4 Exciton States and Exciton Transport in Molecular Crystals R. SILBEY Department of Chemistry, Massachusetts Institute of Technology, Cambridge, M A 02139 Downloaded by CORNELL UNIV on September 6, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch004
R. MUNN Department of Chemistry, UMIST, Manchester, M60 1QD, United Kingdom
E l e c t r o n i c transport i n molecular crystals is a complicated phenomenon f o r two r e a s o n s . The f i r s t i s t h e c o m p l e x i t y o f t h e vibrations. I n m o l e c u l a r c r y s t a l s t h e phonons i n c l u d e m o l e c u l a r modes and t r a n s l a t i o n a l and v i b r a t i o n a l l a t t i c e modes, e a c h w i t h i t s c h a r a c t e r i s t i c f r e q u e n c y , b a n d w i d t h , and mechanism o f e l e c tron-phonon c o u p l i n g , again with d i f f e r e n t strengths. The s e c o n d r e a s o n why t r a n s p o r t i s c o m p l i c a t e d i s t h e a b s e n c e o f any c l e a r o r d e r i n g o f the d i f f e r e n t p a r a m e t e r s . The e l e c t r o n i c b a n d w i d t h s may r a n g e from b e i n g l a r g e r t h a n most phonon f r e q u e n c i e s and bandwidths ( f o r charge c a r r i e r s ) to being s m a l l e r than e i t h e r (for t r i p l e t excitons). The e l e c t r o n - p h o n o n c o u p l i n g e n e r g y may b e l a r g e o r s m a l l compared w i t h e l e c t r o n i c and v i b r a t i o n a l e n e r g i e s , and i f l a r g e may c a u s e t h e e l e c t r o n i c b a n d w i d t h t o n a r r o w r a p i d l y with i n c r e a s i n g temperature, so c h a n g i n g the p a r a m e t e r ordering. E a r l y t r a n s p o r t t h e o r i e s were r e s t r i c t e d i n s c o p e and d i d not r e f l e c t these c o m p l i c a t i o n s . As w e l l as t r e a t i n g o n l y a s i n g l e phonon b a n d , f o r s i m p l i c i t y , t h e t h e o r i e s w o u l d assume a p a r t i c u l a r p a r a m e t e r o r d e r i n g and a t r a n s p o r t mechanism ( 1 - 1 1 ) . T r a n s p o r t has been d e s c r i b e d by the m e a n - s q u a r e p a r t i c l e d i s p l a c e m e n t as a f u n c t i o n o f t i m e , so p e r m i t t i n g s t u d y o f the c l o t h i n g o f the p a r t i c l e by phonons and the d e v e l o p m e n t o f diffusive motion. These a p p r o a c h e s a l s o r e v e a l t h e change from h o p p i n g to band m o t i o n as t h e t e m p e r a t u r e i s l o w e r e d i n s y s t e m s with strong electron-phonon coupling. H o w e v e r , t h e a v a i l a b l e t h e o r i e s have s t i l l b e e n r e s t r i c t e d to s e l e c t e d parameter o r d e r i n g s . I n p a r t i c u l a r , i t has been assumed i n t h e o r i e s o f e x c i t o n t r a n s p o r t t h a t t h e e x c i t o n b a n d w i d t h i s n a r r o w e r t h a n t h e phonon b a n d w i d t h , and t h i s a s s u m p t i o n has been c a r r i e d over to t h e o r i e s o f c a r r i e r t r a n s p o r t . In fact, c a r r i e r b a n d w i d t h s may w e l l be much l a r g e r t h a n phonon b a n d w i d t h s a t low t e m p e r a t u r e s , b e c o m i n g s m a l l e r t h a n phonon b a n d w i d t h s as the temperature is raised, o w i n g to p o l a r o n band n a r r o w i n g
0097-6156/81/0162-0045$05.00/0 © 1981 American Chemical Society Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
PHOTON, ELECTRON, AND ION PROBES
46
effects. T h e r e i s t h e r e f o r e a need f o r a t h e o r y w h i c h c a n t r e a t b o t h w i d e and n a r r o w e l e c t r o n i c bands i n m o l e c u l a r c r y s t a l s w i t h e i t h e r s t r o n g o r weak e l e c t r o n - p h o n o n c o u p l i n g . We have a l r e a d y d i s c u s s e d how s u c h a t h e o r y may be d e v e l o p e d , (_12) and h e r e we d e s c r i b e the t h e o r y i n d e t a i l . Principles
take
We s t a r t h=l:
from
the
f o l l o w i n g m o d e l H a m i l t o n i a n , i n w h i c h we
+
+
H =£ e a a + Z J a a n n n n,mnmn n + £ GO ( b b q q q q
Downloaded by CORNELL UNIV on September 6, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch004
+
+ 1/2)
+ N"
1 / 2
n
+
+
£ g oo ( b + b ) a a nq q q q q n n 6
(2.1)
+
Here the o p e r a t o r s a and a c r e a t e and d e s t r o y an e l e c t r o n i c e x c i t a t i o n ( e x c i t o n o r c h a r g e c a r r i e r ) o f e n e r g y u) a t s i t e n , w h i l e the o p e r a t o r s b and b c r e a t e and d e s t r o y a phonon o f f r e q u e n c y w and w a v e v e c t o r j | . The q u a n t i t y J =J is the t r a n s f e r i n t e g r a l b e t w e e n s i t e s n and m. The l a s t t e r m i s t h e e l e c t r o n - p h o n o n c o u p l i n g t e r m , ^ o f ^ m a g n i t u d e d e t e r m i n e d by the d i m e n s i o n a l e s p a r a m e t e r s g = g e ^* n , where £ i s the p o s i t i o n v e c t o r o f s i t e n . The c o u p r i n f i s l o c a l ( d i a g o n a l ) i n e x c i t a t i o n site. Such a c o u p l i n g c a n a r i s e from m o l e c u l a r d i s t o r t i o n i n t h e e x c i t e d o r i o n i z e d s t a t e , i n w h i c h c a s e g and u) a r e e x p e c t e d t o be a l m o s t i n d e p e n d e n t o f q , o r from v i b r a t i o n a l ? f l u c t u a t i o n s i n the e x c i t o n s i t e s h i f t or charge c a r r i e r p o l a r i z a t i o n e n e r g y , i n w h i c h c a s e g and u) may v a r y more m a r k e d l y w i t h q . I f the eflectror? phonon c o u p l i n g i s weak (| g |, changing e v e n t u a l l y to T when k _ T » w . /t
A c o u s t i c Phonons. We assume t h a t a c o u s t i c phonons c a n be a d e q u a t e l y d e s c r i b e d by a Debye s p e c t r u m c u t - o f f f r e q u e n c y and the e l e c t r o n - p h o n o n c o u p l i n g i s g i v e n by t h e deformation p o t e n t i a l approximation g
q
=
The s c a t t e r i n g
(3.8) rate
is
then
r £ = 2 7 r A N ~ y > { ( n +1)6(E. -E,+w ) + kk q q k-q k q a
n
q
1
6(E, -E,-co )} k-q k q
(3.9)
I n some l i m i t s , r e s u l t s c a n be o b t a i n e d more d i r e c t l y . In the conventional semiconductor limit B>>k T»w^ we have n % k T / ( A ) >>1, and | E _ - E ^ | »/k
T(m*) ]V
(3.11)
5
15
5/2
49
3/2
so t h a t D'vB /A^B i f we assiime A i s p r o p o r t i o n a l t o B. Eq. (3.11) g i v e s the standard T temperature dependence f o r the mobility (13). In molecular crystals one may a l s o require the limit k T>>u) >>B. Then i n E q . ( 3 . 9 ) n o n z e r o c o n t r i b u t i o n s a r i s e o n l y f o r f r e q u e n c i e s u) ^ ( ^ B a ) , we o b t a i n Z
k
N p
(o))=3w t
l
3 /u) .
Taking
D/a =a)^/127rAk T, 2
(3.13)
B
3
similarly
D
3
so t h a t D ^ a ^ / A ^ o ^ / B ^ w i t h t h e p r e v i o u s a s s u m p t i o n A B) and t h e m o b i l i t y v a r i e s as T . The n a r r o w e x c i t a t i o n b a n d i n t h i s l i m i t g r e a t l y r e d u c e s t h e number o f a l l o w e d o n e - p h o n o n s c a t t e r i n g p r o c e s s e s , so t h a t t h e d i f f u s i o n c o e f f i c i e n t may b e l a r g e , a s t h e r a t i o ^ /B i n d i c a t e s . Finally, i n t h e l i m i t k T>>B>>u) , t h e s c a t t e r i n g r a t e s a r e g i v e n by E q . ( 3 . 1 0 ) b u t t h e t h e r m a l a v e r a g e s i n D hay^e t o b e ^ t a k e n over a narrow excitation band. We take v, ^(%Ba) and N ( E M / B , obtaining 0C
D
B
e
x
D
k
D/a =B /(167rAk 2
3
15
T)
(3.14) -2
so t h a t t h e m o b i l i t y v a r i e s as T . T h i s r e s u l t accords with the n a r r o w e x c i t a t i o n band t r e a t m e n t s o f G l a r u m ( 1 4 ) and F r i e d m a n (15). _
Transformed Coupling Transformation. The t r a n s f o r m a t i o n o f t h e H a m i l t o n i a n ( 2 . 1 ) w h i c h y i e l d s a weak r e s i d u a l e x c i t a t i o n - p h o n o n c o u p l i n g e v e n when t h e g a r e l a r g e h a s b e e n d i s c u s s e d s e v e r a l t i m e s ( 4 , T_ 16^> 1 7 ) . I t p r 8 d u c e s a u n i f o r m s h i f t i n t h e e x c i t a t i o n e n e r g y l e v e l s and a d i s p l a c e m e n t i n t h e e q u i l i b r i u m p o s i t i o n o f t h e phonons c o r r e s p o n d i n g to t h e f o r m a t i o n o f a p o l a r o n . Since the t r a n s f e r interactions J compete w i t h t h i s t e n d e n c y t o f o r m a l o c a l i z e d s t a t e , t h e optimum t r a n s f o r m a t i o n s h o u l d be d e t e r m i n e d v a r i a t i o n 9
Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
50
PHOTON, ELECTRON, AND ION PROBES
a l l y ^6, J 7 ) . H o w e v e r , f o r p r e s e n t p u r p o s e s we use t h e full c l o t h i n g t r a n s f o r m a t i o n w h i c h i s e x a c t f o r J=0 and y i e l d s t h e c o r r e c t u n t r a n s f o r m e d r e s u l t s f o r l a r g e J and weak c o u p l i n g . The r e s u l t s a r e q u a l i t a t i v e l y s i m i l a r t o t h o s e w h i c h w o u l d be o b t a i n ed w i t h the f u l l v a r i a t i o n a l t r a n s f o r m a t i o n , b u t a r e s i m p l i f i e d by the a b s e n c e o f the t e m p e r a t u r e - d e p e n d e n t v a r i a t i o n a l p a r a meters . After the transformation, the excitation part of the Hamiltonian (2.2) is 2
H
- * ( - r t c * |g | z \e*'%n) k q n i s a l a t t i c e v e c t o r and
e x
e
Downloaded by CORNELL UNIV on September 6, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch004
where R ^n
+
aja
(4.1)
k
h n + h , n n+h n
(4.2)
j l U
J
= exp [ N
1 / 2
n
+
E(g )*(b -b )] q q -q
Y
n
(4.3)
q
B. The s e c o n d t e r m i n E q . ( 4 . 6 ) r e p r e s e n t s t h e h o p p i n g c o n t r i b u t i o n , which i n c r e a s e s w i t h i n c r e a s i n g temperature through I g ( y ) and t h e e x p o n e n t i a l f a c t o r . H o w e v e r , once B becomes much l e s s t h a n f,^ t h e e x p o n e n t i a l f a c t o r becomes c o n s t a n t , and t h e d e c r e a s e i n B o u t w e i g h s t h e i n c r e a s e i n I ( y ) , so t h a t e v e n t u a l l y the second term a l s o d e c r e a s e s w i t h i n c r e a s i n g t e m p e r a t u r e . The o c c u r r e n c e o f t h i s d e c r e a s e i s d i s c u s s e d i n more d e t a i l b e l o w . I n the l i m i t f>>B assumed i n most p r e v i o u s w o r k , we f i n d , D/a
2 z
=
f j—i (2^) [l (y)-l]
^[I (y)-1]B 2 4f
2
0
+
J s
0
(
4
-
?
J
T h i s i s e s s e n t i a l l y o f t h e form d e r i v e d e a r l i e r ( 4 ) . We n o t e t h a t i n E q . ( 4 . 7 ) f, o r e q u i v a l e n t l y A, c a n n o t t e n d t o z e r o ( w h i c h w o u l d make D i n f i n i t e ) , b e c a u s e t h e e q u a t i o n i s v a l i d o n l y f o r f>>B. On t h e o t h e r h a n d , J( c a n t e n d t o z e r g , i n w h i c h c a s e o n l y t h e band t e r m r e m a i n s . A s t h e v e l o c i t i e s v i n E q . ( 2 . 3 ) tend to z e r o , so do t h e s c a t t e r i n g r a t e s £ • b o t h f a c t o r s v a r y as % , so t h a t t h e i r r a t i o t e n d s to a c o n s t a n t . Le >e written
as 2
D/a
2
= (
B
Q 8Ag 2 2
(4.8)
2
sinh | ^ exp(-2g tanh
2
I n the
opposite
D/a
2
limit
B
- L _ ^[l (y)-l] x
Q
> >
T
>
we o b t a i n t h e
+ 4
new
[T(y)-1] °
result
Be-
B 2
«
2 / 8
H e r e f does n o t o c c u r and so c a n t e n d t o z e r o , b e i n g a l r e a d y assumed much s m a l l e r t h a n B . I f t h e n B t e n d s to z e r o , the d i f f u s i o n c o e f f i c i e n t v a n i s h e s , as e x p e c t e d . V i b r a t i o n a l d i s p e r s i o n ( n o n z e r o A ) i s t h e r e f o r e not e s s e n t i a l to o b t a i n d i f f u s i v e m o t i o n and f i n i t e t r a n s p o r t c o e f f i c i e n t s i n t h i s l i m i t , b u t to show t h i s has r e q u i r e d a s u f f i c i e n t l y g e n e r a l t h e o r y . Discussion I n t h i s p a p e r we have shown how e l e c t r o n i c t r a n s p o r t in molecular crystals can be t r e a t e d much more g e n e r a l l y than hitherto. The p r e s e n t t r e a t m e n t a v o i d s ( i ) t h e a s s u m p t i o n t h a t v i b r a t i o n a l r e l a x a t i o n i s f a s t compared w i t h e x c i t a t i o n t r a n s f e r
Dwight et al.; Photon, Electron, and Ion Probes of Polymer Structure and Properties ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by CORNELL UNIV on September 6, 2016 | http://pubs.acs.org Publication Date: August 13, 1981 | doi: 10.1021/bk-1981-0162.ch004
52
PHOTON, ELECTRON, AND ION PROBES
(f>>B, as u s u a l l y assumed i n p o l a r o n and e x c i t o n transport t h e o r i e s ) , and ( i i ) the a s s u m p t i o n t h a t t h e e x c i t a t i o n - p h o n o n c o u p l i n g i s weak (gtjon