Photophysics of Polymers - American Chemical Society

kJmol"1. 16. 10. 17 k 3. 10 1 0 s ~ l b. 310. 10. 60 kg^at 20°C in ns. 37. 22. 145. ΔΗ° k J m o l "1 ..... decays obtained by time correlated sing...
0 downloads 0 Views 1MB Size
Chapter 16

Configurational and Conformational Aspects of Intramolecular Excimer Formation

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

F. C. De Schryver, P. Collart, R. Goedeweeck, F. Ruttens, F. Lopez Arbelao, and M . Vander Auweraer Department of Chemistry, K . U . Leuven, Celestijnenlaan 200F, B3030 Heverlee, Belgium

In a polymer the photophysical behavior of the singlet excited state is influenced strongly by the configuration and the conformational distribution within each configuration. This i s i l l u s t r a t e d in this paper by the excimer formation of 2,4-diarylpentanes and bis(pyrenylalanine)peptides.

1

S i n c e t h e f i r s t r e p o r t o f t h e pyrene excimer by Fôrster intermolecular excited state interactions have become a key s u b j e c t i n p h o t o c h e m i s t r y and p h o t o p h y s i c s . From c a l c u l a t i o n s ^ * ^ a p i c t u r e o f t h e e x c i t e d s t a t e complex a r i s e s i n w h i c h t h e two chromophores, i f t h e y a r e p l a n a r , a r e a t an optimum d i s t a n c e o f 3.5 Angstroms i n a p l a n e p a r a l l e l o r i e n t a t i o n . The s t a b i l i z a t i o n o f an e x c i m e r i s much more dependent on t h e o v e r l a p between t h e two chromophores t h a n an e x c i p l e x i n w h i c h t h e c o u l o m b i c a t t r a c t i o n , e s p e c i a l l y i n non p o l a r s o l v e n t s , i s t h e main s t a b i l i z i n g factor. I n t e r m o l e c u l a r e x c i t e d s t a t e complex f o r m a t i o n c a n be d e s c r i b e d by t h e k i n e t i c scheme 1 *

A*

---1

A* A

* +_J53W1 — > M

(AM)* -~-

4

>

A + hv

>

A ( A M )

*

> A* + M 1

(AM)*

> A+ M + hv' 6

(AM)* ~->A + M k^ = k^ + k2 and kg = k$ + kg Scheme 1 0097-6156/87/0358-0186$06.00/0 © 1987 American Chemical Society

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

16.

187

Intramolecular Excimer Formation

DESCHRYVERETAL.

>x

A i s t h e l o c a l l y e x c i t e d s t a t e (LE) and (AM)* i s t h e e x c i t e d s t a t e complex ( E ) . The f l u o r e s c e n c e spectrum c o n s i s t s o f t h e e m i s s i o n o f L E , hv', a t h i g h e r e n e r g i e s and o f t h e complex E, which e m i t s a t lower e n e r g i e s , h v ,due t o t h e s t a b i l i s a t i o n and r e p u l s i o n energy terms In case o f a δ e x c i t a t i o n t h e time dependence o f t h e e m i s s i o n can be d e s c r i b e d by t h e f o l l o w i n g e q u a t i o n s " 1

k

I (t)» I LE

a

b

l [(β - X ) e x p ( - 3 t ) + ( X - β )βχρ(-β ί)]

s

2

1

ι

eq.l

2

&z - h k k [M] 5

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

ι

χ

κΜ

T

3

e x

abs

I

(

P "

"

e x

(

P "P2

t ) ]

e
L£., and o f t h e c o m p l e x ^ g , a n d t h e r a t i o t h e r e o f can be f o r m u l a t e d as follows: >98%) i n t h e TG c o n f o r m a t i o n . The excimer f o r m i n g s t e p i s one r o t a t i o n around one bond t o form t h e TT c o n f o r m a t i o n i n w h i c h t h e two chromophores o v e r l a p e x t e n s i v e l y . ( f i g . 2 ) c

c

Q

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Intramolecular Excimer

Formation

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

D E S C H R Y V E R E T AL.

TG

TT

F i g . z . S p a c e f i l l i n g models r e p r e s e n t i n g t h e TG ground s t a t e and TT* e x c i t e d s t a t e . T h e a c t u a l excimer s t r u c t u r e must have t h e two pyrene groups f a r t h e r a p a r t f o r s t e r i c reasons.

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

189

PHOTOPHYSICS OF POLYMERS

190

Scheme 2 hv TG TG*

> TG* > TT*

Important parameters o f the p h o t o p h y s i c s i n t a b l e 1.

o f 1 a-c are assembled

T a b l e 1 K i n e t i c and thermodynamic parameters i n t h e excimer of l a - c i n i s o o c t a n e

formation

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

c

parameter

l

1 a

FWMH cm" e m i s s i o n max. nm E kJmol" k 10 s~ k g ^ a t 20°C i n ns ΔΗ° k J m o l " AS° J K " m o l " a

1

3

1 0

l b

3

1

1

a)excimer

1

c

a

3400 420 16 310 37 -20±3 -17±5

l

c

b

3900 330 10 10 22 --

l

c

c

3800 485 17 60 145 -16 -42

e m i s s i o n b ) p r e e x p o n e t i a l term

S u b s t i t u t i o n o f t h e c e n t r a l methylene group by an oxygen no l o n g e r p e r m i t s t h e u s e o f t h e above mentioned nmr method t o o b t a i n i n f o r m a t i o n on t h e c o n f o r m a t i o n a l d i s t r i b u t i o n f o r t h e meso d i a stereoisomer. An a n a l y s i s o f t h e luminescence b e h a v i o r o f I Q C ^ - a s i n g l e e x p o n e n t i a l decay a t -30 °C i n i s o o c t a n e when a n a l y s e d i n t h e l o c a l l y e x c i t e d s t a t e , an a c t i v a t i o n energy f o r excimer f o r m a t i o n o f 17,6 k J m o l " i n i s o o c t a n e , t h e presence o f o n l y one excimer w i t h a k g o f 85 ns and a FWHM o f 3800 cm" - suggests a TG ground s t a t e conformation. These r e s u l t s a l l o w t h e c o n c l u s i o n t h a t i n a b i c h r o m o p h o r i c m o l e c u l e l i n k e d by t h r e e c a r b o n - c a r b o n bonds o r i n t h e e t h e r analog w i t h a w e l l d e f i n e d c o n f o r m a t i o n o f t h e c h a i n , a symmetric sub­ s t i t u t i o n a t t h e chromophore and i n absence o f i n t e r a c t i o n s i n t h e ground s t a t e excimer f o r m a t i o n c a n be d e s c r i b e d by a i n t r a m o l e c u l a r v e r s i o m o f t h e k i n e t i c scheme 1. Nmr a n a l y s i s o f l e^^ i n d i c a t e d t h a t t h e meso isomer i n a l k a n e s o l v e n t s a t room temperature has m a i n l y (>95%) a TG c h a i n c o n f o r ­ m a t i o n w h i l e a t lower t e m p e r a t u r e s o n l y t h e TG c o n f o r m a t i o n i s p r e s e n t . N e v e r t h e l e s s t h e time p r o f i l e o f t h e f l u o r e s c e n c e a t -50^C can n o t be a n a l y s e d as a s i n g l e e x p o n e n t i a l b u t good f i t s a r e o b t a i n e d upon a n a l y s i s o f t h e l o c a l l y e x c i t e d s t a t e as a sum o f two exponentials. Spectral information c l e a r l y indicates that a t t h i s t e m p e r a t u r e no back d i s s o c i a t i o n o f t h e complex o c c u r s . ^ A s u b s t a n t i a l s h i f t o f t h e excimer e m i s s i o n maximum , a broadening o f t h e f u l l w i d t h a t medium h e i g h t (FWMH) o f t h e excimer e m i s s i o n and t h e a n a l y s i s o f t h e f l u o r e s c e n c e decay a c r o s s t h e excimer band 1

1

_ 1

1

c

1

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

16.

Intramolecular Excimer Formation

DESCHRYVERETAL.

c l e a r l y e s t a b l i s h e d t h e presence o f two e x c i m e r s . were o b t a i n e d f o r l e . ( t a b l e 2)

191

Analogous

results

Q

T a b l e 2 E x c i t e d s t a t e p r o p e r t i e s o f l e and l e i n i s o o c t a n e Q

Q

parameter a

max. 298 K nm λ max. 183 K nm FWMH(298 K ) cm" FWMHU83 K ) cm" α / α a t 450 nm c^/c^ β^ i n n s a t 450 nm 32~* i n ns at450 nm n ns a t 520 nm &C\ iit ns a t 520 nm 82'* iinn ns λ

a

a

1

a

1

b

χ

2

a

t

5

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

1

2

0

n

m

c

^'foJlO

1

1



E ( k J mol" ) *3 p > s - ')5^ E p (kJ mol" )* 3 i f o

1

0

1

1

3

Q

472 492 4800 4400 1.5 15 160 80 161 80 330 19 7 8

480 500 4300 3800 1.44 8.5 80 47 80 47 150 21 2 12

a) o f t h e excimer e m i s s i o n b) r a t i o o f t h e p r e e x p o n e n t i a l terms o f t h e two e x p o n e n t i a l decay f u n c t i o n d e s c r i b i n g t h e t i m e p r o f i l e o f t h e excimer e m i s s i o n measured a t 298 Κ i n i s o o c t a n e . c ) β exponential terms o f t h e decay f u n c t i o n . S i n c e t h e amount o f bac& d i s s o c i a t i o n a t t h i s temperature i s v e r y s m a l l t h e y can be s e t e q u a l t o k g . d ) p r e e x p o n e t i a l term o f t h e r a t e c o n s t a n t f o r f o r m a t i o n o f t h e l o n g l i v e d excimer.e) a c t i v a t i o n energy o f t h e r a t e c o n s t a n t f o r f o r m a t i o n of t h e l o n g l i v e d e x c i m e r . f ) p r e e x p o n e n t i a l term o f t h e r a t e c o n s t a n t f o r f o r m a t i o n o f t h e s h o r t l i v e d excimer.g) a c t i v a t i o n energy o f t h e r a t e constant f o r formation o f t h e s h o r t l i v e d excimer. χ 2

_ 1

The f o r m a t i o n o f two e x c i m e r s s t a r t i n g from one c h a i n con­ f o r m a t i o n was r e l a t e d t o t h e presence o f d i f f e r e n t rotamers o f t h e non s y m m e t r i c a l l y s u b s t i t u t e d 1 - p y r e n y l group i n t h e TG c o n f o r m a t i o n ( f i g . 3 ) . One o f t h e e x c i m e r s formed - t h e l o n g e r l i v e d one d e r i v e d from t h e T^G^ conformer - has a k g " v a l u e a t room temperature c l o s e t o t h e one o b s e r v e d f o r r e s p e c t i v e l y meso l c and meso l c and e m i t s a t l o n g e r w a v e l e n g t h s . A t low temperature i t i s t h e main c o n t r i b u t o r t o t h e excimer e m i s s i o n . T r a n s i e n t p i c o s e c o n d a b o r p t i o n s p e c t r o ­ s c o p y ^ o f l c and l e s u b s t a n t i a t e s t h i s i n t e r p r e t a t i o n . S i n c e a TT c o n f o r m a t i o n o f l c r e s u l t s i n a f u l l o v e r l a p o f t h e two pyrene group a s i m i l a r s p a t i a l arrangement can be suggested f o r t h i s l o n g l i v e d excimer. The second excimer formed from o t h e r r o t a m e r ( s ) w i l l have o n l y p a r t i a l o v e r l a p o f t h e two chromophores. An u n e q u i v o c a l assignment o f t h e decay parameters t o t h e d i f f e r e n t rotamers f o r m i n g t h e two d i f f e r e n t e x c i m e r s c o u l d be made by t h e a n a l y s i s o f t h e decay of t h e l o c a l l y e x c i t e d s t a t e and t h e excimer decay a t 205 Κ where t h e l o n g l i v e d excimer i s t h e s o l e c o n t r i b u t o r and t h e l o c a l l y e x c i t e d s t a t e can be c o r r e l a t e d w i t h t h e growing i n o f t h i s e x c i m e r . This s u g g e s t s t h a t t h e r a t e o f r o t a t i o n o f t h e chromophore s h o u l d be s m a l l e r than t h e r a t e o f excimer f o r m a t i o n . B r o a d e n i n g o f t h e nmr s i g n a l o f t h e pyrene group a t 185K i n d i c a t e s slow r o t a t i o n o f t h i s 1

c

Q

1

Q

Q

Q

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PHOTOPHYSICS OF POLYMERS

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

192

F i g . 3 . S c h e m a t i c r e p r e s e n t a t i o n o f two p o s s i b l e ground s t a t e c o n f o r m a t i o n s l e a d i n g t o two d i f f e r e n t e x c i m e r s of

l

c

c'

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

16.

Intramolecular Excimer Formation

DESCHRYVERETAL.

193

group a t t h e nmr time s c a l e and hence on t h e time s c a l e o f t h e p h o t o p h y s i c a l experiment. The p a r t i a l l y o v e r l a p p i n g excimer has a lower a c t i v a t i o n energy o f f o r m a t i o n due t o t h e f a c t t h a t a s t a b i l i s i n g i n t e r a c t i o n between t h e two pyrene groups s t a r t s e a r l i e r a l o n g t h e r e a c t i o n c o o r d i n a t e decreasing the activation barrier. The a c t i v a t i o n energy o f f o r m a t i o n o f t h e f u l l o v e r l a p excimer i s i n t h e non s y m e t r i c a l l y s u b s t i t u t e d compounds l e and l e , w i t h i n e x p e r i m e n t a l e r r o r , comp a r a b l e t o t h e a c t i v a t i o n e n e r g i e s observed f o r r e s p e c t i v e l y l c and c

e

c

These r e s u l t s i n d i c a t e t h a t t h e c o m p l e x i t y o f t h e f l u o r e s c e n c e decay o f meso l e and meso l e , where t h e pyrene i s non s y m m e t r i c a l l y s u b s t i t u t e d , i s n o t due t o a c o n f o r m a t i o n a l d i s t r i b u t i o n o f t h e c h a i n but t o r o t a t i o n a l isomerism around t h e carbon carbon bond l i n k i n g t h e chromophore t o t h e c h a i n backbone p r o v i d i n g t h e p o s s i b i l i t y t o form more t h a n one excimer i n t h e s e systems.

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

c

The Racemic

Q

Diastereoisomers

What a r e t h e k i n e t i c consequences i f t h e chromophores a r e l i n k e d by a c h a i n f o r w h i c h more t h a n one c h a i n c o n f o r m a t i o n contributes substantially? T h i s a s p e c t can be c o n s i d e r e d by a study o f t h e racemic d i a s t e r e o - i s o m e r s o f l c ' T h e racemic d i a s t e r e i s o m e r s l c a r e systems i n w h i c h t h e c h a i n i s p r e s e n t i n d i f f e r e n t conformations namely t h e TT and t h e GG conformers ( f i g 4 ) . I n both d e u t e r a t e d cyclohexane and d e u t e r a t e d c h l o r o f o r m , a t room temperature, t h e TT c o n f o r m a t i o n o f racemic l c is predominant : 80 % TT and 73 % TT r e s p e c t i v e l y . The observed s o l v e n t e f f e c t on t h e c o n f o r m a t i o n a l d i s t r i b u t i o n i s s i m i l a r but s m a l l e r than found f o r ( l e ) ^ . These r e s u l t s agree q u i t e w e l l w i t h t h o s e o b t a i n e d on s i m i l a r compounds^» 10»17,19 ^ I n t h e NMR d a t a o f t h e racemic d i a s t e r e o i s o m e r s o f l c and l c one i m p o r t a n t d i f f e r e n c e shows up. The p o s i t i o n o f t h e s i n g l e t absorption signal of oij t h e pyrene r i n g i s s h i f t e d s i g n i f i c a n t l y t o h i g h e r Ô v a l u e s f o r l c compared w i t h l c . The p o s i t i o n o f t h e HJL p r o t o n s i n t h e ^H-NMR spectrum i s a f u n c t i o n o f t h e c o n t r i - b u t i o n o f t h e TT c o n f o r m a t i o n s i n c e t h e s e p r o t o n s a r e s h i e l d e d by t h e mutual ring current effect o f t h e pyrene chromophores i n t h e TT conformation. I t can t h e r e f o r e be concluded t h a t t h e e q u i l i b r i u m between TT and GG i n t h e case o f l c i s s h i f t e d more toward t h e GG c o n f o r m a t i o n compared t o l c . T h i s c a n be e x p l a i n e d by comparing t h e bond l e n g t h s o f t h e C-0 bond and t h e C-C bond i n t h e r e s p e c t i v e compounds. The s h o r t e r e t h e r band induces a s t r o n g e r 1,4 i n t e r a c t i o n between t h e methine hydrogens and t h e pyrene chromophores i n t h e e t h e r compound c a u s i n g a s h i f t o f t h e c o n f o r m a t i o n a l e q u i l i b r i u m from TT t o GG. The steady s t a t e f l u o r e s c e n c e s p e c t r a o f l c and l c have an excimer f l u o r e s c e n c e band t h a t i s c o m p l e t e l y superimposable at a l l t e m p e r a t u r e s i n v e s t i g a t e d w i t h t h a t o f t h e i r r e s p e c t i v e meso d i a s t e r e o i s o m e r s s u g g e s t i n g an i d e n t i c a l g e o m e t r i c a l s t r u c t u r e o f t h e excimer and hence a l s o t h e p r e s e n c e o f o n l y one excimer. The f l u o r e s c e n c e decay c u r v e s o f l c and l c m o n i t o r e d a t 377 nm and 500 nm c a n be d e s c r i b e d by t h e same decay laws used f o r t h e r e s p e c t i v e meso d i a s t e r e o i s o m e r s . x

x

1

5

c

Q

c

Q

Q

c

Q

c

(

c

c

f

Q

Q

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PHOTOPHYSICS OF POLYMERS

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

194

Fig.Λ.Space f i l l i n g r e p r e s e n t a t i o n o f t h e extended ( C 5 ) and f o l d e d ( C y ) c o n f o r m a t i o n o f 2 a e . I n t h e f o l d e d c o n f o r m a t i o n t h e pyrene group a r e d e p i c t e d i n t h e excimer geometry.

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

16.

Intramolecular Excimer Formation

DESCHRYVERETAL.

195

The f l u o r e s c e n c e decays o f t h e l o c a l l y e x c i t e d s t a t e can be a n a l y s e d as a two e x p o n e n t i a l decay f u n c t i o n i n t h e temperature domain between 298 Κ and 233 Κ . Below t h i s temperature t h e decays a r e one e x p o n e n t i a l . Furthermore e x c e l l e n t agreement between t h e decay parameters measured i n t h e l o c a l l y e x c i t e d and excimer r e g i o n of t h e e m i s s i o n spectrum i s o b t a i n e d . The m o l e c u l a r dynamics o f t h e racemic d i a s t e r e o i s o m e r upon e x c i t a t i o n a r e however more c o m p l i c a t e d than t h a t o f t h e meso diastereoisomers due t o t h e presence o f two ground state conformations. S i n c e t h e decay laws used f o r meso d i a s t e r e i s o m e r s can a l s o be a p p l i e d t o t h e racemic d i a s t e r e o i s o m e r , a l l t h e r a t e c o n s t a n t s d e s c r i b i n g t h e e q u i l i b r i u m between t h e ground s t a t e c o n f o r m a t i o n s must be l a r g e compared t o t h e r a t e c o n s t a n t o f excimer formation. The q u e s t i o n however still remains from which c o n f o r m a t i o n does excimer f o r m a t i o n t a k e p l a c e . I t i s not l i k e l y t h a t i t o c c u r s d i r e c t l y from t h e GG c o n f o r m a t i o n . T h i s would mean a s i m u l t a n e o u s r o t a t i o n around two bonds and would be a s s o c i a t e d w i t h a r e l a t i v e l y high a c t i v a t i o n b a r r i e r . One p o s s i b i l i t y i s t h a t excimer f o r m a t i o n t a k e s p l a c e from t h e TT c o n f o r m a t i o n . This p o s s i b i l i t y i s d e p i c t e d i n scheme 3. A t h i r d r o u t e c o u l d be excimer f o r m a t i o n s t a r t i n g from t h e TG conformation. T h i s i n t e r m e d i a t e c o n f o r m a t i o n between t h e TT and GG c o n f o r m a t i o n has however a r e l a t i v e l y h i g h energy c o n t e n t owing t o an u n f a v o u r a b l e i n t e r a c t i o n between t h e m e t h y l group and t h e pyrene moiety. Upon t a k i n g i n t o account t h i s p r e e q u i l i b r i u m t h e r a t e c o n s t a n t s and a c t i v a t i o n b a r r i e r s o f excimer f o r m a t i o n can be r e w r i t t e n i f scheme 3 i s c o n s i d e r e d u s i n g t h e f o l l o w i n g e q u a t i o n s : k

obs

=

f

k

e (

TT 3 K

I"TT

l

1 0

K

1 2 eq 12

=

1 + K

L

+ κ κ χ

2

Ki= k / k .

a

eq 13

K = k. /k

b

eq 14

a

2

b

ΔΗ° E

obs

=

E

2

+ α+Κ )ΔΗ° 2

1 e c

3 +

l

1 5

1 + K + κ κ In these equations k and E a r e t h e observed r a t e c o n s t a n t and a c t i v a t i o n b a r r i e r o f excimer f o r m a t i o n . The f r a c t i o n s o f t h e TT or TG c o n f o r m a t i o n s a t a g i v e n temperature a r e r e p r e s e n t e d by f-p^ and TG" I t c o u l d be s h o w n t h a t s i n c e t h e f r a c t i o n o f t h e TT c o n f o r ­ m a t i o n i s c o n s i d e r a b l e and decreases w i t h i n c r e a s i n g temperature Scheme 3 s h o u l d l e a d t o a n e g a t i v e d e v i a t i o n from l i n e a r i t y i n t h e A r r h e n i u s p l o t o f t h e r a t e c o n s t a n t o f excimer f o r m a t i o n . T h i s c o u l d be e x p e r i m e n t a l l y v e r i f i e d p r o v i n g t h e v a l i d i t y o f scheme 3 The k i n e t i c and thermodynamic d a t a o f l c and l c a r e sum­ m a r i z e d i n t a b l e 3. I f the linear part i n the Arrhenius p l o t i s l

χ

o b s

2

o b s

f

1 S

13

c

Q

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PHOTOPHYSICS OF POLYMERS

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

196

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

16.

Intramolecular Excimer Formation

DESCHRYVERETAL.

197

e x t r a p o l a t e d t o h i g h e r t e m p e r a t u r e s , an e s t i m a t e o f f ^ can be made. T h i s assumes t h a t t h e e x t r a p o l a t e d r a t e c o n s t a n t s a t a l l g i v e n t e m p e r a t u r e s a r e e q u a l t o t h e v a l u e o f k . The v a r i a t i o n o f f ^ w i t h temperature i n t h e h i g h temperature r e g i o n (303 K-343 K) can t h e n be used t o determine Δ Η and A S f o r the conformational e q u i l i b r i u m betwee TT and GG o f t h e r a c e m i c d i a s t e r e o i s o m e r . I n t h e case o f l c t h e r e s p e c t i v e v a l u e s a r e 12,2 k J m o l " and 35 Jmol K " . In the case of l c these values are 5 k J mol" and 12 J m o l ^ K " respectively. The c o n f o r m a t i o n a l d i s t r i b u t i o n between TT and GG can t h e n be c a l c u l a t e d and e q u a l s 70 % TT/ 30% GG f o r l c ' and 61 % TT/ 39 % GG f o r l c a t room t e m p e r a t u r e . 3

σ

Q

0

L

1

1

1

1

Q

c

Q

Table 3. K i n e t i c and thermodynamic parameters l c and l c i n i s o octane ( a ) : p r e - e x p o n e n t i a l f a c t o r i n t h e A r r h e n i u s e q u a t i o n ; (b) determined i n t h e l i n e a r p o r t i o n o f t h e A r r h e n i u s p l o t a t low temperature (243 K-203 K)

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

c

,

X

1

E ( k J m o l " ) (b) °obs ~ ) ) o b s

K

E

( s

( a

χ

1

1

C

Ί1

40 (± 1 3

8)

3 (± 2 ) x l 0

-14 (± 7) -47 (± 12)

0

1

U

5.0 (± D x i O

ΔΗ ( k J mol" ) ASoUmol" K" )

0

22 (± 2) 3.3 (±0.3)χ10

34 (± 5)

1

( s " ) (a)

5

X

8

( k J mol" )

5

C

20 ( ± 2 ) · (±0.2)xlO

1



C

Q

1 4

-18 (± 10) -57 (± 30)

T h e r e s u l t s o b t a i n e d f o r t h e r a c e m i c d i a s t e r e o i s o m e r s l c ' and l c i n d i c a t e t h a t even when t h e r a t e o f c o n f o r m a t i o n a l change between t h e d i f f e r e n t c h a i n c o n f o r m a t i o n s i s much f a s t e r t h a n t h e r a t e o f excimer f o r m a t i o n , r e s u l t i n g i n f l u o r e s c e n c e decays s i m i l a r t o t h o s e o f t h e meso d i a s t e r e o i s o m e r s i t i s p o s s i b l e t o e x t r a c t some i n f o r m a t i o n on t h e c o n f o r m a t i o n a l d i s t r i b u t i o n o f t h e c h a i n from t h e obtained data. t

c

Q

BIS(PYRENYLALANINE)PEPTIDES By c h o o s i n g another l i n k between t h e two chromophpores i t i s p o s s i b l e t o slow down t h e r a t e o f c o n f o r m a t i o n a l i n t e r c h a n g e as t o be i n t h e same o r d e r o f magnitude as t h e i n v e r s e o f t h e f l u o r e s c e n c e l i f e t i m e o f t h e chromophore. T h i s was r e a l i z e d i n b i s ( p y r e n y l a l a n i n e ) p e p t i d e s o f t h e g e n e r a l s t r u c t u r e 2. CH CO-NH CHCO-NH CHCO-XCH 3

A

B

3

CH2

1

i

2 i f H^,Hg i s r e p l a c e d by a methylgroup 2 ( M E o r ME ) R = 1-pyrenyl = a R = 2-pyrenyl = b a

b

Structure 2

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

198

PHOTOPHYSICS OF POLYMERS

N - a c e t y i - b i s ( l - p y r e n y l ) a l a n i n e m e t h y l e s t e r 2a c a n occur i n two d i a s t e r e o i s o r a e r i c forms- t h r e o ( t ) and e r y t h r o ( e ) - w h i c h c o u l d be s e p a r a t e d by c h r o m a t o g r a p h y ^ . i i n e r t solvents,not capable of f o r m i n g hydrogen bonds,the r a t i o o f excimer e m i s s i o n over e m i s s i o n from t h e l o c a l l y e x c i t e d s t a t e i s s u b s t a n t i a l l y h i g h e r t h a n i n s o l v e n t s which can accept hydrogen bonds. The d e c r e a s e o f t h e emission ratio c a n be c o r r e l a t e d w i t h the T a f t basicity parameter.. These o b s e r v a t i o n s and t h e f a c t t h a t 3ae always has a h i g h e r e f f i c i e n c y o f excimer f o r m a t i o n than 3 a t were e x p l a i n e d by a c o n s e c u t i v e k i n e t i c scheme i n v o l v i n g t h e l o c a l l y e x c i t e d s t a t e o f pyrene i n two d i f f e r e n t c o n f o r m a t i o n s o f t h e p e p t i d e c h a i n : an extended c h a i n c o n f o r m a t i o n , C 5 , w i t h a l t e r n a t e s i d e c h a i n s ( f i g . 4 ) and a f o l d e d c o n f o r m a t i o n , C y , w i t h quasi p a r a l l e l side chains(fig.4) and supported by an i n t r a m o l e c u l a r hydrogen bond between the carbony1 f u n c t i o n o f the a c e t y l p r o t e c t i n g group and the amine f u n c t i o n o f t h e second p y r e n y l a l a n i n e r e s i d u e . Only t h e Cy c o n f o r m a t i o n a l l o w s r o t a t i o n o f t h e a r o m a t i c s i d e groups t o a p a r t i a l l y o v e r l a p p i n g excimer geometry w i t h i n t h e l i f e t i m e o f the e x c i t e d pyrene moeiety. T h i s p o i n t c o u l d be proven by t h e s u b s t i t u t i o n o f t h e hydrogen i n v o l v e d i n t h e hydrogen bond formation i n t h e Cy c o n f o r m a t i o n by a m e t h y l g r o u p 2(ME^)a r e s u l t i n g i n t h e d i s s a p e a r e n c e o f t h e excimer band i n t h e e m i s s i o n spectrum. The f l u o r e s c e n c e decay o f t h e l o c a l l y e x c i t e d s t a t e a t temper a t u r e s were t h e excimer does not d i s o c i a t e back c o u l d be a n a l y s e d as a sum o f two e x p o n e n t i a l s - * .That t h i s i s n o t due t o r o a t i o n a l i s o m e r i s m o f t h e 1-pyrenyl group c o u l d be proven by t h e a n a l y s i s o f 2b w h i c h showed analogous behavior.The a n a l y s i s o f t h e f l u o r e s c e n c e decay a c c o r d i n g t o scheme 4 p e r m i t s t h e d e t e r m i n a t i o n o f the r a t i o o f 2

n

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

2 1

2 2

2 2

2

c /c . 7

5

Scheme 4. j^fol

^ex

-fol -ex I n i n e r t s o l v e n t s the m o l e c u l e i s s t a b i l i s e d by f o l d i n g l e a d i n g to a h i g h Cy p o p u l a t i o n and hence a more i n t e n s e excimer e m i s s i o n than i n hydrogen bonding s o l v e n t s t h a t s h i f t the c o n f o r m a t i o n a l d i s t r i b u t i o n i n the ground s t a t e more t o t h e C5 conformer .When compaied i n t h e same s o l v e n t t h e t h r e o d i a s t e r e o i s o m e r has a lower f o l d e d p o p u l a t i o n then t h e e r y t h r o i n p a r t due t o i n c r e a s e d s t e r i c hinder a n c e and i n p a r t due t o t h e absence o f a s t a b i l i s i n g N-H pyrene interaction The s o l v e n t induced s h i f t o f the c o n f o r m a t i o n a l e q u i l i b r i u m was c o n f i r m e d , i n t o l u e n e a t -20°C a r a t i o o f 3 and 0.75 was c a l c u l a t e d f o r 2ae and 2 a t r e s p e c t i v e l y w h i l e i n e t h y l a c e t a t e these values d e c r e a s e t o 0.8 and 0.4. k

k

CONCLUSIONS I n t h i s c o n t r i b u t i o n we attempt t o e v a l u a t e t h e i n f l u e n c e o f c o n f o r m a t i o n a l and c o n f i g u r a t i o n a l a s p e c t s ,both on excimer f o r m a t i o n r a t e s

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

16.

D E S C H R Y V E R E T AL.

Intramolecular Excimer Formation

199

and on excimer p r o p e r t i e s . F r o m t h e r e s u l t s p r e s e n t e d , we c o n - c l u d e that the difference i n photophysical b e h a v i o r o f two d i f f e r e n t c o n f i g u r a t i o n s c a n be r e l a t e d t o t h e c o n f o r m a t i o n a l d i s t r i b u t i o n o f each d i a s t e r e o i s o m e r . I f o n l y one c o n f o r m a t i o n i s p r e s e n t complex f l u o r e s c e n c e decay s t i l l c a n a r i s e by t h e non s y m m e t r i c a l s u b s t i t u t i o n o f t h e chromophore l i n k e d t o t h e c h a i n . I f more t h e n one c h a i n c o n f o r m a t i o n i s p r e s e n t w i l l t h i s l e a d t o complexity i n the fluorescence decay o n l y i f t h e r a t e o f conf o r m a t i o n a l change i s comparable t o t h e r a t e o f excimer f o r m a t i o n a in the dipeptides. I n absence o f t h i s c o m p l i c a t i o n i t i s however n e c e s s a r y t o i n t e r p r e t t h e o b t a i n e d r e s u l t s t a k i n g i n t o account t h e f a s t p r e e q u i l i b r i u m between t h e d i f f e r e n t conformers. The n a t u r e o f t h e excimer formed and i t s p r o p e r t i e s w i l l f o r a g i v e n chromophore depend on t h e d i a s t e r e o i s o m e r . The b i n d i n g energy of t h e excimer w i l l be a f f e c t e d by s t a b i l i s i n g o r d e s t a b e l i s i n g e f f e c t s of the chain. Furthermore i f r o t a t i o n a l isomerism o f t h e chromophore i s p o s s i b l e and i n t e r c o n v e r s i o n between t h e rotamers i s slow compared t o excimer f o r m a t i o n t h e o c c u r e c e o f more then one e x c i t e d s t a t e complex i s p o s s i b l e and depends on t h e r e s p e c t i v e s t a b i l i s a t i o n o f t h e d i f f e t r e n t complexes.The r e l a t i v e c o n t r i b u t i o n of each a t a g i v e n t e m p e r a t u r e w i l l depend on t h e r o t a t i o n a l d i s t r i b u t i o n and t h e r e s p e c t i v e r a t e o f excimer f o r m a t i o n

Acknowledgments The a u t h o r s w i s h t o thank t h e B e l g i a n N a t i o n a l S c i e n c e F o u n d a t i o n f o r c o n t i n o u s s u p p o r t t o t h e laboratory.Dr.M.VdA i s a Reseach A s s o c i a t e of t h e NFWO.Dr.Boens i s thanked f o r h i s e s s e n t i a l c o n t r i b u t i o n t o t h e development o f t h e s o f t w a r e used i n t h e a n a l y s i s o f t h e f l u o r e s c e n c e decays o b t a i n e d by t i m e c o r r e l a t e d s i n g l e photon c o u n t i n g . REFERENCES

(1) Förster,T. and Kaspar,K.,Z.Phys.Chem.(N.F.),1,275,(1954). (2) a. Azumi,T. and McGlynn,S.P.,J.Chem.Phys.,39,1186(1963) b. Azumi,T. and McGlynn,S.P.,J.Chem.Phys.,41,3131(1964) c. Azumi,T.,Armstrong,Α.Τ.,and McGlynn,S.P. J.Chem.Phys,41, 839,(1964) d. Förster,Τ.,Pure and Appl.Chem.,4,121(1962) e. Murell,J.N., and Tanaka,J.,J.Mol.Phys.,7,363,(1964) (3) a. Azumi,T. and Azumi,H.,Bull.Chem.Soc.Jpn.,39,2317,(1966) b. Chandra,A.K. and Lim,E.C.,J.phys.Chem.,48,2589(1968) c. Post,M.F.M.,Langelaar,J. and Van Voorst ,J.D.W., Chem.Phys.,15,445(1976) d. Padma Malar,E.J. and Chandra,Α.Κ., Theor.Chim.Acta, 55,153(1980) (4) a. Döller,E. and Förster,.,Z.Phys.Chem.(N.F.),34,132(1962) b.BirksJ.Β.,"Photophyics of aromatic molecules",ch.7, Wiley- Interscience,London,1970 (5) Stevens,B. and Ban,M.I.,Trans.Far.Soc.II ,60,1515(9164)

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

PHOTOPHYSICS OF POLYMERS

Downloaded by UNIV LAVAL on July 12, 2016 | http://pubs.acs.org Publication Date: November 30, 1987 | doi: 10.1021/bk-1987-0358.ch016

200

(6) a.ref.5b p.309 b.O'Connor,D. and Ware,W.R.,J.Am.Chem.Soc.,101,121,(1979) (7) Palmans,J.P.,Van der Auweraer,M.Swinnen,A.M.and De Schryver,F.,J.Am.Chem.Soc.,106,7721(1984) (8) Longworth,J.W. and Bovey,F.A.,Biopolymers ,4,1115(1965) (9) Bovey,F.A.,Hood III,F.P.,Anderson,E.W. and Snyder,L.C., J.Chem.Phys.,42,3900(1965) (16)S. Ito,M. Yamamoto, Y. Nishijima, Bull.Chem.Soc.Jap 55,(1982) 363. (10) Jasse,B.,Lety,A. and Monnerie,L.,J.Mol.Struct., 18,413(1973) (11) Froelich,B.,Noel,C.,Jasse,B.and Monnerie,L., Chem.Phys.Lett.,44,159(1976) (12) a.Gorin,S. and Monnerie,L.,J.Chim.Phys. Physicochim. Biol.,67,869(1970) b. Yoon,D.Y.,Sundararajan,P.R. and Flory,P.J., Macromolecules,8,776(1975) c. McMahon,P.E. and Tincher,W.C.,J.Mol.Spectrosc., 15,180(1965) (13)a.De Schryver,F.C.,Vandendriessche,J., Toppet,S., Demeyer,K. and Boens,N. Macromolecules,15,406(1982) b.Vandendriessche,J.,Palmans,P.,Toppet,S.,Boens,N,De Schryver,F.C. and Masuhara,H.,J.Am.Chem.Soc. 106,8057(1984) (14) Monnerie,L.,Bokobza,L.,De Schryver,F.C.,Moens,L.,Van derAuweraer,M. and Boens,N.,Macromolecules,15,64(1982) (15) Collart,P.,Toppet,S.,and De Schryver,F.C.,Macromolecules in press (16) Collart,P.,Toppet,S.,Zhou,Q.F.,,Boens,N. and De Schryver,F.C.,Macromolecules,18,1026(1985) (17) Collart,P.Demeyer,K.,Toppet,S. and De Schryver,F.C., Macromolecules,16,1390(1983) (18) a.Masuhara,H.,Tanaka,J.A.,Mataga,N.,De Schryver,F.C. and Collart,P.,Polym.J.,15,915(1983) b.Masuhara,H.,Tamai,T.,Mataga,N.,Collart,P. and De Schryver,F.C.,submitted (19) Ito,S.,Yamamoto,M. and Nishijima,Y.,Bull.Chem.Soc.Jpn., 55,363(1982) (20) Goedeweeck,R. and De Schryver,F.C.,Photochem.Photobiol 39,515(1984) (21) Mortimer,J.K.,Abbaud,J.L.,Abraham,M.H. and Taft,R.W., J.Org.Chem.,48,2877(1983) (22) Goedeweeck,R.,Ruttens,F.,Lopez Arbelao,F. and De Schryver,F.C.,submitted (23) Goedeweeck,R.,Van der Auweraer,M. and De Schryver,F.C., J.Am.Chem.Soc.,107,2334(1985) RECEIVED September 14, 1987

Hoyle and Torkelson; Photophysics of Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1987.