Editorial pubs.acs.org/JPCL
Photonic−Plasmonic Devices Created by Templated Self-Assembly ‡
C
ontrolling light−matter interactions in nanostructures is at the forefront of modern physical chemistry research.1−6 Although this can be done in different ways, one exciting prospect for this research is the design and fabrication of coupled dielectric (photonic)−metallic (plasmonic) systems that can create intense spatially localized electric fields and manipulate the photonic local density of states (LDOS).7−10 These types of systems can be used for fundamental studies of how the LDOS affects the radiative lifetimes of molecular systems11,12 and can also serve as substrates for ultrasensitive spectroscopies. This includes surface enhanced spectroscopies, such as surface enhanced Raman spectroscopy,13−15 and also direct absorption measurements,16 which have recently demonstrated impressive detection capabilities. However, there are some significant challenges in this field involving both the design and fabrication of coupled photonic− plasmonic systems, and in devising experiments that can test the performance of these systems. The Perspective in the current issue of the Journal of Physical Chemistry Letters by Hong et al. discusses recent progress in using template guided self-assembly to bring metal and dielectric particles together in a controllable way.17 This article covers design issues, simulations of the fields and the LDOS of the structures, and how these materials can be made.4,18,19 The advantages of hybrid photonic−plasmonic systems compared to conventional systems composed of either one material or the other are also discussed.17 Also appearing in this volume of the Journal of Physical Chemistry Letters is a Perspective from Christians et al. on the photophysics of organic−inorganic perovskites.20 These materials have recently attracted considerable interest in solar energy research because of their high conversion efficiencies− solar cells with efficiencies of over 20% having been reported.21−24 Perovskites have unusual properties,25 and remarkably the high solar cell efficiencies have been achieved without a detailed understanding of the fundamental photophysics of these materials. The article by Christians et al. discusses recent time-resolved measurements on hybrid organic−inorganic perovskites, which provides information about charge separation, recombination, and trapping in the materials,26,27 and also fundamental information about their band structure.28−31 Although these two Perspectives deal with different topics, they have two things in common. First, hybrid materials, of which the coupled photonic−plasmonic systems and the organic−inorganic perovskites are just two examples, are becoming increasingly important materials for fundamental research and applications.32,33 Second, both these Perspectives articles, which deal with fundamental studies of how materials interact with photons, are fitting contributions to the Journal of Physical Chemistry Letters during the Year of Light.34
■
AUTHOR INFORMATION
Notes
Views expressed in this editorial are those of the author and not necessarily the views of the ACS.
■
REFERENCES
(1) Liu, N.; Giessen, H. Coupling Effects in Optical Metamaterials. Angewa. Chem., Int. Ed. 2010, 49, 9838−9852. (2) Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mater. 2010, 9, 707−715. (3) Alvarez-Puebla, R.; Liz-Marzan, L. M.; de Abajo, F. J. G. Light Concentration at the Nanometer Scale. J. Phys. Chem. Lett. 2010, 1, 2428−2434. (4) Pasquale, A. J.; Reinhard, B. M.; Dal Negro, L. Engineering Photonic−Plasmonic Coupling in Metal Nanoparticle Necklaces. ACS Nano 2011, 5, 6578−6585. (5) Wang, S.; Chervy, T.; George, J.; Hutchison, J. A.; Genet, C.; Ebbesen, T. W. Quantum Yield of Polariton Emission from Hybrid Light−Matter States. J. Phys. Chem. Lett. 2014, 5, 1433−1439. (6) Artamonov, M.; Seideman, T. Time-Dependent, Optically Controlled Dielectric Function. J. Phys. Chem. Lett. 2015, 6, 320−325. (7) Callahan, D. M.; Munday, J. N.; Atwater, H. A. Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Lett. 2012, 12, 214−218. (8) Knight, M. W.; Liu, L. F.; Wang, Y. M.; Brown, L.; Mukherjee, S.; King, N. S.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum Plasmonic Nanoantennas. Nano Lett. 2012, 12, 6000−6004. (9) Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.; Odom, T. W. Lasing Action in Strongly Coupled Plasmonic Nanocavity Arrays. Nat. Nanotechnol. 2013, 8, 506−511. (10) Aspetti, C. O.; Agarwal, R. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering. J. Phys. Chem. Lett. 2014, 5, 3768−3780. (11) Chen, X. W.; Agio, M.; Sandoghdar, V. Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission. Phys. Rev. Lett. 2012, 108, 233001. (12) Frimmer, M.; Koenderink, A. F. Spontaneous Emission Control in a Tunable Hybrid Photonic System. Phys. Rev. Lett. 2013, 110, 217405. (13) Berweger, S.; Atkin, J. M.; Olmon, R. L.; Raschke, M. B. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3427−3432. (14) Saikin, S. K.; Chu, Y. Z.; Rappoport, D.; Crozier, K. B.; AspuruGuzik, A. Separation of Electromagnetic and Chemical Contributions to Surface-Enhanced Raman Spectra on Nanoengineered Plasmonic Substrates. J. Phys. Chem. Lett. 2010, 1, 2740−2746. (15) Mahajan, S.; Hutter, T.; Steiner, U.; Oppenheimer, P. G. Tunable Microstructured Surface-Enhanced Raman Scattering Substrates via Electrohydrodynamic Lithography. J. Phys. Chem. Lett. 2013, 4, 4153−4159.
Gregory V. Hartland, Professor†, Senior Editor‡
† Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States © 2015 American Chemical Society
The Journal of Physical Chemistry, American Chemical Society, Washington, DC 20036, United States
Published: June 4, 2015 2112
DOI: 10.1021/acs.jpclett.5b00983 J. Phys. Chem. Lett. 2015, 6, 2112−2113
The Journal of Physical Chemistry Letters
Editorial
(16) Heylman, K. D.; Knapper, K. A.; Goldsmith, R. H. Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. J. Phys. Chem. Lett. 2014, 5, 1917−1923. (17) Hong, Y.; Ahn, W.; Boriskina, S.; Zhao, X. W.; Reinhard, B. M. Directed Assembly of Optoplasmonic Hybrid Materials with Tunable Photonic−Plasmonic Properties. J. Phys. Chem. Lett. 2015, DOI: 10.1021/acs.jpclett.5b00366. (18) Ahn, W.; Boriskina, S. V.; Hong, Y.; Reinhard, B. M. Photonic− Plasmonic Mode Coupling in On-Chip Integrated Optoplasmonic Molecules. ACS Nano 2012, 6, 951−960. (19) Chen, T. H.; Pourmand, M.; Feizpour, A.; Cushman, B.; Reinhard, B. M. Tailoring Plasmon Coupling in Self-Assembled OneDimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation. J. Phys. Chem. Lett. 2013, 4, 2147−2152. (20) Christians, J. A.; Manser, J. S.; Kamat, P. V. The Multifaceted Excited State of CH3NH3PbI3. Charge Separation, Recombination, and Trapping. J. Phys. Chem. Lett. 2015, DOI: 10.1021/acs.jpclett.5b00594. (21) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based On Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643−647. (22) Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316−319. (23) Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395−398. (24) Park, N. G. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2013, 4, 2423−2429. (25) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron−Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341− 344. (26) Manser, J. S.; Kamat, P. V. Band Filling with Free Charge Carriers in Organonietal Halide Perovskites. Nat. Photonics 2014, 8, 737−743. (27) Christians, J. A.; Herrera, P. A. M.; Kamat, P. V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 1530−1538. (28) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C 2013, 117, 13902−13913. (29) Even, J.; Pedesseau, L.; Katan, C. Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites. J. Phys. Chem. C 2014, 118, 11566−11572. (30) Lindblad, R.; Jena, N. K.; Philippe, B.; Oscarsson, J.; Bi, D. Q.; Lindblad, A.; Mandal, S.; Pal, B.; Sarma, D. D.; Karis, O.; Siegbahn, H.; Johansson, E. M. J.; Odelius, M.; Rensmo, H. Electronic Structure of CH3NH3PbX3 Perovskites: Dependence on the Halide Moiety. J. Phys. Chem. C 2015, 119, 1818−1825. (31) Walsh, A. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic−Inorganic Halide Perovskites. J. Phys. Chem. C 2015, 119, 5755−5760. (32) Freeman, R.; Willner, B.; Willner, I. Integrated Biomolecule− Quantum Dot Hybrid Systems for Bioanalytical Applications. J. Phys. Chem. Lett. 2011, 2, 2667−2677. (33) Kamat, P. V. Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908−918. (34) Kamat, P. V.; Schatz, G. C.; Scholes, G.; Zwier, T. Photons, Physical Chemistry, and the Year of Light − A Virtual Issue. J. Phys. Chem. Lett. 2015, 6, 1420−1422.
2113
DOI: 10.1021/acs.jpclett.5b00983 J. Phys. Chem. Lett. 2015, 6, 2112−2113