t h e m o r p h o l o g y of t h e current-voltage curve implies kinetically slow electron trans fer i n a l l c a s e s — b o t h p h o t o a n d d a r k . T h i s is t h e l i m i t i n g feature of t h e p e r f o r m a n c e of these electrodes. 3. T h e p h o t o e n h a n c e m e n t of c u r r e n t s i n t h e l i m i t i n g r e g i o n suggest that t h e c a r r i e r g e n e r a t i o n process p l a y s a p a r t i n e s t a b l i s h i n g t h e l i m i t i n g c u r r e n t . T h i s is c o n f i r m e d b y l i g h t i n t e n s i t y d e p e n d e n c e t h a t is l i n e a r w i t h a slope a l i t t l e less t h a n one i n the l i m i t i n g r e g i o n .
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
4. T h e r e is v e r y l i t t l e d e p e n d e n c e o n t h e m e t a l i n t h e p h t h a l o c y a n i n e o v e r the r a n g e M g , F e ( I I ) , N i , a n d Z n . T h e o n l y u n i q u e m e t a l feature observed occurred w i t h F e ( I I ) . I n
-200
40-
i -200
i -400
i -600
i -800
Figure 4. Current (in fxA) vs. voltage (in mV) for the quinone/hydroquinone electrolyte described in Figure 3 at NiPc electrodes. Curve (A) photo and (B) dark were recorded on an electrode with a 500-A film. Curve (C) photo and (D) dark on a 1000-A film.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
LANGFORD E T AL.
8.
Metal
Phthalocyanine
Films
147
a n i r r e g u l a r ( a n d u n d i a g n o s e d ) event, i l l u m i n a t e d elec trodes e x h i b i t e d a c a t a s t r o p h i c c u r r e n t increase a c c o m p a n i e d b y loss o f t h e i l l u m i n a t e d z o n e o f t h e film. W e suspect conversion to F e ( I I I ) accompanied b y axial ligation m a y be involved. T h e m a j o r v a r i a b l e s l e a d i n g t o s i g n i f i c a n t changes o f b e h a v i o r w e r e film
thickness a n d phthalocynaine crystal modification. Increasing
film
t h i c k n e s s decreases t h e r m a l c u r r e n t s as h i g h e r resistance m i g h t i m p l y . B u t t h e decrease o f p h o t o c u r r e n t i s n o t p r o p o r t i o n a l t o t h e decrease i n dark current. A l s o , larger open circuit photogalvanic potentials were
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
r e c o r d e d f o r t h e 1 0 0 0 - A films. A c h a n g e f r o m the a - t o ^ - c r y s t a l m o d i f i c a -200" -180-
-160 -
20
40 600
400
200
-200 - 4 0 0
l -600
I I - 8 0 0 -1000
Figure 5. Current (in fiA) vs. voltage (in mV) for electrolytes at a "blue" (P) ZnPc electrode. Curves (A) photo and (B) dark are for the quinone/ hydroquinone electrolyte described above. Curves (C) photo and (D) dark are for a similar concentration of K Fe(CN) K Fe(CN) in KCl. Although the present scale suppresses detail in (C) and (D), limiting regions at cathodia potential were observed. s
6
i
6
American Chemical Society Library 1155 16th St. N. W.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis D. C. 20036 Advances in Chemistry;Washington, American Chemical Society: Washington, DC, 1980.
148
INTERFACIAL
t i o n p r o d u c e d s i m i l a r b u t e m p h a s i z e d effects.
PHOTOPROCESSES
T h e photogalvanic
open
c i r c u i t v o l t a g e v a r i e d f r o m 4 0 - 8 0 m V o n a films. I t r e a c h e d 180 m V o n t h e p films. T h i s leads to the most i n t e r e s t i n g issue, w h a t is t h e a d v a n t a g e of ^ - c r y s t a l m o d i f i c a t i o n ? W e r e t u r n to this q u e s t i o n i n the spectroscopic discussion below. A
final
e x p e r i m e n t is w o r t h r e c o r d i n g .
T o attempt evaluating the
r o l e of n - S n 0 a film of Z n P c w a s d e p o s i t e d o n glass. I n this e x p e r i m e n t , 2
t h e e l e c t r i c a l contact, w h i c h w a s the brass ring u s e d i n other e x p e r i m e n t s , w a s at the same front surface of the film t h a t w a s i n contact w i t h the electrolyte. T h e d e f e c t o n this e x p e r i m e n t a l a r r a n g e m e n t is t h a t t h e
film
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
w a s p o l a r i z e d r a d i a l l y . N o n e t h e l e s s , t h e r e s u l t is i n t e r e s t i n g ; t h e p o o r l y c o n d u c t i n g (11)
^ - c r y s t a l m o d i f i c a t i o n acts as a p h o t o c a t a l y s t for b o t h
o x i d a t i o n a n d r e d u c t i o n of the q u i n o n e / h y d r o q u i n o n e c o u p l e . T h e o p e n c i r c u i t p h o t o g a l v a n i c p o t e n t i a l is essentially zero.
T h i s emphasizes
the
m o l e c u l a r p h o t o c h e m i s t r y of w h i c h this film is c a p a b l e . T r e a t i n g o r g a n o m e t a l l i c films as s e m i c o n d u c t o r s is o n l y p a r t of a n a p p r o p r i a t e p e r s p e c t i v e (see
R e f . 6 ) . T h i s p o i n t is c o n f i r m e d b y the l i m i t e d ( i f large w i d t h o f )
s p e c t r a l b a n d to b e discussed b e l o w . A suggestion for f u t u r e d e v e l o p m e n t is c o n t r o l l e d d o p i n g of the films to t r y to p r o d u c e b o t h n - a n d p - s e m i c o n d u c t i n g properties. T h e r e d u c t i o n of the ' V i o l o g e n " r e l a t i v e is also significant. R e d u c e d v i o l o g e n s c a n c a t a l y t i c a l l y ( c o l l o i d a l P t ) generate H
2
(14)
from water.
O n e electrode for the p h o t o e l e c t r o l y s i s of w a t e r is i m p l i e d . Spectroscopy and
Structure
C o m p a r i s o n of a b s o r p t i o n a n d M C D spectra of p h t h a l o c y a n i n e s i n s o l u t i o n w i t h those i n the s o l i d state reveals m a n y s u b s t a n t i a l differences. C h a n g e s o c c u r i n b a n d centers, w i d t h s , a n d r e l a t i v e intensities t h a t e x c e e d those associated w i t h a state c h a n g e of a n i s o l a t e d c h r o m o p h o r e .
Several
different regions of these s p e c t r a h a v e b e e n e x a m i n e d i n d e t a i l a n d t h e differences b e t w e e n gas p h a s e o r s o l u t i o n s p e c t r a o n one h a n d a n d s o l i d state spectra o n t h e other h a v e b e e n a t t r i b u t e d to p o l y m e r i z a t i o n i n v a r i o u s forms i n the s o l i d state
(15).
T h e s e effects are r e a d i l y o b s e r v e d i n the Q b a n d , a series of a d s o r p tions i n the r e d r e g i o n . I n s o l u t i o n spectra a s h a r p s t r o n g t r a n s i t i o n , often l a b e l l e d a, at l o w e n e r g y is f o l l o w e d b y one or m o r e less intense b a n d s , l a b e l l e d 0,
to the h i g h e n e r g y side.
T h e s e are u s u a l l y assigned as a
v i b r o n i c series a n d M C D s p e c t r u m shows t h a t the 0 - 0 t r a n s i t i o n leads to a degenerate
e x c i t e d state w h i l e t h e 0 - 1 , 0 - 2 , etc. b a n d s y i e l d a
n o n d e g e n e r a t e system ( 1 6 ) .
F r o m this i t is c l e a r t h a t t h e 0 - 0 b a n d is the
" l o n g a x i s " t r a n s i t i o n p o l a r i z e d i n the p l a n e , w h i l e t h e 0 - 2 are " s h o r t
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
LANGFORD E T AL.
8.
Metal
Phthalocyanine
Films
149
-200"
H80-
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
-160-
20-
40I
I
600
400
I
200
I
0
-200
I
I
-400
-600
I
1
-800 H000
Figure 6. Absorption (upper) and MCD (lower) Q band region of a-NiPc on a glass support. The resolution of the envelope (after Ref. 12) is shown. a x i s " or p e r p e n d i c u l a r t r a n s i t i o n s . T h e 0-0 b a n d c a n t h u s b e a s s i g n e d as A
1
lg
-»
i n the D
4 h
point group.
T h i s is u s u a l l y f u r t h e r i n t e r p r e t e d ,
f r o m e x t e n d e d H i i c k e l c a l c u l a t i o n s , as a ( a m ) c o n t r i b u t i o n f r o m other configurations.
1
(e y g
excitation w i t h little
(17).
T h e s o l i d state spectra are q u i t e different; F i g u r e 6 presents a - N i P c Q b a n d as representative.
F i l m s p r e p a r e d at l o w
the
temperature
a n d pressure s h o w a s i n g l e b r o a d a d s o r p t i o n i n t h e Q r e g i o n w i t h a low energy shoulder.
T h i s r e v e r s a l of r e l a t i v e intensities is a c c o m p a n i e d
r
by
e n e r g y shifts a n d a c o n s i d e r a b l e b r o a d e n i n g f r o m a f e w h u n d r e d to a few thousand wave numbers.
R e c e n t M C D results (12)
show that two
p a i r s of transitions o c c u r u n d e r this envelope.
O n e p a i r of transitions is
r e p r e s e n t e d b y A terms i m p l y i n g degenerate
e x c i t e d states w h i l e t h e
s e c o n d p a i r , d i s p l a y i n g B t e r m s , are nondegenerate.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
150
INTERFACIAL
PHOTOPROCESSES
T h i s o b s e r v a t i o n c a n b e i n t e r p r e t e d m o s t easily as a s t r o n g i n t e r a c t i o n b e t w e e n m o l e c u l a r p a i r s o n i d e n t i c a l s y m m e t r y sites i n t h e u n i t c e l l .
The
states of s u c h p a i r s are r e a d i l y d e r i v e d u s i n g a D a v y d o v m o d e l .
The
degenerate
states o f t h e m o n o m e r s m a y b e l i n e a r l y c o m b i n e d
p r o v i d e t w o degenerate states i n the site g r o u p of t h e u n i t c e l l .
to The
n o n d e g e n e r a t e states m a y b e r e c o m b i n e d s i m i l a r l y , p r o d u c i n g t w o states of t h e d i m e r . T h e s p l i t t i n g b e t w e e n states i n e i t h e r p a i r c a n b e p a r a m e t e r i z e d i n a point dipole m o d e l or treated more completely i n a molecular orbital c a l c u l a t i o n . W h i l e the l a t t e r is u s u a l l y a better a p p r o x i m a t i o n , t h e p o i n t
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
d i p o l e h i g h l i g h t s t h e r o l e p l a y e d b y r e l a t i v e o r i e n t a t i o n of t h e d i m e r m o l e c u l e s a n d is u s e f u l i n p r e d i c t i n g s t r u c t u r a l features of the s o l i d . I n the s i m p l e s t m o d e l
using two molecules per unit c e l l on
(18)
i d e n t i c a l sites, the m a g n i t u d e of t h e s p l i t t i n g b e t w e e n p a i r s of
states
becomes; V —
^ ab
[sin 0 sin cos (0 — ) — 2cos 6 cos ]
a
i n w h i c h p a n d p are the t r a n s i t i o n d i p o l e m o m e n t s f o r m o l e c u l e s a a n d a
b
9
b
is the distance b e t w e e n d i p o l e centers, a n d 6 a n d are t h e angles
f o r m e d b y t h e d i p o l e s o n a a n d b, r e s p e c t i v e l y , w i t h t h e d i s p l a c e m e n t vector. W h e n 0 =
=
0 ° , the d i p o l e s are c o l i n e a r a n d w h e n 0 =
7r/2, t h e y are c o p a r a l l e l . A t the c o l i n e a r l i m i t V ~ ~ = transition dipoles become; p = +
0 a n d p. =2
Pa
p pb/ a n d the 9
a
w h e r e p+ is the d i p o l e of
t h e t r a n s i t i o n to the s y m m e t r i c c o m b i n a t i o n w h i l e p. refers to t h e a n t i s y m m e t r i c state. I n contrast at the c o p a r a l l e l l i m i t e d V = dipoles become; p = +
2
P a
a n d p. =
b
=
p pb/d a
3
a n d the t r a n s i t i o n
0.
T h u s a n e a r l y c o p a r a l l e l or " s a n d w i c h " d i m e r w o u l d d i s p l a y t w o b a n d s , one s t r o n g to h i g h e n e r g y of a m o n o m e r t r a n s i t i o n b y V = one w e a k to l o w energy.
ft
and
I n contrast, a n e a r l y c o l i n e a r d i m e r w o u l d
y i e l d t w o b a n d s one w e a k to h i g h e n e r g y b y V " ^ a n d one s t r o n g to l o w energy.
Since V =
6
=
V i V ~ ~ for i d e n t i c a l m o l e c u l e s (a =
& ) , the dimer
geometries n o t o n l y y i e l d a r e v e r s a l of intensities b u t t h e i n t e r a c t i o n e n e r g y d o u b l e s o n c h a n g i n g f r o m t h e c o p a r a l l e l to c o l i n e a r l i m i t s .
Be
t w e e n these l i m i t s the a n g l e b e t w e e n d i p o l e s c a n b e e s t i m a t e d f r o m t h e c o m p l e t e expression for V
a &
. E s t i m a t e s of angles f r o m r e l a t i v e i n t e n s i t y
measurements are c o m p l i c a t e d b y v i b r o n i c e n h a n c e m e n t of
forbidden
d i p o l e terms. A p p l i c a t i o n of this m o d e l to the l o w t e m p e r a t u r e c r y s t a l f o r m of p h t h a l o c y a n i n e s , u s u a l l y l a b e l l e d a, i n d i c a t e s that i t is a c o p a r a l l e l d i m e r c o n f o r m a t i o n i n the u n i t c e l l ( 1 2 ) .
T h e two in-plane dipoles display a
s t r o n g h i g h energy a n d w e a k l o w energy s p e c t r u m ; t h e t w o p e r p e n d i c u l a r
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
LANGFORD E T AL.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
8.
Figure
7.
Metal
The absorption
Phthalocyanine
151
Films
(upper) and MCD (lower) spectra of in the Q band region.
fi-ZnPc
b a n d s h a v e r e v e r s e d intensities a n d a s e p a r a t i o n 1.5 t i m e s as l a r g e as the i n - p l a n e transitions. A
second
c r y s t a l m o d i f i c a t i o n g r o w n at h i g h e r t e m p e r a t u r e s
pressures, u s u a l l y l a b e l l e d /?, d i s p l a y s a v e r y different s p e c t r u m .
and Here
t h e i n - p l a n e t r a n s i t i o n intensities are t h e reverse of those o b s e r v e d i n t h e a f o r m a n d the s e p a r a t i o n is l a r g e r (15).
T h i s implies a more colinear
a r r a n g e m e n t of the d i m e r , w h i c h is p e r h a p s d e r i v e d f r o m t h e a f o r m b y m a i n t a i n i n g a constant v a l u e of d
ab
b u t r e d u c i n g the angles 0 a n d . T h i s
cannot, i n c i d e n t a l l y , b e c o n f i r m e d b y c r y s t a l l o g r a p h y since t h e a p h a s e is a l w a y s m i c r o c r y s t a l l i n e . I n a n y case the i n c r e a s e d i n t e r a c t i o n e n e r g y i n d i c a t e s t h a t t h e
0
m o d i f i c a t i o n is a m o r e c o m p a c t l a t t i c e t h a n the a a n d the s t a c k i n g a n g l e $ =
=
46° has b e e n e s t i m a t e d f o r the p f o r m (15).
t h e observations of T a c h i k a w a a n d F a u l k n e r (11)
T h i s complements
o n t h e h i g h resistance
of the /3 f o r m .
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
152
INTERFACIAL
PHOTOPROCESSES
I n a l l present experiments films h a v e b e e n a g e d b y exposure to t h e atmosphere.
T h i s a g i n g increases the c o n d u c t i v i t y of s u b l i m e d
films.
T h e m e c h a n i s m f o r this increase is not w e l l u n d e r s t o o d . A s i m p l e m o d e l w o u l d b e b a s e d o n o x i d a t i o n of some p h t h a l o c y a n i n e m o l e c u l e s i n t h e film
c r e a t i n g c o n d u c t i n g holes i n the l a t t i c e . E v i d e n c e of t h i s is n o t
observed
i n the
M C D spectra.
A
substantial concentration
of
such
o x i d i z e d species w o u l d l e a d to t e m p e r a t u r e - s e n s i t i v e m o l a r e l l i p t i c i t i e s c a l l e d C terms associated w i t h t h e s p i n degenerate g r o u n d states. S p e c t r a of a g e d a - m o d i f i c a t i o n
films
at 6 a n d 300 K s h o w e d
no
appreciable
differences.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
H o w e v e r , it is c l e a r f r o m present results t h a t t h e c o n d u c t i v i t y of a g e d films d e p e n d s o n the l a t t i c e m o d i f i c a t i o n . T h e c o n d u c t i v i t y of t h e f$ films e x a m i n e d is s u b s t a n t i a l l y r e d u c e d i n c o m p a r i s o n w i t h the a It seems c l e a r that w h a t e v e r t h e a t m o s p h e r i c c o n d u c t i v i t y d e p e n d s u p o n p e n e t r a t i o n of 0
films
reaction may
(II).
be,
that
a n d H 0 m o l e c u l e s i n t o the
2
2
l a t t i c e a n d that the m o r e c o m p a c t /? f o r m is m o r e resistant to s u c h attack. Spectroscopy and Photochemical
Properties
I n the absence of the dopants, t h e M C D spectra of the p u r e c a n g i v e some i n d i c a t i o n of the t y p e of p h o t o e l e c t r i c expected.
T h e v a l e n c e b a n d corresponds
films
b e h a v i o r to
be
to the m o l e c u l a r *Aig state,
w h i l e p r o m o t i o n to the first c o n d u c t o r b a n d corresponds to e x c i t a t i o n to the *£„ state i n the i s o l a t e d m o l e c u l e .
T h e effects of the l a t t i c e i n this
state h a v e just b e e n discussed b u t it is c l e a r f r o m the d i s t r i b u t i o n of c h a r g e i n the 0 - » 0 e x c i t e d state of the i s o l a t e d species t h a t t h e electrons w o u l d r e m a i n l o c a l i z e d i n the s o l i d . T h e t r a n s i t i o n d i p o l e resides i n the p l a n e of the r i n g a n d p r o v i d e s l i t t l e m o v e m e n t of e l e c t r o n d e n s i t y a w a y f r o m the p l a n e t o w a r d s the n e i g h b o r i n g m o l e c u l e .
This in turn
means
t h a t the l a t t i c e is a g o o d i n s u l a t o r i n b o t h the v a l e n c e a n d c o n d u c t i o n b a n d s . I n contrast to this analysis of t h e 0 - 0 b a n d t h e v i b r o n i c overtones o b s e r v e d i n the M C D are nondegenerate. v i b r a t i o n , or other p e r t u r b a t i o n , of a n e
g
T h i s must i m p l y an active symmetry.
A l l nondegenerate
t r a n s i t i o n m o m e n t s b e a r some out of p l a n e c o m p o n e n t s a n d t h e o n l y w a y s u c h c o m p o n e n t s c a n arise is f r o m the c o u p l i n g , i n d i r e c t p r o d u c t n o t a t i o n , J
E
U
X e c Aiu + g
A
2 u
+
Biu +
B
2 u
. T h i s out-of-plane transition moment
is c a p a b l e of m o v i n g c h a r g e t o w a r d s n e i g h b o r i n g m o l e c u l e s a n d h e n c e r e d u c i n g film resistance. R e c e n t t h e o r e t i c a l analysis of t r a n s i t i o n m o m e n t s i n v i b r o n i c t r a n s i tions of
s i m p l e c h r o m i u m complexes
show
that the overall v i b r o n i c
s e l e c t i o n r u l e s h o u l d b e at least o c t u p o l a r i n c h a r a c t e r ( 1 9 ) .
This implies
that w h i l e the 0 - 0 b a n d , w h i c h is p u r e l y e l e c t r o n i c , is a l l o w e d to d i p o l a r , the s u c c e e d i n g v i b r o n i c p r o g r e s s i o n m u s t d i s p l a y the
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
be
octupole
Metal
LANGFORD E T A L .
8.
Phthalocyanine
153
Films
t r a n s i t i o n r u l e . U n d e r this a s s u m p t i o n t h e generative l a b e l ( 1 9 ) t o b e u s e d t o c h a r a c t e r i z e t h e c o m p l e t e v i b r a t i o n a l basis v e c t o r s h o u l d b e a t least 2, a c o n c l u s i o n c o m p l e t e l y consistant w i t h the use of a n e v i b r a t i o n . g
T h i s does m e a n , h o w e v e r , t h a t the p r o p e r a s s i g n m e n t o f t h e v i b r a t i o n a l p r o g r e s s i o n is p r o b a b l y
J
A
^(O-O),
l g
1
E ( 0 - 2 ) , E ( 0 - 4 ) , . . . i n first u
1
u
o r d e r , a s s u m i n g the 0 - » o d d t r a n s i t i o n m o m e n t s are n e g l i g i b l e since t h e y w o u l d r e q u i r e g - » g transitions. T h i s c o n c l u s i o n p r o v i d e s a n a n s w e r t o a l o n g standing difficulty i n the vibronic assignment of phthalocyanines. T h e o b s e r v a b l e s e p a r a t i o n i n the p r o g r e s s i o n is 1100 c m ' is v e r y h i g h f o r a r i n g v i b r a t i o n assignment.
1
or more, w h i c h
C l e a r l y this v i b r a t i o n m a y
n o w b e assigned the m o r e reasonable v a l u e o f a p p r o x i m a t e l y 550 c m " . Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
1
If t h e phthalocyanine
film
is t o b e m o d i f i e d to i m p r o v e t h e c o n
d u c t i v i t y o f the c o n d u c t a n c e b a n d , t w o factors e m e r g e f r o m the f o r e g o i n g analysis. F i r s t , the n a t u r e o f the
state c o u l d b e c h a n g e d b y p r e p a r a
t i o n o f h e a v y m e t a l d e r i v a t i v e s . T h i s w o u l d p r o v i d e stronger d e r e a l i z a t i o n o f c h a r g e i n t h e e * o r b i t a l o f the r i n g t h r o u g h o v e r l a p w i t h g
filled
dir* o r b i t a l s of t h e m e t a l . S e c o n d l y , t h e a m p l i t u d e o f t h e e v i b r a t i o n g
c o u l d b e i n c r e a s e d b y h e a v y n o n m e t a l s u b s t i t u e n t groups o n the p y r o t e r i n g s . E a c h of these substitutions w o u l d increase t h e m a g n i t u d e o f t h e i n d i v i d u a l t r a n s i t i o n m o m e n t s , w h i c h w o u l d i n t u r n b e reflected i n t h e m a g n i t u d e of the o u t - o f - p l a n e m o m e n t f o r m e d as the v e c t o r cross p r o d u c t . S u c h effects w o u l d b e c l e a r l y v i s i b l e i n M C D s p e c t r u m o f t h e e x c i t o n structure. I n p a r t i c u l a r , the h i g h energy nondegenerate t r a n s i t i o n w o u l d increase i n r o t a t i o n a l s t r e n g t h because o f i n c r e a s e d m a g n e t i c a n d e l e c t r i c d i p o l e s i n the a n t i s y m m e t r i c state. Acknowledgment W e t h a n k t h e donors of t h e p e t r o l e u m r e s e a r c h f u n d f o r s u p p o r t . Literature 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Cited
Albery, W. J.; Archer, M. D. J. Electrochem. Soc. 1977, 124, 688. Albery, W. J.; Archer, M. D. Electrochim. Acta 1976, 21, 1155. Marcus, R. A. Anna. Rev. Phys. Chem. 1964, 15, 155. Rehm, D.; Weller, A. Ber. Bunsenges. Phys. Chem. 1969, 73, 834. Tributsch, H.; Gerischer, H. Ber. Bunsenges. Phys. Chem. 1969, 73, 251, 850. Hall, K. J.; Bauham, J. S.; Lyons, L. E. Austr. J. Chem. 1976, 31, 1661. Gutman, G. F.; Lyons, L . E . "Organic Semiconductors"; Wiley: New York, 1967. Lever, A. B. P. Adv. Inorg. Chem. Radiochem. 1967, 7, 27. Usov, N. N.; Benderskii, V. A. Sov. Phys.—Semicond. (Engl. Transl.) 1968, 2, 580 Ghosh, A. K.; Feng. T. J. Appl. Phys. 1973, 44, 2781. Tachikawa, H.; Faulkner, L. R. J. Am. Chem. Soc. 1978, 100, 4379. Hollebone, B. R.; Stillman, M. J. J. Chem. Soc., Faraday Trans. II 1978.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
154
INTERFACIAL PHOTOPROCESSES
13. Wegner, E . E.; Adamson, A. W. J. Am. Chem. Soc. 1966, 88, 394. 14. Moradpour, A.; Amouyal, E.; Keller, P.; Kagan, H. "Abstracts of Papers," 2nd International Conference on Photochemical Conversion and Storage of Solar Energy, Cambridge, August 1978, p. 31. 15. Sharp, J. H.; Lardon, M. J. Phys. Chem. 1968, 72, 3230. 16. Stillman, M. J.; Thomas, A. J. J. Chem. Soc., Faraday Trans.II1974, 70, 805. 17. Schaffer, A. M.; Gouterman, M. Theor. Chim. Acta 1972, 25, 62. 18. Davydov, A. S. "Theory of Molecular Excitons"; McGraw Hill: New York, 1962. 19. Hollebone, B. R. Theor. Chim. Acta, in press.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch008
RECEIVED October 2, 1978.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.