14 Identification of Chemical States by Spectral Features in X-Ray Photoelectron Spectroscopy C. D . W A G N E R
Downloaded by CORNELL UNIV on October 23, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch014
Surfex Company, 29 Starview Drive, Oakland, CA 94618
W h i l e t h e p r i n c i p a l i n t e r e s t i n t h i s symposium i s t h e a p p l i c a t i o n o f s u r f a c e a n a l y t i c a l t e c h n i q u e s to p o l y m e r i c systems, p o l y m e r s o f t e n c o n t a i n , b e s i d e s C , H , and 0 , e l e m e n t s o f Group V I I ( h a l o g e n s ) , Group V I ( S , S e , T e ) , Group V ( N , P , A s , S b ) , and sometimes Group I V ( S i , G e , S n ) . I n p o l y m e r t e c h n o l o g y t h e s t u d y o f polymers i n heterophase systems i s i n c r e a s i n g l y i m p o r t a n t , w i t h p r o c e s s i n g a d d i t i v e s , f i l l e r s , p i g m e n t s , and i n t e r f a c e s i n c o m p o s i t e s i n v o l v i n g many o t h e r e l e m e n t s . F o r these reasons i t seems a p p r o p r i a t e t o d i s c u s s t h i s s u b j e c t i n q u i t e a g e n e r a l w a y . From t h e e a r l i e s t p r e s e n t a t i o n s o f t h i s t e c h n i q u e ( 1 ) i t was c l e a r t h a t a p r i n c i p a l v a l u e o f t h e method i s t h e i n f o r m a t i o n i t f u r n i s h e s on t h e e n v i r o n m e n t o f t h e e m i t t i n g a t o m , o b t a i n e d by o b s e r v i n g the exact energy o f the p h o t o e l e c t r o n s . Chemical s h i f t s i n t h i s e n e r g y a r e s u b s t a n t i a l (2^) f o r c a r b o n , s u l f u r , and n i t r o g e n . The range i n p h o t o e l e c t r o n e n e r g y f o r t h e s e e l e m e n t s i n o r g a n i c systems i s 7-8 e V . Since line positions after charge r e f e r e n c i n g a r e o r d i n a r i l y d e t e r m i n a b l e w i t h an e r r o r l e s s t h a n 0 . 5 e V , t h e t e c h n i q u e h a s been o f g r e a t v a l u e i n a n a l y s i s o f polymer s u r f a c e s . The p r i n c i p a l limitation i n i d e n t i f i c a t i o n of chemical s t a t e s h a s b e e n t h e f a c t t h a t p h o t o e l e c t r o n l i n e e n e r g y i s a one p a r a m e t e r s y s t e m . M o r e o v e r , c h e m i c a l s h i f t s i n some e l e m e n t s a r e v e r y s m a l l ; f o r example t h o s e o f Z n , A g , C d , I n , and t h e a l k a l i m e t a l s and a l k a l i n e e a r t h s encompass r a n g e s o f l e s s t h a n two e l e c t r o n v o l t s , so t h a t f o r t h e s e e l e m e n t s t h i s t e c h n i q u e h a s l i t t l e use. C l e a r l y t h e r e i s much i n c e n t i v e t o f i n d other s p e c t r a l f e a t u r e s t h a t p r o v i d e i n f o r m a t i o n on c h e m i c a l s t a t e . Shakeup S a t e l l i t e s . A n u n u s u a l f e a t u r e i n many s p e c t r a i s t h e shakeup s a t e l l i t e , a l i n e o r l i n e s u s u a l l y s e v e r a l eV l o w e r i n k i n e t i c energy than the p a r e n t p h o t o e l e c t r o n l i n e . I t a r i s e s when the p h o t o e l e c t r i c t r a n s i t i o n has a s i g n i f i c a n t p r o b a b i l i t y o f g e n e r a t i n g a f i n a l i o n i n an e x c i t e d s t a t e . The e x t r a e n e r g y i n the e x c i t e d s t a t e i s r e f l e c t e d i n the energy s e p a r a t i o n o f t h e s a t e l l i t e from t h e m a i n l i n e . A common e x a m p l e i n o r g a n i c systems 0097-6156/81/0162-0203$05.00/0 © 1981 American Chemical Society Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by CORNELL UNIV on October 23, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch014
204
PHOTON, ELECTRON, AND ION PROBES
i s t h a t due to the TT* TT t r a n s i t i o n . In this instance the e x c i t a t i o n e n e r g y i s i n t h e r a n g e 5 . 5 - 8 . 5 eV (_3); a w e l l - k n o w n example i s t h a t o f p o l y s t y r e n e ( F i g . 1 ) . The s a t e l l i t e is o b s e r v e d when t h e c a r b o n atom i s p a r t o f a p i - b o n d e d s y s t e m , e . g . compounds w i t h benzene r i n g s , ( 4 ) , p y r r o l e , t h i o p h e n e (^5), p y r i d i n e , f u r a n , or even d i o l e f i n i c or m o n o - o l e f i n i c s y s t e m s (6^). The i n t e n s i t y o f the s a t e l l i t e c a n be as much as 15% o f the p a r e n t peak. S i m i l a r s a t e l l i t e s have b e e n o b s e r v e d w i t h a number o f other compounds, s u c h as f o r m a l d e h y d e , c a r b o n s u b o x i d e (_7)> t e t r a c y a n o q u i n o d i m e t h a n e ( 8 ) and m e t a l c a r b o n y l s . The s a t e l l i t e s h a v e been o b s e r v e d w i t h the l i n e s o f the h e t e r o a t o m s as w e l l as w i t h C i s , w i t h s i m i l a r , b u t n o t i d e n t i c a l , e n e r g y s e p a r a t i o n s and intensities. The e n e r g y s e p a r a t i o n and i n t e n s i t y a r e u n i q u e f o r l i n e s from each atom i n e a c h c h e m i c a l s t a t e . Shakeup s a t e l l i t e s a r e o f t e n more i n t e n s e w i t h p a r a m a g n e t i c i n o r g a n i c i o n s , s u c h as t h o s e o f t h e f i r s t t r a n s i t i o n s e r i e s , t h e r a r e e a r t h s , and the a c t i n i d e s . Those o f the f i r s t t r a n s i t i o n s e r i e s c a n be q u i t e c o m p l e x ( F i g . 2 ) , w i t h m u l t i p l e s a t e l l i t e s (multiple excited states) possible. Frost, Ishitani, and M c D o w e l l (9) f o r c o p p e r compounds and M a t i e n z o e t a l (10) and Tolman et a l ( J J J f o r n i c k e l compounds have f u r n i s h e d rather c o m p r e h e n s i v e d a t a on s a t e l l i t e e n e r g i e s and i n t e n s i t i e s . The p a r a m a g n e t i c o c t a h e d r a l and t e t r a h e d r a l n i c k e l c o m p l e x e s e x h i b i t shakeup p a t t e r n s , w h i l e the d i a m a g n e t i c s q u a r e p l a n a r ones do not. W i t h c o p p e r t h e p a r a m a g n e t i c c u p r i c s t a t e s have shakeup s a t e l l i t e s w h i l e t h e d i a m a g n e t i c c u p r o u s s t a t e s do n o t . The r u l e i s n o t i n v a r i a b l e , h o w e v e r , and s a t e l l i t e s a r e sometimes o b s e r v e d w i t h d i a m a g n e t i c s p e c i e s , b u t u s u a l l y i n much l o w e r i n t e n s i t y . W i t h the t r a n s i t i o n m e t a l s t h e e x c i t a t i o n mechanism u s u a l l y i n v o l v e s charge t r a n s f e r w i t h the l i g a n d . B r i s k and B a k e r ( 1 2 ) s u m m a r i z e the d i s c u s s i o n s on mechanism t h a t have a p p e a r e d . R a r e e a r t h i o n s a l s o e x h i b i t c o m p l e x shakeup s a t e l l i t e p a t terns. T h a t o f Ce3d i n CeO^ i s e s p e c i a l l y n o t e w o r t h y i n t h e f a c t t h a t two s a t e l l i t e s f o r e a c h o f Ce3d« and C e 3 d ^ * a p p e a r , one o f them more i n t e n s e t h a n t h e p r i m a r y l i n e and s e p a r a t e d from i t by as much as 16 eV ( F i g . 3 ) . A c t i n i d e compounds a l s o e x h i b i t many s a t e l l i t e s in their spectra. Wide use o f t h e s e f e a t u r e s in a n a l y t i c a l work a w a i t s c o l l e c t i o n o f t h e s e s p e c t r a i n a c o m p r e hensive review. 2
Multiplet Splitting. I n t e r a c t i o n o f a core vacancy r e s u l t i n g from the p h o t o e l e c t r i c p r o c e s s w i t h u n p a i r e d e l e c t r o n s i n a v a l e n c e s h e l l induces m u l t i p l e t s p l i t t i n g i n the l i n e s c o r r e s p o n d i n g to the e m i t t e d e l e c t r o n . T h u s , t h e 3s l e v e l i n t h e t r a n s i t i o n metals e x h i b i t r e l a t i v e l y simple s p l i t t i n g s , often o f s e v e r a l e V , s p e c i f i c f o r each c h e m i c a l s t a t e (_13). The 2p l e v e l s a r e s p l i t i n t o m u l t i p l e l i n e s , and t h e e f f e c t o f t h e i r c o n v o l u t i o n i s to w i d e n t h e a p p a r e n t s p l i t o f t h e d o u b l e t ( 1 4 ) . F r o s t , et a l ( 1 5 ) t a b u l a t e the 2p s p l i t t i n g f o r c o b a l t compounds, w h i c h v a r i e s i n t h e r a n g e 1 4 . 6 t o 1 6 . 1 e V . T h e r e s h o u l d be s i m i l a r v a r i a b i l i t y
Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
14.
WAGNER
205
Identification of Chemical States by XPS
Downloaded by CORNELL UNIV on October 23, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch014
Perkin-Elmer Corporation
Figure 1. Shakeup line for the C-ls line in polystyrene (2)
Perkin-Elmer Corporation
Figure 2. Examples of shakeup lines in the Cu-2p spectrum (2). Energy separation of the 2p lines is 19.8 eV.
Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
PHOTON, ELECTRON, AND ION PROBES
Downloaded by CORNELL UNIV on October 23, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch014
206
BINDING ENERGY. eV Perkin-Elmer Corporation
Figure 3.
Shakeup spectra in the Ce-3d lines of eerie oxide (2)
*
Figure 4.
9.2eV
Multiplet splitting effects in the Cr-2p doublet
Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
14.
WAGNER
Identification of Chemical States by XPS
207
Downloaded by CORNELL UNIV on October 23, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch014
f o r N i , F e , Mn, and C r . Chromate i o n and c h r o m i c o x i d e a r e r e a d i l y d i s t i n g u i s h e d by t h i s e f f e c t ( F i g . 4 ) as w e l l as by t h e A l l o f these f e a t u r e s , the b i n d i n g e n e r g y o f the shakeup s a t e l l i t e s and t h e m u l t i p l e t s p l i t t i n g phenomena, h a v e the advantage t h a t c o r r e c t i o n for s t a t i c charge i s u n n e c e s s a r y . C o r e - T y p e Auger L i n e s , and C h e m i c a l S t a t e P l o t s . The u t i l i t y o f Auger l i n e s i n i d e n t i f i c a t i o n o f c h e m i c a l s t a t e s i s b e i n g r e c o g n i z e d . About h a l f o f the n a t u r a l l y - o c c u r r i n g elements p r e s e n t i n s o l i d s t a t e m a t e r i a l s e x h i b i t A u g e r l i n e s i n XPS s p e c t r a w i t h A l or Mg X - r a d i a t i o n ( F i g . 5 ) . O f t h e s e , t w e n t y two e x h i b i t c o r e - t y p e Auger t r a n s i t i o n s ( f i n a l v a c a n c i e s i n c o r e l e v e l s ) and s i x t e e n have v a l e n c e - t y p e A u g e r t r a n s i t i o n s . Coret y p e Auger groups i n the s p e c t r a o f n e i g h b o r i n g elements are v e r y s i m i l a r , d i f f e r i n g o n l y i n m a g n i t u d e o f l i n e s p a c i n g , and h a v e a t l e a s t one l i n e t h a t i s n a r r o w and i n t e n s e . Chemical s h i f t s i n t h e s e l i n e s a r e d i f f e r e n t from and o r d i n a r i l y l a r g e r t h a n t h o s e o f p h o t o e l e c t r o n l i n e s o f t h e same e l e m e n t s (16). When l i n e e n e r g i e s o f t h e most i n t e n s e p h o t o e l e c t r o n l i n e a r e p l o t t e d a g a i n s t t h o s e o f t h e most i n t e n s e or s h a r p A u g e r l i n e f o r compounds o f t h e same e l e m e n t , t h e r e s u l t i n g t w o - d i m e n s i o n a l a r r a y becomes much more useful for i d e n t i f y i n g chemical s t a t e s . An e x a m p l e i s shown i n F i g . 6 for copper. C u p r i c compounds a r e a l l l o c a t e d a t h i g h e r photoelectron binding energies and have identifying shakeup lines. C u p r o u s f o r m s , on t h e o t h e r h a n d , h a v e v i r t u a l l y t h e same p h o t o e l e c t r o n b i n d i n g e n e r g y as e l e m e n t a l c o p p a r , and no s h a k e u p satellite lines. They a r e d i s t i n g u i s h a b l e , h o w e v e r , by t h e A u g e r energy. S i x unknown s a m p l e s c o n t a i n i n g C u , C I , S , and 0 , as w e l l as o t h e r m e t a l s , gave l i n e e n e r g i e s d e n o t e d by t h e c i r c l e s , and i n d i c a t e c o p p e r i s p r o b a b l y p r e s e n t as Cu S, o r p o s s i b l y C u ^ O , b u t c l e a r l y n o t C u C l o r Cu m e t a l . Many o f t h e c h e m i c a l s t a t e p l o t s embodying p r e s e n t k n o w l e d g e o f l i n e e n e r g i e s h a v e b e e n a s s e m b l e d and p u b l i s h e d (17), i n c l u d i n g F , Na, Mg, Cu, Z n , Ge, A s , Se, A g , C d , I n , S n , S b , T e , and I . One f e a t u r e o f t h e s e p l o t s i s o f a d d i t i o n a l i n t e r e s t . The d i a g o n a l g r i d r e p r e s e n t s t h e sum o f t h e A u g e r k i n e t i c e n e r g y and t h e p h o t o e l e c t r o n b i n d i n g e n e r g y , w h i c h we c a l l t h e m o d i f i e d A u g e r P a r a m e t e r (17), : 4x1
f