Chapter 3
Photolysis of Phenol and Chlorophenols in Estuarine Water 1
1
2
Huey-Min Hwang , R. E. Hodson , and R. F. Lee 1
Department of Microbiology and Institute of Ecology, University of Georgia, Athens, GA 30602 Skidaway Institute of Oceanography, P.O. Box 13687, Savannah, GA 31416
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
2
Phenol and a number of chlorophenols at a concentration of 25 μg L in estuarine water were exposed to sun light. The relative rates of photolysis decreased in the order 2,4,5-trichlorophenol, 2,4-dichlorophenol, pentachlorophenol, p-chlorophenol, and phenol. The photo-trans formation rate constants for dichlorophenol, trichlorophenol and pentachlorophenol ranged from 0.3 to 1.2 hr with half-lives ranging from 0.6 to 3 hr (light hours). Phenol and chlorophenol had half-lives ranging from 43 to 118 hr. Similar differences were observed for photo-mineralization with half-lives ranging from 6 to 14 days for dichlorophenol, trichlorophenol, and pentachlorophenol and 16 to 334 days for phenol and p-chlorophenol. Changes in pH, season, and cloud cover were among the factors to affect photolysis rates. At a pH below the pK the photolysis rate was much lower due to a higher rate of photolysis for the phenoxide ion rela tive to the nonionized form. A decrease in the midday irradiance from 5.4 to 2.6 Einsteins/m /hr, due to cloud cover, resulted in photolysis rate constants of trichlorophenol decreasing from 1.07 to 0.30 hr . Highest photolysis rates for all compounds were found in the summer, presumably due to the surface irradi ance increase with much of this increase due to a shift in short wavelength light. Higher concentrations of suspended particulates in the summer resulted in a 4-fold higher diffuse attenuation coefficient at 330 nm in the summer compared with the winter. Thus, while surface irradiance increased in the summer the attenu ation of this light in the water increased during this season due to higher levels of particulates. For sur face waters the increase in summer irradiance affected photolysis rates more than the attenuation by partic ulates. With the exception of dichlorophenol and pentach lorophenol, the photolysis rate of the compounds was -1
-1
a
2
-1
0097-6156/87/0327-0027$06.00/0 © 1987 American Chemical Society
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
28
PHOTOCHEMISTRY OF ENVIRONMENTAL AQUATIC SYSTEMS
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
similar in both distilled and estuarine water when the screening factor, i.e., attenuation of light, of estu arine water was taken into account. The higher photo lysis rate of 2,4-dichlorophenol in estuarine water relative to distilled water suggested a photo-sensi tized reaction. The lower photolysis rate of penta chlorophenol in estuarine water relative to distilled water was due to inhibition of photolysis by chloride ion. C h l o r o p h e n o l s e n t e r e s t u a r i e s through t h e i r use i n i n d u s t r y and a g r i c u l t u r e . F o r example, the e f f l u e n t s from the p u l p and paper i n d u s t r y c o n t a i n c h l o r o p h e n o l s and more c h l o r i n a t e d phenols form downstream due t o the r e a c t i o n between c h l o r i n e i n b l e a c h i n g l i q u o r s and phenols d e r i v e d from wood e x t r a c t i v e s (_1 ). A number o f s t u d i e s have shown d i f f e r e n c e s i n the p h o t o l y s i s r a t e s o f x e n o b i o t i c s b e t ween n a t u r a l and d i s t i l l e d w a t e r , these d i f f e r e n c e s r e s u l t from p a r t i c u l a t e and d i s s o l v e d substances i n n a t u r a l waters which i n f l u e n c e p h o t o l y s i s o f x e n o b i o t i c s through a t t e n u a t i o n o f s u n l i g h t , secondary p h o t o r e a c t i o n s , and c h e m i c a l or p h y s i c a l i n t e r a c t i o n s t h a t change the s p e c i a t i o n o r a v a i l a b i l i t y o f the x e n o b i o t i c s (2). Some examples i n c l u d e the g r e a t l y a c c e l e r a t e d p h o t o c h e m i c a l d e g r a d a t i o n o f p a r a t h i o n i n r i v e r or swamp water r e l a t i v e t o d i s t i l l e d water ( 3 ) and the absence o f p h o t o l y s i s o f the h e r b i c i d e m o l i n a t e i n d i s t i l l e d water b u t r a p i d p h o t o l y s i s i n n a t u r a l waters ( 4 ) . I n c o n t r a s t , t h e p h o t o l y s i s r a t e of p e n t a c h l o r o p h e n o l i s slower i n seawater than i n d i s t i l l e d water due t o the p h o t o n u c l e o p h i l i c s u b s t i t u t i o n o f c h l o r i d e ions i n seawater f o r c h l o r i d e i n p e n t a c h l o r o p h e n o l ( 5 ) . I n s t e a d of b e i n g a s e n s i t i z e r , the humic substances i n n a t u r a l waters can a l s o a c t as quenchers i n the p h o t o l y s i s o f some p o l y a r o m a t i c hydrocarbons (6). The p h o t o l y s i s o f phenols i s a f f e c t e d by pH changes, s i n c e p h e n o l i c compounds d i s s o c i a t e t o phenoxide ions i n b a s i c w a t e r s , r e s u l t i n g i n a l t e r e d p h o t o r e a c t i v i t i e s (_7 ). Many phot o l y s i s s t u d i e s have l i m i t e d the l i g h t source t o a p a r t i c u l a r i n t e n s i t y and a n a r r o w l y d e f i n e d wavelength band. While t h i s s i m p l i f i e s i n t e r p r e t a t i o n o f r e s u l t s , i t can prevent e x t r a p o l a t i o n o f l a b o r a tory data t o n a t u r a l environmental c o n d i t i o n s . Z i k a (&) has p o i n t e d out t h a t l i m i t i n g the wavelength o f r a d i a t i o n o f t e n reduces t h e number o f p o s s i b l e r e a c t i o n r o u t e s and t h a t the l i g h t i n t e n s i t y a f f e c t s the s t e a d y - s t a t e c o n c e n t r a t i o n s o f r e a c t i v e t r a n s i e n t s i n the s o l u t i o n which can a f f e c t the secondary r e a c t i o n r a t e s . I n n a t u r a l waters p h o t o c h e m i c a l r e a c t i o n s are a f f e c t e d by changes i n s u n l i g h t i n t e n s i t y and wavelength a s s o c i a t e d w i t h season and time o f day, amount o f d i s s o l v e d and p a r t i c u l a t e substances and presence o f photosensitizers. The o b j e c t i v e s o f t h i s s t u d y were t o determine the p h o t o l y s i s r a t e s o f phenol and some c h l o r o p h e n o l s i n e s t u a r i n e and d i s t i l l e d water under n a t u r a l s u n l i g h t c o n d i t i o n s . E f f e c t s o f s u n l i g h t i r r a d i a n c e , pH, and c h l o r i d e ions c o n c e n t r a t i o n on p h o t o l y s i s r a t e s were d e t e r m i n e d . S p e c t r a l data and s u n l i g h t p h o t o l y s i s r a t e c o n s t a n t s o f both the a c t i n o m e t e r and the c h l o r o p h e n o l s were used t o c a l c u l a t e the apparent quantum y i e l d s o f the v a r i o u s chlorophenols.
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
HWANG ET AL.
Photolysis of Phenol and Chlorophenob
29
M a t e r i a l s and Methods
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
Sample C o l l e c t i o n . S u r f a c e water samples were c o l l e c t e d from S k i d away R i v e r , an e s t u a r i n e r i v e r near Savannah, G e o r g i a . Water samples (4 l i t e r s ) were taken i n acid-washed, 2.5 g a l . p o l y e t h y l e n e c o n t a i n e r s . Assays were i n i t i a t e d w i t h i n one hour o f c o l l e c t i o n . Temper a t u r e , pH, and s a l i n i t y were measured a t the time samples were c o l lected. Reagents. R i n g - U L - ^ C - l a b e l e d p - c h l o r o p h e n o l (11.61 mci/mM), 2,4d i c h l o r o p h e n o l (10.7 mci/mM), and 2 , 4 , 5 - t r i c h l o r o p h e n o l (0.80 mci/mM) were o b t a i n e d from P a t h f i n d e r L a b o r a t o r i e s I n c . Ring-UL-^C-labeled phenol (58 mci/mM) and p e n t a c h l o r o p h e n o l (8.8 mci/mM) were o b t a i n e d from C a l i f o r n i a B i o n u c l e a r Corp. P u r i t y ranged from 95% t o 99%. U n l a b e l e d compounds and valerophenone (99% pure) were o b t a i n e d from A l d r i c h Chemical Company. M a l a c h i t e green l e u c o c y a n i d e a c t i n o m e t e r (MGLC) was o b t a i n e d as a g i f t from Dr. R.G. Zepp o f t h e Environmen t a l P r o t e c t i o n Agency (Athens, G e o r g i a ) . I n c u b a t i o n and D e g r a d a t i o n Measurements. R a d i o l a b e l e d or u n l a b e l e d compounds were d i s s o l v e d i n acetone and added t o 60 ml o f e s t u a r i n e or p h o s p h a t e - b u f f e r e d d i s t i l l e d water (pH 7.7 ± 0.2; 16 mM) i n 150 ml q u a r t z f l a s k s (Quartz S c i e n t i f i c , I n c . ) . Acetone was a t a f i n a l c o n c e n t r a t i o n o f 1 χ 10"^M and t h e r e was no p h o t o s e n s i t i z a t i o n o f the compounds by acetone i n d i s t i l l e d water. These f l a s k s a l l o w more than 85% t r a n s m i s s i o n o f l i g h t o f wavelength l o n g e r than 260 nm. A p p r o x i m a t e l y 0.1 y c i o f the s e l e c t e d compound was added t o each f l a s k . The f i n a l c o n c e n t r a t i o n o f each compound i n the f l a s k s was a d j u s t e d t o 25 yg L~* by the a d d i t i o n o f u n l a b e l e d compound. The f l a s k s were suspended i n an outdoor tank c o n t a i n i n g f l o w i n g e s t u a r i n e w a t e r . F l a s k s were suspended 3 cm below t h e s u r f a c e . Dark c o n t r o l s c o n s i s t e d o f f l a s k s covered w i t h aluminum f o i l . A l l samples c o n t a i n e d formaldehyde (0.4%) t o prevent m i c r o b i a l degrada t i o n o f the compounds. U l t r a v i o l e t a b s o r p t i o n by t h e formaldehyde s o l u t i o n a t t h i s c o n c e n t r a t i o n was n e g l i g i b l e . A t v a r i o u s times the amount o f parent compound degraded ( p h o t o - t r a n s f o r m a t i o n ) and p r o d u c t i o n o f ^^C0£ ( p h o t o - m i n e r a l i z a t i o n ) were d e t e r m i n e d . Since phenol and p - c h l o r o p h e n o l p h o t o l y z e d s l o w l y , they were exposed t o s u n l i g h t f o r up t o 3 days, w h i l e the o t h e r c h l o r o p h e n o l s were exposed t o midday s u n l i g h t (between 10:00 and 14:00) f o r photot r a n s f o r m a t i o n s t u d i e s . Water samples f o r p h o t o - m i n e r a l i z a t i o n s t u d i e s were i n c u b a t e d f o r 24, 48, or 72 hr t o a l l o w f o r t h e accumu l a t i o n o f enough ^^C0£ t o measure. The ^ C 0 2 produced was determined as d e s c r i b e d i n e a r l i e r work (j), 10). To determine l o s s o f parent compound ( p h o t o - t r a n s f o r m a t i o n ) , each sample was a c i d i f i e d w i t h 4N H2SO4 t o pH 2 and the parent compound and i t s d e g r a d a t i o n p r o ducts were e x t r a c t e d w i t h e t h y l a c e t a t e . E x t r a c t i o n e f f i c i e n c y f o r the parent compounds averaged g r e a t e r than 95%. The e x t r a c t s were c o n c e n t r a t e d and a p p l i e d t o s i l i c a g e l t h i n - l a y e r chromatography p l a t e s (E. Merck) u s i n g a s o l v e n t system o f hexane: acetone ( 1 : 1 , v o l : v o l ) . Parent compounds and t h e i r d e g r a d a t i o n products were scraped from t h i n - l a y e r p l a t e s and t h e i r r a d i o a c t i v i t y determined w i t h a s c i n t i l l a t i o n c o u n t e r (Packard TRI-carb-300C). The a n a l y s i s of the m a l a c h i t e green l e u c o c y a n i d e a c t i n o m e t e r was c a r r i e d out
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
30
PHOTOCHEMISTRY OF ENVIRONMENTAL AQUATIC SYSTEMS
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
u s i n g the procedures d e s c r i b e d by M i l l e r and Zepp ( 1 1 ) . The s c r e e n i n g f a c t o r was determined by e x p o s i n g valerophenone s o l u t i o n s (10 μΜ) t o midday s u n l i g h t (12) f o r v a r i o u s p e r i o d s up t o 1 h r . A n a l y s e s f o r valerophenone were conducted w i t h h i g h p r e s s u r e l i q u i d chromatography u s i n g a M i c r o m e r i t i c e Model 7000B equipped w i t h a 4.6x250 mm r e v e r s e - p h a s e column o f 10 μm ODS/Spherisorb (mobil phase 70:30 methanol/water, f l o w r a t e 2.0 ml min"*, d e t e c t o r wavelength 260 nm). Procedures f o r K i n e t i c S t u d i e s . T r i p l i c a t e s of each r a d i o l a b e l e d compound and d u p l i c a t e s o f valerophenone s o l u t i o n were exposed t o s u n l i g h t . P h o t o - t r a n s f o r m a t i o n and p h o t o - m i n e r a l i z a t i o n r a t e c o n s t a n t s were c a l c u l a t e d assuming t h a t the r e a c t i o n s were f i r s t - o r d e r . The r a t e c o n s t a n t s were c o r r e c t e d f o r a b i o t i c dark d e g r a d a t i o n (always l e s s than 5% o f t o t a l ) and a t t e n u a t i o n o f s u n l i g h t by d i s s o l v e d o r g a n i c m a t e r i a l i n the e s t u a r i n e water samples. U n l e s s s p e c i f i e d , p h o t o l y s i s r a t e c o n s t a n t s and h a l f - l i v e s of the compounds were determined d u r i n g sunny days. S o l a r r a d i a t i o n was determined w i t h a r a d i o m e t e r (LI-COR I n c . , Model LI-550B; a c t i v e r a n g e , 400-700 nm). The l i g h t s c r e e n i n g f a c t o r (S) was assumed t o be equal t o the r a t i o of the valerophenone p h o t o l y s i s r a t e c o n s t a n t i n p a r t i c u l a t e f r e e e s t u a r i n e water t o the p h o t o l y s i s r a t e c o n s t a n t i n d i s t i l l e d water ( 1 3 ) . P r o p e r t i e s o f E s t u a r i n e Water. The c o n c e n t r a t i o n o f suspended p a r t i c u l a t e s i n e s t u a r i n e water was determined by f i l t e r i n g 1 l i t e r o f water through p r e - d r i e d and pre-weighed g l a s s f i b e r f i l t e r s (GF/C, Whatman). The f i l t e r s c o n t a i n i n g p a r t i c u l a t e s were d r i e d and weighed. An e s t u a r i n e water sample was u l t r a c e n t r i f u g e d a t 100,000 xg f o r 1 h r t o o b t a i n p a r t i c u l a t e - f r e e water (Beckman U l t r a c e n t r i fuge Model L 5 - 4 0 ) . The p a r t i c u l a t e - f r e e e s t u a r i n e water was used i n d e t e r m i n i n g the s c r e e n i n g f a c t o r . U l t r a v i o l e t a b s o r p t i o n s p e c t r a o f the p a r t i c u l a t e - f r e e e s t u a r i n e water were o b t a i n e d w i t h a s p e c t r o photometer (Beckman Model DU-6). The d i f f u s e a t t e n u a t i o n c o e f f i c i ents (K) a t 330 nm (the c o e f f i c i e n t s d e r i v e d from d i r e c t measure ments o f s o l a r i r r a d i a n c e a t v a r i o u s depths i n a water body) o f t h e e s t u a r i n e water were determined u s i n g m a l a c h i t e green l e u c o c y a n i d e , by the methods d e s c r i b e d by M i l l e r and Zepp ( 1 1 ) . The component o f Κ from the d i s s o l v e d substances was c a l c u l a t e d by m u l t i p l y i n g a b s o r bance of p a r t i c u l a t e - f r e e e s t u a r i n e water by 2.303 and the d i s t r i b u t i o n f u n c t i o n (D) ( 1 4 ) . D r e f e r s t o the mean p a t h l e n g t h o f l i g h t i n an h o r i z o n t a l l a y e r o f the water sample d i v i d e d by t h i c k n e s s o f t h e l a y e r ( 1 1 ) , and i n our experments i t was 1.1. F o r a n a l y s i s o f p a r t i c u l a t e o r g a n i c carbon and p a r t i c u l a t e n i t r o g e n , 500 ml o f water was passed s e q u e n t i a l l y through two Gelman type A g l a s s f i b e r f i l t e r s which has been precombusted a t 500°C. The f i l t e r s were r i n s e d w i t h 0.01 N HC1 t o remove i n o r g a n i c carbon and d r i e d and s t o r e d i n a 60°C oven. P a r t i c u l a t e o r g a n i c carbon on the f i l t e r s was determined by t h e methods of Menzel and Vaccaro ( 1 5 ) . P a r t i c u l a t e o r g a n i c n i t r o g e n was determined by t h e c l a s s i c a l micro-Dumas method as d e s c r i b e d by S t r i c k l a n d and Parsons ( 1 6 ) . The a n a l y s i s o f d i s s o l ved o r g a n i c carbon c o n s i s t e d o f the wet o x i d a t i o n o f f i l t e r e d e s t u a r i n e water by p o t a s s i u m p e r s u l f a t e i n a s e a l e d g l a s s ampoule. Samples were s u b s e q u e n t l y a n a l y z e d by t h e methods o f Menzel and
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
HWANG ET AL.
31
Photolysis of Phenol and Chlorophenols
Vaccaro ( 1 5 ) . N i t r a t e and phosphate were a n a l y z e d by methods d e s c r i b e d by S t r i c k l a n d and Parsons ( 1 6 ) . Apparent Quantum Y i e l d (0 ) of the D i r e c t P h o t o l y s i s of C h i o r o p h e n o l s . The s p e c t r a l data and s u n l i g h t p h o t o l y s i s r a t e c o n s t a n t s of both a c t i n o m e t e r valerophenone and the compound, and r e a c t i o n quantum y i e l d of valerophenone were used t o c a l c u l a t e 0 of c h l o r o phenols u s i n g GCSOLAR program ( 1 3 ) . r
r
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
Results P h o t o l y s i s of v a r i o u s c h l o r o p h e n o l s as a f u n c t i o n of time a r e shown i n F i g . 1. The p h o t o - t r a n s f o r m a t i o n and p h o t o - m i n e r a l i z a t i o n of the compounds f o l l o w e d a f i r s t - o r d e r e q u a t i o n In ( C /C) * k p t , where C and C are the c o n c e n t r a t i o n s of the compound a t time zero and time t , w h i l e kp i s the f i r s t - o r d e r p h o t o l y s i s r a t e c o n s t a n t . The photol y s i s h a l f - l i v e s of the compounds were c a l c u l a t e d u s i n g the e q u a t i o n t-1/2 = 0.693/kp. The r e l a t i v e r a t e s of p h o t o l y s i s i n e s t u a r i n e water decreased i n the o r d e r 2 , 4 , 5 - t r i c h l o r o p h e n o l , 2 , 4 - d i c h l o r o p h e n o l , p e n t a c h l o r o p h e n o l , p - c h l o r o p h e n o l , phenol (Table I ) . The p h o t o - t r a n s f o r m a t i o n r a t e c o n s t a n t s f o r 2 , 4 - d i c h l o r o p h e n o l , 2 , 4 . 5 - t r i c h l o r o p h e n o l , and p e n t a c h l o r o p h e n o l ranged from 0.3 t o 1.2 h r " l w i t h h a l f - l i v e s r a n g i n g from 0.6 t o 3 hr ( l i g h t h o u r s ) . Phenol and p - c h l o r o p h e n o l were more r e s i s t a n t t o p h o t o l y s i s and t h e i r h a l f l i v e s ranged from 43 t o 118 h r . S i m i l a r d i f f e r e n c e s were observed f o r p h o t o - m i n e r a l i z a t i o n w i t h h a l f - l i v e s r a n g i n g from 6 t o 14 days f o r d i c h l o r o p h e n o l , t r i c h l o r o p h e n o l , and p e n t a c h l o r o p h e n o l and 16 to 334 days f o r phenol and p - c h l o r o p h e n o l . These r e l a t i v e p h o t o l y s i s r a t e s would be p r e d i c t e d by the absorbance and r e a c t i o n quantum y i e l d s f o r the compounds as g i v e n i n Table I I . D i c h l o r o p h e n o l , t r i c h l o r o p h e n o l , and p e n t a c h l o r o p h e n o l had h i g h molar a b s o r p t i v i t i e s i n the u l t r a v i o l e t - b l u e r e g i o n w i t h absorbance maxima a t 304, 310, and 320 nm, r e s p e c t i v e l y . I n c o n t r a s t both phenol and c h l o r o p h e n o l had maxima i n the u l t r a v i o l e t a t 269 and 280 nm, r e s p e c t i v e l y . Listed i n o r d e r o f d e c r e a s i n g quantum y i e l d a r e t r i c h l o r o p h e n o l , d i c h l o r o p h e n o l , p - c h l o r o p h e n o l , and p e n t a c h l o r o p h e n o l . With the e x c e p t i o n of d i c h l o r o p h e n o l and p e n t a c h l o r o p h e n o l , the compounds p h o t o l y z e d a t about the same r a t e i n d i s t i l l e d and e s t u a r i n e water when the a t t e n u a t i o n of l i g h t , i . e . , s c r e e n i n g f a c t o r , by e s t u a r i n e water was taken i n t o account. Dichlorophenol photolyzed at a s i g n i f i c a n t l y h i g h e r r a t e i n e s t u a r i n e water than i n d i s t i l l e d w a t e r . The h i g h e r p h o t o l y s i s r a t e o f 2 , 4 - d i c h l o r o p h e n o l i n e s t u a r i n e water r e l a t i v e t o d i s t i l l e d water suggested t h a t the p h o t o l y s i s of d i c h l o r o p h e n o l i n e s t u a r y i n v o l v e d a p h o t o - s e n s i t i z e d r e a c t i o n . The p h o t o - t r a n s f o r m a t i o n r a t e o f p e n t a c h l o r o p h e n o l was s i g n i f i c a n t l y lower i n e s t u a r i n e r e l a t i v e t o d i s t i l l e d water (Table I ) . T h i s may have been due t o c h l o r i d e i o n s i n c e sodium c h l o r i d e added t o d i s t i l l e d water w i t h a f i n a l c o n c e n t r a t i o n o f 0.5 M ( s a l i n i t y 30 °/oo) i n h i b i t e d p h o t o l y s i s of p e n t a c h l o r o p h e n o l . P h o t o l y s i s of d i c h l o r o phenol and t r i c h l o r o p h e n o l were not a f f e c t e d by c h l o r i d e i o n a d d i tion. There was l i t t l e change i n the pH of the e s t u a r y d u r i n g the y e a r . When the pH of e s t u a r i n e or b u f f e r e d d i s t i l l e d water was changed, t h e r e were changes i n the p h o t o l y s i s r a t e c o n s t a n t s o f the Q
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Q
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
PHOTOCHEMISTRY OF ENVIRONMENTAL AQUATIC SYSTEMS
F i g u r e 1. P h o t o l y s i s of c h l o r o p h e n o l s i n e s t u a r i n e water. C h l o r o p h e n o l s were added t o the water sample a t a c o n c e n t r a t i o n of 25 μ g L " l i n December. Temperature was 14°C and pH was 7.6. T r a n s f o r m a t i o n e q u a t i o n s were I n c 3.22-0.01 t ( p - c h l o r o p h e n o l ) , I n c = 3.22-0.44 t ( 2 , 4 - d i c h l o r o p h e n o l ) , I n c 3.220.65 t ( 2 , 4 , 5 - t r i c h l o r o p h e n o l ) , and I n c = 3.22-0.27 t ( p e n t a c h l o r o p h e n o l ) , where c i s the c o n c e n t r a t i o n of t h e c h l o r o p h e n o l at time t . V e r t i c a l bars r e p r e s e n t 1 standard d e v i a t i o n w i t h η = 3. 3
3
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
b
*
*
a
b
summer winter summer winter
(25) (ID (25) (11)
(25) (18) (25) (18)
(25) (ID (20) (25) (11) (20)
(25) (14) (25) (14)
(24) (10) (24) (10)
+ + + + 1.3 1.1 1.3 1.1
+ 0.2 + 1.0 + 0.5 • 0.2 • 0.4 + 0.5
5.2 1.9 5.2 1.9
+ + + + 1.5 0.8 1.5 0.8
5.3 + 0.5 2.3 + 1.2 5.3 + 0.5 1.2 2.3
5.7 1.8 2.8 5.7 2.5 2.8
5.9 + 0.6 2.7 1.3 5.9 + 0.6 2.7 + 1.3
4.9 2.9 4.9 2.9
8
0.6 0.37 0.37 0.27
1.3 0.61 1.2 0.65
0.82 0.21 0.19 1.00 0.38 0.37
+ 0.1 0.06 + 0.08 + 0.04
+ 0.2 0.08 + 0.3 + 0.06
+ 0.06 0.05 + 0.02 + 0.06 • 0.02 • 0.02
•
0.011 + 0.006 0.007 + 0.002 0.015 + 0.007 0.011 • 0.004
0.015 + 0.006 0.0040 • 0.0002 0.016 + 0.006 0.006 + 0.001
1 2 2 3
0.5 1 0.6 1
0.8 3 4 0.7 2 2
63 99 46 63
46 173 43 118
1
- 1
0.11 0.049 0.12 0.07
+ + •f +
0.04 0.008 0.05 0.01
6 14 6 10
7 14 6 14
6 14
0.12 • 0.05 0.05 + 0.01
0.10 + 0.03 0.050 + 0.009 0.12 + 0.04 0.05 • 0.01
8 14
58 224 53 334
16 169 16 110
0.09 + 0.03 0.049 + 0.005
0.012 + 0.003 0.003 • 0.002 0.013 + 0.004 0.0021 + 0.0005
0.04 + 0.02 0.0041 • 0.0005 0.04 • 0.02 0.0063 + 0.0008
Photo-mineralization Half-life Rate Constant (day) (day" )
D i s t i l l e d water was b u f f e r e d at pH 7.7 ± 0.2 (0.016 M
phosphate).
^ C - l a b e l e d compounds were incubated i n quartz f l a s k s at a c o n c e n t r a t i o n of 25 yg L . The f l a s k s with d i s t i l l e d or estuarine water were exposed during days when there was f u l l s u n l i g h t , i . e . , no c l o u d s . A l l samples were t r e a t e d with formaldehyde (0.4%). Values are expressed as the mean ± standard d e v i a t i o n (n = 3 ) . 2,4d i c h l o r o p h e n o l , 2 , 4 , 5 - t r i c h l o r o p h e n o l , and pentachlorophenol were exposed to midday s u n l i g h t f o r 4 h r , and h a l f l i v e s were reported as " l i g h t hours". Because of slower p h o t o l y s i s rates phenol and p-chlorophenol were exposed to s u n l i g h t and darkness f o r up to 3 days. Degradations of the compounds in darkness were n e g l i g i b l e .
es tuary
Pentachlorophenol distilled
es tuary
summer winter summer winter
summer winter winter summer winter winter
summer winter summer winter
summer winter summer winter
Season (Temp. °C)
2,4,5-Trichlorophenol distilled
es tuary
2,4-Dichlorophenol distilled
estuary
p-Chlorophenol distilled
es tuary
distilled
Compound and Water
2
and C h l o r o p h e n o l s
Photo-trans format ion Half-life Rate Constant (hr) (hr-*)
P h o t o l y s i s of Phenol
Midday Surface Irradiance (Einsteins/m /hr)
Table I.
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
^
β.
I
5
Ζ Ο m H
0
3C
34
PHOTOCHEMISTRY OF ENVIRONMENTAL AQUATIC SYSTEMS
Table
I I . Molar A b s o r p t i v i t i e s and R e a c t i o n Quantum Y i e l d s P h o t o l y s i s of Phenol and C h l o r o p h e n o l s
((tr)
for Direct
a
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
Molar
A
(M" cra-M
Phenol
p-CP
Absorptivity DC Ρ
295
9
270
1813
2824
1902
297.5
7
161
1715
3219
1948
300
5
116
1683
3554
2134
302.5
3
97
1707
3851
2319
305
2
84
1707
4087
2644
307.5
1
64
1675
4285
2922
310
51
1585
4364
3154
312.5
32
1423
4305
3432
315
26
1171
4087
3757
317.5
19
986
3614
3943
320
618
2962
4035
323.1
350
2113
3803
65
553
2319
59
742
0.080
0.013
Wavelength, nm
330 340 R e a c t i o n Quant urn Yield 0 r b
0.066
0.075
TCP
PCP
• The measurements were conducted i n d i s t i l l e d water b u f f e r e d at pH 7.6. A b b r e v i a t i o n s : p-CP: p - c h l o r o p h e n o l , DCP: 2 , 4 - d i c h l o r o p h e n o l , TCP: 2 , 4 , 5 - t r i c h l o r o p h e n o l , PCP: p e n t a c h l o r o p h e n o l . . S p e c t r a l data and s u n l i g h t p h o t o l y s i s r a t e c o n s t a n t s o f both a c t i n o m e t e r v a l erophenone and c h l o r o p h e n o l s i n p h o s p h a t e - b u f f e r e d s o l u t i o n s (pH 7.6), and r e a c t i o n quantum y i e l d o f valerophenone were used to c a l c u l a t e 0 r o f c h l o r o phenols u s i n g GCSOLAR program ( S k u r l a t o v et a l . , 1983).
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
HWANG ET AL.
Photolysis of Phenol and Chlorophenols
35
c h l o r o p h e n o l s (Table I I I ) . H i g h e s t p h o t o l y s i s r a t e s were o b t a i n e d at h i g h pH (pH 10) where the c h l o r o p h e n o l s e x i s t as the phenoxide i o n . A t pH below the p K the p h o t o l y s i s r a t e s were r e l a t i v e l y low, thus the p h o t o l y s i s r a t e c o n s t a n t f o r d i c h l o r o p h e n o l was 0.13, 1.0, and 1.8 h r " a t pH 5.5, pH 7.6, and pH 10, r e s p e c t i v e l y . B o r o s i l i c a t e g l a s s i s o f t e n used i n p h o t o l y s i s s t u d i e s . However, s e c t i o n s of b o r o s i l i c a t e g l a s s were found to o n l y t r a n s m i t 50% of the l i g h t at 310 nm w h i l e q u a r t z s e c t i o n t r a n s m i t t e d 100% of t h i s l i g h t . T h e r e f o r e , f o r compounds which absorb u l t r a v i o l e t - b l u e l i g h t (280-320 nm), q u a r t z glassware i s n e c e s s a r y f o r p h o t o l y s i s s t u d i e s . F i g u r e 3 shows the p h o t o l y s i s of 2 , 4 , 5 - t r i c h l o r o p h e n o l i n b o r o s i l i c a t e and q u a r t z f l a s k s . The p h o t o l y s i s r a t e c o n s t a n t s were 0.74 h r " and 1.07 h r i n b o r o s i l i c a t e and q u a r t z , r e s p e c t i v e l y , which were shown t o be s i g n i f i c a n t l y d i f f e r e n t by a t - t e s t (p £ 0.05). A l l o t h e r p h o t o l y s i s s t u d i e s used q u a r t z f l a s k s . The p h y s i c a l and c h e m i c a l p r o p e r t i e s of the Skidaway R i v e r measured d u r i n g d i f f e r e n t times of the year are l i s t e d i n T a b l e IV. There were few changes d u r i n g the year i n pH, β3βη (absorbance of the p a r t i c u l a t e - f r e e e s t u a r i n e water at 330 nm) and the s c r e e n i n g f a c t o r . Other p r o p e r t i e s i n c l u d i n g c o n c e n t r a t i o n of suspended p a r t i c u l a t e s , K330 ( d i f f u s e a t t e n u a t i o n c o e f f i c i e n t a t 330 nm) and K ( s p e c i f i c a t t e n u a t i o n c o e f f i c i e n t due t o suspended p a r t i c u l a t e s ) v a r i e d s i g n i f i c a n t l y d u r i n g the y e a r . For examçle, K330 of the e s t u a r i n e water i n c r e a s e d from 0.05 to 0.22 cm~l from w i n t e r t o summer, showing t h a t u l t r a v i o l e t - b l u e l i g h t was a t t e n u a t e d by a f a c t o r of f o u r i n the summer. Thus, w h i l e s u r f a c e i r r a d i a n c e i n c r e a s e d going from w i n t e r t o summer (Table I ) the a t t e n u a t i o n of l i g h t by e s t u a r i n e water was g r e a t e r i n the summer, due t o h i g h conc e n t r a t i o n s of suspended p a r t i c u l a t e s (Table I V ) . As noted above p h o t o l y s i s r a t e s i n e s t u a r i n e water d e c r e a s e d i n the o r d e r t r i c h l o r o p h e n o l , d i c h l o r o p h e n o l , p e n t a c h l o r o p h e n o l , c h l o r o p h e n o l , and p h e n o l . With the e x c e p t i o n of the t r a n s f o r m a t i o n r a t e s f o r p - c h l o r o p h e n o l and the p h o t o l y s i s r a t e s f o r p e n t a c h l o r o p h e n o l , f o r a l l compounds the p h o t o l y s i s r a t e s i n c l u d i n g both p h o t o - t r a n s f o r m a t i o n and p h o t o - m i n e r a l i z a t i o n were h i g h e r i n the summer than i n the w i n t e r ( t - t e s t , ρ £ 0.05; T a b l e I , F i g . 2 ) . For example, the p h o t o - t r a n s f o r m a t i o n r a t e c o n s t a n t of d i c h l o r o p h e n o l i n c r e a s e d from 0.38 to 1.00 h r " going from w i n t e r t o summer, and the photo-miner a l i z a t i o n r a t e c o n s t a n t of phenol i n c r e a s e d from 0.006 to 0.04 day" g o i n g from w i n t e r t o summer. I n a d d i t i o n to changes i n s u n l i g h t i r r a d i a n c e d u r i n g d i f f e r e n t seasons, t h e r e are a l s o changes i n the i r r a d i a n c e d u r i n g the same season, e.g., c l o u d c o v e r . F i g . 3 compares the p h o t o l y s i s r a t e of t r i c h l o r o p h e n o l on a sunny and o v e r c a s t day i n May. A decrease i n the midday s u r f a c e i r r a d i a n c e from 5.4 to 2.6 E i n s t e i n s / m^/hr due t o c l o u d cover r e s u l t e d i n the t r a n s f o r m a t i o n r a t e c o n s t a n t going from 1.07 t o 0.30 h r " . The decrease i n t r i c h l o r o p h e n o l p h o t o l y s i s was p r o p o r t i o n a l l y g r e a t e r than the decrease i n measured i r r a d i a n c e , t h i s may have been due t o c l o u d s a t t e n u a t i n g u l t r a v i o l e t - b l u e l i g h t more than v i s i b l e l i g h t s i n c e the r a d i o m e t e r o n l y measured r a d i a t i o n i n the v i s i b l e r e g i o n (400-700 nm). Maximum absorbance of t r i c h l o r o phenol was at 310 nm (Table I I ) . a
1
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
1
- 1
8
1
1
1
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
In Photochemistry of Environmental Aquatic Systems; Zika, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
b
a
a
1.8
±0.3* 1.46 ± 0.09
1.57 ± 0.06
± 0.3
0.7 ± 0.1
0.6 ± 0.1
0.4 ± 0.1
D i s t i l l e d Water
Pentachlorophenol
a
- p K v a l u e s o f d i c h l o r o p h e n o l , t r i c h l o r o p h e n o l , and p e n t a c h l o r o p h e n o l a r e 7.6, 7.0, and 4.8, r e s p e c t i v e l y (Boule ^ t al., E r n s t and Wever, 1978). A s t e r i s k s (*) denote s i g n i f i c a n t d i f f e r e n c e s from the r a t e c o n s t a n t s o b t a i n e d a t pH 7.6 ( t - t e s t ; ρ £ 0.05). - pH of p h o s p h a t e - b u f f e r e d d i s t i l l e d water (0.017 M) or e s t u a r i n e water was a d j u s t e d u s i n g e i t h e r 2N NaOH or 2N H2SO4.
± 0.2*
1.4
pH 10
1.2
1.3 ± 0.2
1.00 ± 0.06
0.82 ± 0.06
0.40 ± 0.05*
0.13 ± 0.04*
0.13 ± 0.06*
pH 7.6
b
0.07 ± 0.06*
pH 5 . 5
E s t u a r i n e Water
D i s t i l l e d Water
E s t u a r i n e Water
A
2,4,5-Trichlorophenol F i r s t Order Rate Constant ( h r ~ )
i n Water
D i s t i l l e d Water
2,4-Dichlorophenol
Table I I I . E f f e c t o f pH on P h o t o l y s i s o f C h l o r o p h e n o l s
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
c/a
η •< 00 Η m
C
Ο Η Ο η a: m g c/5 H *> •< Ο "Π m < g ζ m ^ >
8
Table
IV. P h y s i c a l and Chemical P r o p e r t i e s of Skidaway R i v e r W a t e r , Physical
Downloaded by UNIV ILLINOIS URBANA on March 8, 2013 | http://pubs.acs.org Publication Date: December 8, 1987 | doi: 10.1021/bk-1987-0327.ch003
Temp (°C)
1
Z99(cm)
0
pH
0.22 ( O c t . 1983) 0.05 (Feb. 1984)
c
21 100
d
(K-Da ) (cm" ) 1
7.7 ± 0.2 (7.4-8.0)
Dissolved organic carbon (mg L " )
( O c t . 1983) ( F e b . 1984)
4.8 ± 0.3
1
P a r t i c u l a t e organic carbon (mg I T )
0.9 ± 0 . 1
P a r t i c u l a t e organic n i t r o g e n (mg I T )
0.20 ± 0.05
1
1
0.15 ( O c t . 1983) 0.01 ( F e b . 1984)
3 3 0
1983-1985
Chemical P r o p e r t i e s
Particulates 31.3 1 17.1 (12.9-68.3)
1
Kicm" )
Properties
21.7 ± 6.3 (7-29)
Suspended (mg L " )
C/N
4.6 ± 1 . 3
Phosphate a
37
Photolysis of Phenol and Chlorophenols
3. HWANG ET AL.
(yg-atotn/L)
0.7 ± 0.3
0.05 ± 0.02 (0.030-0.096)
3 3 0
Nitrate 1
1
(ug-atom/L)
1.4 ± 0.3
3
K ( l mg" cm' )* 6.5 χ 1 0 " (Oct. 1983) s
0.6 χ Ι Ο "
3
(Feb. 1984) Salinity
0.85
(°/oo)
22.8 ± 2.4 (18-25)
± 0.04 (0.82-0.88)
a
-
E x p r e s s e d as the annual mean ± s t a n d a r d
b
«
Diffuse attenuation
coefficient.
c
*
Z99 - 4.6/K, p h o t i c
zone
d
«
Component o f Κ due t o l i g h t a t t e n u a t i o n by suspended p a r t i c u l a t e s . a o i the absorbance (1-cm p a t h l e n g t h ) o f the p a r t i c u l a t e - f r e e e s t u a r i n e water. D: d i s t r i b u t i o n c o e f f i c i e n t i n e s t u a r i n e water.
deviation
depth. 8
3 3
e