Phytoalexins and Their Potential Role in Control of Insect Pests

be damaged and lost, a response to the insect or pathogen can p r e v e n t s i g n i f i c a n t damage ... used as 'keys' to feeding on the same pla...
1 downloads 0 Views 884KB Size
Chapter 13

Phytoalexins and Their Potential Role in Control of Insect Pests

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

Jack D. Paxton Department of Plant Pathology, University of Illinois, 1102 S. Goodwin, Urbana, IL 61801

Plant phytoalexins [natural plant a n t i b i o t i c s ] [1] have the p o t e n t i a l of becoming a new c l a s s of u s e f u l compounds i n the c o n t r o l of insect p e s t s . Some phytoalexins have been demonstrated as d e t e r r e n t s to i n s e c t f e e d i n g . C o n s i d e r a b l e p r o g r e s s has been made to c h a r a c t e r i z e them c h e m i c a l l y and t o extend the study of t h e i r function in plant disease resistance, but e x p l o r a t i o n of t h e i r r o l e i n the c o n t r o l of i n s e c t pests i s just beginning.

Plant

Defenses

Against

Stresses

Plants have developed many responses a n d ways o f defending themselves against attacks by pathogens and i n s e c t s . Some o f t h e s e d e f e n s e s a r e p r e f o r m e d s u c h a s t h e plant cuticle, which provides a barrier against desiccation a n d which possibly even creates an i n h o s p i t a b l e environment f o rvarious pathogens. Another preformed defense against s t r e s s i s l i g n i f i c a t i o n o f c e l l walls. This creates a physical barrier t o mechanical p e n e t r a t i o n b y f u n g i o r i n s e c t mouthparts, however, t h e m o s t common p r e f o r m e d d e f e n s e t h a t h a s b e e n s t u d i e d t o date i s t h e accumulation o f chemical deterrents (allomones) [ 2 ] . In preformed defenses t h e p l a n t i n v e s t s considerable energy a n dother metabolic resources i na generalized d e f e n s e a g a i n s t some s t r e s s e s t h a t may n e v e r m a t e r i a l i z e . 0097-6156/91Λ)449-0198$06.00Λ) © 1991 American Chemical Society In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

13.

PAXTON

Phytoalexins and Control of Insect Pests

199

T h e s e d e f e n s e s h a v e t h e a d v a n t a g e o f b e i n g i n p l a c e when the insect arrives at the plant thereby preventing a p p r e c i a b l e damage t o t h e p l a n t . A p o s s i b l e disadvantage i s t h a t a c o n s i d e r a b l e amount o f t h e p l a n t ' s resources a r e d e v o t e d t o a d e f e n s e t h a t may n o t b e n e c e s s a r y and which might u l t i m a t e l y reduce i t ' s a b i l i t y t o reproduce and compete f o r an e c o l o g i c a l n i c h e and r e s o u r c e s . Between preformed ( c o n s t i t u t i v e ) and inducible defenses exists a wide range o f compounds t h a t a r e e s s e n t i a l l y p r e f o r m e d , b u t s t o r e d i n an i n a c t i v e f o r m u n t i l damage o c c u r s t o t h e c e l l . An e x a m p l e o f t h i s i s juglone, a 5-hydroxy naphthoquinone t h a t i s accumulated as i t s 4 - g l u c o s i d e i n m e m b e r s o f t h e J u g l a n d a c e a e [2.] . Upon i n j u r y of the c e l l , b-glucosidases i n the cell release the aglucone hydrojuglone, which i s then r a p i d l y oxidized t o juglone by a i r and p l a n t cell oxidases. Juglone, f o r example, i s a potent a n t i f e e d a n t t o Scolytus m u l t i s t r i a t u s [£_] . H y d r o j u g l o n e i s r e l a t i v e l y non-toxic c o m p a r e d t o j u g l o n e [£]. A n o t h e r compound b o r d e r i n g between preformed and i n d u c e d d e f e n s e s i s g o s s y p o l . T h i s compound a c c u m u l a t e s within epidermal g l a n d s on t h e s u r f a c e o f c o t t o n p l a n t s a n d i s v e r y t o x i c t o some i n s e c t s [£.] . G o s s y p o l , and a series of structurally r e l a t e d c o m p o u n d s o n t h e same biosynthetic pathway, accumulate to substantially i n c r e a s e d l e v e l s i n p l a n t s t h a t have been c h a l l e n g e d by potential pathogens. For this reason they have been considered phytoalexins by some plant pathologists. Phytoalexins are inducible antibiotics and w i l l be discussed later. I n d u c i b l e d e f e n s e s have t h e advantage o f d i v e r t i n g p l a n t m e t a b o l i c r e s o u r c e s t o d e f e n s e o n l y when a n i n s e c t o r p a t h o g e n a t t a c k a c t u a l l y o c c u r s . W h i l e some t i s s u e may be damaged a n d l o s t , a r e s p o n s e t o t h e i n s e c t o r p a t h o g e n can prevent significant damage t o t h e p l a n t , without d i v e r t i n g t h e same a m o u n t o f r e s o u r c e s t h a t w o u l d be r e q u i r e d f o r p r e f o r m e d d e f e n s e s . F u r t h e r m o r e , some o f t h e p r e f o r m e d compounds t h a t seem t o p l a y a s i g n i f i c a n t r o l e i n d e f e n s e a g a i n s t f e e d i n g o f some i n s e c t s , a c t u a l l y a r e used as 'keys' t o f e e d i n g o n t h e same p l a n t b y other i n s e c t s t h a t a t t a c k t h a t p a r t i c u l a r p l a n t [2] . Plant

Defenses Against

Insects

Plants have evolved a number of different defenses a g a i n s t i n s e c t s . One p r o m i n e n t d e f e n s e i s h a i r s o r o t h e r s t r u c t u r e s which cover t h e surface o f t h e p l a n t and deter insect feeding. Another i s accumulation of allomones (compounds t h a t s e r v e t o d e t e r f e e d i n g o r o v i p o s i t i o n o r are otherwise toxic to the insect), especially i n c r i t i c a l p l a n t p a r t s such as t h e r e p r o d u c t i v e s t r u c t u r e s .

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

200

NATURALLY OCCURRING PEST BIOREGULATORS

Immature seeds a n d t h e i r seed c o a t s a r e o f t e n a good source o f such compounds. As an example, w a l n u t trees c o n t a i n t h e r i c h e s t source o f hydrojuglone glucoside i n young growing p a r t s and i n t h e p e r i c a r p s u r r o u n d i n g t h e s e e d [2.] ·

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

Preformed

Compounds

A w i d e r a n g e o f c o m p o u n d s a r e now k n o w n t o a c c u m u l a t e i n plants and serve as allomones t o some insects and kairomones (feeding attractants o r excitants) t o other i n s e c t s [2J . A n e x a m p l e o f s u c h a c o m p o u n d i s g l a u c o l i d e A, a g e r m a c r a n o l i d e type sesquiterpene lactone found i n Vernonia spp. G l a u c o l i d e A h a s a n t i f e e d a n t a c t i o n a g a i n s t some L e p i d o p t e r a . But other Lepidoptera, such as t h e cabbage looper [Trîchoplusia ni] and t h e yellow woollybear [Spilosoma virginica] actually prefer Vernonia spp. w i t h t h i s compound [ 2 ] .

I n d u c i b l e Compounds

W h i l e i n d u c i b l e compounds t h a t d e t e r i n s e c t f e e d i n g have not been w i d e l y s t u d i e d , some i n t e r e s t i n g e x a m p l e s o f these compounds a r e known. A proteinase inhibitor i n d u c i n g f a c t o r ( P I I F ) , d i s c o v e r e d b y Ryan i n wounded tomatoes, has been extensively studied i n insect resistance [£_] . P I I F a c t i v i t y has been i s o l a t e d from t o m a t o l e a v e s a s a s i n g l e , b r o a d S e p h a d e x G-50 p e a k w i t h a Mr r a n g e o f 5,000-10,000 a n d i s p r i m a r i l y c a r b o h y d r a t e . PIIF can e l i c i t the accumulation o f two proteinase i n h i b i t o r s i n wounded tomato l e a v e s a n d t h e s e inhibitors i n t e r f e r e with p r o t e i n d i g e s t i o n by i n s e c t s . I n h i b i t o r I has a m o l e c u l a r r a t i o o f 41,000 a n d i s a p e n t a m e r . E a c h subunit has an a c t i v e s i t e , specific f o r inhibiting chymotrypsin, w i t h a K i o f a b o u t 10~^M. I n h i b i t o r I I i s a dimer with a molecular ratio o f 23,000 a n d s t r o n g l y i n h i b i t s both t r y p s i n and chymotrypsin with K i values o f a b o u t 10"~ a n d 10"" M r e s p e c t i v e l y [jl] . F u r t h e r m o r e , p l a n t and fungal c e l l w a l l fragments a c t i v a t e expression o f p r o t e i n a s e i n h i b i t o r genes f o rp l a n t defense j u s t like they a c t i v a t e phytoalexin accumulation . C a r r o l l a n d Hoffman [ H J presented evidence that a feeding stimulant f o r Acalymma vittata i s rapidly m o b i l i z e d i n t o d a m a g e d C u c u r j b i t a moschata l e a v e s . These same l e a v e s r a p i d l y accumulate a feeding inhibitor of Epilachna tredecimnotata. This plant response i s circumvented b y Epilachna tredecimnotata by trenching around t h e leaf area t o be eaten, prior t o feeding. 8

7

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

13.

PAXTON

Phytoalexins and Control of Insert

201

Unfortunately the active compounds have not been chemically characterized. A n o t h e r g r o u p o f i n d u c i b l e compounds t h a t probably have an important role i n plant insect resistance i s phytoalexins.

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

Phytoalexins

Phytoalexins a r e low molecular weight, a n t i m i c r o b i a l compounds t h a t a r e b o t h s y n t h e s i z e d b y a n d a c c u m u l a t e d i n plants after exposure t o microorganisms [1_] . S e v e r a l l i n e s o f e v i d e n c e s u g g e s t t h a t t h e s e compounds have an important r o l e i n p l a n t disease and pest r e s i s t a n c e [12J. Phytoalexins f r o m many d i f f e r e n t p l a n t s h a v e b e e n chemically characterized. The phytoalexins include isoflavanoid-derived pterocarpan compounds c h a r a c t e r i s t i c of the Leguminosae, sesquiterpenoid compounds c h a r a c t e r i s t i c o f t h e S o l a n a c e a e , p h e n a n t h r e n e compounds characteristic of the Orchidaceae and acetylenic compounds c h a r a c t e r i s t i c o f t h e C o m p o s i t a e . G l y c e o l l i n , a p h y t o a l e x i n o f soybeans, accumulates as a s e r i e s of isomers first identified by Lyne e t al. [lu]; t h e t h r e e m o s t common i s o m e r s a r e s h o w n i n F i g u r e 1. P l a n t s f r e q u e n t l y p r o d u c e a s e r i e s o f a c t i v e isomers of related phytoalexins, and soybeans a r e a u s e f u l e x a m p l e [JLA] . Phytoalexins

as Insect

Feeding

Deterrents

In t h e f i r s t work t o i m p l i c a t e p h y t o a l e x i n s i n f e e d i n g deterrent a c t i v i t y o f p l a n t s , R u s s e l l et a l . [ l u ] found t h a t 3 R - ( - ) - v e s t i t o l a n d s a t i v a n f r o m Lotus pendunculatus leaf e x t r a c t s were major deterrents f o r Costelytra zealandica larvae. Furthermore pastures c o n t a i n i n g as l i t t l e a s 2 0 % Lotus pendunculatus were r e l a t i v e l y f r e e o f t h i s insect pest. V e s t i t o l h a d a n ED50 w i t h Costelytra zealandica larvae o f about 8.5 μg/g o f medium a n d f e e d i n g was completely i n h i b i t e d a t 100 μg/g o f m e d i u m . Vestitol however could not account f o r a l lof the feeding deterrency o f t h e Lotus e x t r a c t s , and s a t i v a n was i m p l i c a t e d i n t h i s a d d i t i o n a l a c t i v i t y . The d u a l f u n c t i o n of v e s t i t o l as a p h y t o a l e x i n and i n s e c t f e e d i n g d e t e r r e n t i s o f e c o l o g i c a l i n t e r e s t . I t must s t i l l be d e t e r m i n e d whether v e s t i t o l i s induced by i n s e c t f e e d i n g or i s present i n uninfected f i e l d plants. S u b s e q u e n t r e s e a r c h f o u n d t h a t Costelytra zealandica a n d Heteronychus arator l a r v a e a r e s e n s i t i v e t o seven phytoalexins including pisatin, maackiain and medicarpin Γ161 . R e l a t e d compounds n a r i n g e n i n , apigenin, morin,

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

NATURALLY OCCURRING PEST BIOREGULATORS

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

202

F i g u r e 1.

Major soybean

phytoalexins.

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

13.

PAXTON

Phytoalexins and Control of Insect Pests

coumestrol, formononetin, b i o c h a n i n A and g e n i s t e i n d i d not s i g n i f i c a n t l y affect feeding a c t i v i t y . Phaseollin, v e s t i t o l , p h a s e o l l i n i s o f l a v a n , and 2 -methoxyphaseollinisoflavan were t h e most a c t i v e , showing significant f e e d i n g r e d u c t i o n a t l ( ^ g / m l o r l e s s . Heteronychus arator s e e m s m o r e s e n s i t i v e t h a n Costelytra zealandica t o these c o m p o u n d s , e x c e p t f o r p i s a t i n . P h y t o a l e x i n s may t h e r e f o r e s e r v e t w o d i f f e r e n t a n d p e r h a p s indépendant r o l e s i n t h e plant. Research by Hart e t a l . [11] on t h e e f f e c t of s o y b e a n p h y t o a l e x i n s on M e x i c a n bean b e e t l e Epilachna v a r i v e s t i s a n d t h e s o y b e a n l o o p e r Pseudoplusia includens showed t h a t t i s s u e s i n w h i c h t h e s e isomers had been elicited [by e x p o s u r e to ultraviolet irradiation] s t r o n g l y d e t e r r e d t h e Mexican bean b e e t l e but not t h e soybean looper. At the induced, physiological c o n c e n t r a t i o n o f 1% o f d r y w e i g h t , g l y c e o l l i n h a d some e f f e c t on s u r v i v a l o f 1 - d a y - o l d s o y b e a n l o o p e r l a r v a e b u t not on s u b s e q u e n t s u r v i v a l and d e v e l o p m e n t . S i n c e this i n s e c t r e a d i l y f e e d s o n s o y b e a n s , a s i t s name i m p l i e s , t h i s a b i l i t y t o t o l e r a t e g l y c e o l l i n i s not s u r p r i s i n g . In a d d i t i o n , t e s t i n g s i n g l e compounds i n an a r t i f i c i a l diet ignores the possible synergistic effects of the multitude o f p h e n o l i c compounds i n g e s t e d f r o m t h e p l a n t during n o r m a l h e r b i v o r y . A d d i t i o n a l l y a compound d i s t r i b u t e d i n a diet rather uniformly may not approximate the l o c a l i z e d , and sometimes h i g h e r c o n c e n t r a t i o n s i n p l a n t s . On t h e o t h e r h a n d t h e o l i g o p h a g o u s Mexican bean beetle clearly was deterred from feeding on t h e p h y t o a l e x i n - r i c h t i s s u e . Since t h i s insect i s not e a s i l y reared on a r t i f i c i a l diets, the direct toxicity of glyceollin t o t h e Mexican bean b e e t l e could n o t be determined i n these experiments. This i s a common experimental p r o b l e m when d e t e r m i n i n g the effect of a g i v e n compound i n v i v o . Some o f t h e s e problems have been addressed by Fischer, D.C.; Kogan, M.; Paxton, J.D., (Environ . E n t o m o l . s u b m i t t e d ) . They p u r i f i e d g l y c e o l l i n , a p p l i e d i t to common b e a n (Phaseolus vulgaris) leaves at rates of 0.22, 1.1, 2.2, 11.0 o r 22.0 μg/mg d r y w e i g h t o f l e a f tissue. These t i s s u e s were then subjected to feeding preference tests i n p e t r i plates with the southern corn rootworm {Diabrotica undecimpunctata howardi), the M e x i c a n b e a n b e e t l e (Epilachna v a r i v e s t i s ) and t h e bean leaf beetle (Cerotoma trifurcata) . Glyceollin treated l e a v e s were consumed l e s s by t h e s o u t h e r n corn rootworm and t h e M e x i c a n bean b e e t l e , even a t l e v e l s below t h a t f o u n d i n e l i c i t e d p l a n t s . On t h e o t h e r h a n d t h e b e a n l e a f b e e t l e f e d f r e e l y , e v e n a t v e r y h i g h [22μg/mg] d o s e s o f g l y c e o l l i n . T h i s s u g g e s t s t h a t p h y t o a l e x i n s may r e p r e s e n t a convergence o f defenses a g a i n s t both microorganisms and insect herbivores. 1

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

203

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

204

NATURALLY OCCURRING PEST BIOREGULATORS

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

Elicitation

of Phytoalexins

by

Stresses

Many e n v i r o n m e n t a l f a c t o r s s u c h a s h e a t , d r o u g h t , a n d f r o s t may a f f e c t h e r b i v o r e / p l a n t i n t e r a c t i o n s b y increasing or decreasing the level of resistance ofthe plant t o the herbivore [ϋ] . This suggests that t h e plant i s a c t i v e l y responding t o t h e f e e d i n g by t h e h e r b i v o r e a n d t h a t p h y t o a l e x i n s m i g h t t h e r e f o r e b e i n v o l v e d [20.] · This also suggests that s e l e c t i v e e l i c i t a t i o n o f p h y t o a l e x i n s i n p l a n t s might be a d e s i r a b l e s t r a t e g y f o r p r o t e c t i n g p l a n t s a g a i n s t i n s e c t s [21]. A number o f d i f f e r e n t s t r e s s e s c a n e l i c i t i n d u c i b l e compounds i m p o r t a n t i n i n s e c t i n t e r a c t i o n s w i t h p l a n t s . Some o f t h e s e c o m p o u n d s a p p e a r t o a t t r a c t i n s e c t s t o a p l a n t ' i n d i s t r e s s ' , such as t h e southern pine b e e t l e , Dendroctonus f r o n t a l i s , t o Pinus s p p . O t h e r compounds a p p e a r t o p r e v e n t a t t a c k [22]. O z o n e d e c r e a s e s s o y b e a n r e s i s t a n c e t o i n s e c t herbivory and o v e r r i d e s induced r e s i s t a n c e [ L i n , H.C.; K o g a n , M.; E n d r e s s , A.G., E n v i r o n . E n t o . 1990, i n p r e s s . ] . T h i s m i g h t be due t o a d i v e r s i o n o f p h e n o l i c s i n t o c o u m e s t r o l i n s t e a d o f more t o x i c compounds s u c h a s g l y c e o l l i n . Pathogens E l i c i t

Phytoalexins

The m o s t s t u d i e d a s p e c t o f p h y t o a l e x i n e l i c i t a t i o n i s t h a t generated by fungal pathogens o f p l a n t s . Karban e t al.[22] f o u n d i n d u c e d r e s i s t a n c e a n d i n t e r s p e c i f i c c o m p e t i t i o n between s p i d e r mites and a v a s c u l a r w i l t f u n g u s . M c l n t y r e e t a l . [2A] d e m o n s t r a t e d t h a t 7 d a y s a f t e r t o b a c c o p l a n t s were i n f e c t e d w i t h t o b a c c o m o s a i c virus, reproduction o f t h e green peach aphid, Myzus persicae, was s i g n i f i c a n t l y r e d u c e d o n t h e s e i n f e c t e d p l a n t s . Inoculation o f plants with tobacco mosaic v i r u s i n d u c e d r e s i s t a n c e t o s e v e r a l pathogens, however t h e m e c h a n i s m f o r i n d u c e d r e s i s t a n c e was n o t c h a r a c t e r i z e d . This suggests that a d i f f e r e n t type o f p r o t e c t i o n o f p l a n t s a g a i n s t i n s e c t a t t a c k i s p o s s i b l e . Few c a s e s e x i s t where such p r o t e c t i v e i n t e r a c t i o n s between pathogens a n d i n s e c t s on p l a n t s have been s t u d i e d . I b e l i e v e s u c h i n t e r a c t i o n s a r e common a n d d e s e r v e m o r e a t t e n t i o n t h a n received t o date. Insect

Feeding E l i c i t s

Plant

Responses

D e c r e a s e d f e e d i n g on soybean c a n be i n d u c e d b y p r e v i o u s i n s e c t h e r b i v o r y as w e l l as by mechanical i n j u r y .L i n Γ251 found mechanical i n j u r y and p r i o r herbivory induced r e s i s t a n c e i n s o y b e a n c v W i l l i a m s 82 t o t h e s o y b e a n

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

13.

PAXTON

Phytoalexins and Control of Insert

205

l o o p e r a n d t h e M e x i c a n b e a n b e e t l e . The l e v e l o f induced r e s i s t a n c e d e p e n d e d on t h e number o f i n j u r e d h o s t c e l l s i n c o n t a c t w i t h h e a l t h y c e l l s , and n o t on t h e amount o f l e a f a r e a l o s t . The r e s i s t a n c e i n d u c e d b y t h e s o y b e a n looper r e s u l t e d from a combination of mechanical i n j u r y a n d c o m p o u n d s i n t h e l a r v a l r e g u r g i t a n t . No c o m m u n i c a t i o n o f t h e i n d u c t i o n s i g n a l s between p l a n t s , and no s u b s e q u e n t p r o t e c t i o n , was f o u n d . I n d u c e d r e s i s t a n c e h a d a s i g n i f i c a n t r e t a r d a n t e f f e c t on d e v e l o p m e n t a n d g r o w t h o f b o t h i n s e c t s , b u t i t h a d no s i g n i f i c a n t e f f e c t o n t o t a l f o o d consumed by e i t h e r i n s e c t . L i n [25.] s e p a r a t e d , b y h i g h p r e s s u r e liquid chromatography, from soybean l e a f e x t r a c t s , twelve peaks r e p r e s e n t i n g an unknown number o f compounds. F e e d i n g by the Mexican bean b e e t l e i n c r e a s e d the areas of t h r e e p e a k s and f e e d i n g by t h e soybean l o o p e r i n c r e a s e d t h e a r e a s o f two p e a k s . These compounds were s i g n i f i c a n t l y c o r r e l a t e d w i t h a n t i f e e d i n g a c t i v i t y of the l e a f samples. K a r b a n [2£] found that cotton r e s i s t a n c e to beet a r m y w o r m s , Spodoptera exigua, c o u l d be i n d u c e d by p r i o r e x p o s u r e t o s p i d e r m i t e s , Tetranychus turkestani. In t h e s e c a s e s t h e compounds r e s p o n s i b l e f o r r e s i s t a n c e were not identified.

Use

of Phytoalexins

and

Their

Elicitors

B a s e d on t h e p r e v i o u s e x a m p l e s , t h e e l i c i t a t i o n o f p h y t o a l e x i n s and o t h e r i n d u c i b l e compounds i n p l a n t s by v a r i o u s e l i c i t o r s m i g h t be a s u c c e s s f u l t a c t i c f o r c o n t r o l l i n g i n s e c t p e s t s on i m p o r t a n t c r o p s . T h i s e l i c i t a t i o n w o u l d n e e d t o o c c u r o n l y when t h e i n s e c t f e e d s , t o p r e v e n t u n n e c e s s a r y damage t o t h e p l a n t b y a c c u m u l a t i o n o f compounds t o x i c t o p l a n t c e l l s as w e l l . B a s e d on p r e s e n t l y known c a r b o h y d r a t e e l i c i t o r s , i t seems p l a u s i b l e t h a t p l a n t s u r f a c e s c o u l d be t r e a t e d i n s u c h a way t h a t t h e e l i c i t o r i s c a r r i e d i n t o t h e p l a n t u p o n i n s e c t f e e d i n g [21]. These carbohydrate elicitors should b e s t a b l e a n d s h o u l d p o s e no e n v i r o n m e n t a l threat since t h e y a r e most l i k e l y n o n - t o x i c t h e m s e l v e s . I s u g g e s t t h a t p h y t o a l e x i n s p l a y an i m p o r t a n t role i n i n s e c t r e s i s t a n c e by p l a n t s . T h i s r o l e o f p h y t o a l e x i n s a n d p h y t o a l e x i n e l i c i t a t i o n now s h o u l d b e s t u d i e d f u r t h e r and t e s t e d under f i e l d c o n d i t i o n s .

Acknowledgments C e r t a i n aspects of the were s u p p o r t e d i n p a r t

research presented i n t h i s chapter by t h e I l l i n o i s A g r i c u l t u r a l

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

206

NATURALLY OCCURRING PEST BIOREGULATORS

Experiment Station, U.S.D.A. Competitive

The American Soybean Grants Program.

Association,

and

Literature Cited 1. 2.

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

3. 4. 5. 6.

7.

8. 9.

10. 11. 12. 13. 14. 15. 16. 17. 18.

Paxton, J.D. Phytopath. Zeit. 1981, 101, 106-109. Norris, D.M., In Chemistry of Plant Protection; Haug, G.; Hoffmann, H. Eds.; Springer-Verlag: Berlin, 1986; pp 99-146. Daglish, C. Biochem. J. 1950, 47, 452-462. Gilbert, B.L.; Norris, D.M. Insect Physiol. 1968, 14, 1063-1068. Paxton, J.D.; Wilson, E.E. Phytopathology 1965, 55, 21-26. Stipanovic, R.D.; Bell, Α.A.; Lukefahr, M.J. In Host Plant Resistance to Pests; Hedin, P.Α., Ed.; ACS Symposium Series No.62; American Chemical Society: Washington, DC, 1977; Chapter 14. Mabry, T.J.; Gill, J.E.; Burnett, W.C.; Jones, S.B. In Host Plant Resistance to Pests; Hedin, P.Α., Ed.; ACS Symposium Series No.62; American Chemical Society: Washington, DC, 1977; Chapter 12. Ryan, C . A . Trends Biochem. Sci. 1978, 3, 148-150. Nelson, C.E.; Walker-Simmons, M.; Makus, D.; Zuroske, G.; Graham, J.; Ryan, C.A. In Plant Resistance to Insects; Hedin, P.Α., Ed.; ACS Symposium Series No.208; American Chemical Society: Washington, DC, 1983; Chapter 6. Ryan, C.A.; Bishop, P.D.; Graham, J.S.; Droadway, R.M.; Duffey, S.S. J. Chem. Ecol. 1986, 3, 10251036. Carroll, C.R.; Hoffman, C.A. Science 1980, 209, 414416. Hedin, P.Α., Ed. Host Plant Resistance to Pests: ACS Symposium Series No.62; American Chemical Society: Washington, DC, 1977; pp 286. Lyne, R.L.; Mulheirn, L.J.; Leworthy, D.P. JCS Chem.Comm. 1976, 1976, 497-498. Ingham, J.L.; Keen, N.T.; Mulheirn, L.J.; Lyne, R.L. Phytochem. 1981, 20, 795-8. Russell, G.B.; Sutherland, O.W.R.; Hutchins, R.F.N.; Christmas, P.E. J.Chem.Ecol. 1978, 4, 571-579. Sutherland, O.W.R.; Russell, G.B.; Biggs, D.R.; Lane, G.A. Biochem. Syst. Ecol. 1980, 8, 73-75. Hart, S.V.; Kogan, M.; Paxton, J. J. Chem. Ecol. 1983, 9, 657-72. Fukami, H.; Nakajima, M. In Naturally Occurring Insecticides; Jacobsen, M.; Crosby, D.G., Eds.; Marcel Dekker, New York, 1971; pp 71-97.

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.

13.

PAXTON

19.

20.

Downloaded by UNIV OF GUELPH LIBRARY on March 13, 2013 | http://pubs.acs.org Publication Date: January 9, 1991 | doi: 10.1021/bk-1991-0449.ch013

21.

22.

23. 24. 25. 26.

Phytoalexins and Control of Insect Pests

207

Kogan, M., In The R o l e o f C h e m i c a l F a c t o r s i n I n s e c t / P l a n t R e l a t i o n s h i p s ; P r o c . XV I n t . Congr. E n t o m o l . , Washington, D.C. 1977; pp 211-227. Kogan, M.; P a x t o n , J.D. In P l a n t R e s i s t a n c e t o I n s e c t s; H e d i n , P.Α., Ed.; ACS Symposium S e r i e s No.208; A m e r i c a n C h e m i c a l S o c i e t y : Washington, DC, 1983; C h a p t e r 9. P a x t o n , J.D. In Biologically Active Natural Products, Potential Use i n Agriculture; Cutler, H.G., Ed.; ACS Symposium S e r i e s No.380; A m e r i c a n C h e m i c a l S o c i e t y : Washington, DC, 1988; C h a p t e r 8. Schoonhoven, L.M. In S e m i o c h e m i c a l s : T h e i r R o l e i n P e s t C o n t r o l ; N o r d l u n d , D.A. Ed.; John W i l e y and Sons, New York, 1981, pp 31-50. Karban, R.; Adamchak, R.; S c h n a t h o r s t , W.C., Science 1987, 235, 678-680. M c I n t y r e , J . L . ; Kodds, J.Α.; Hare, J.D. P h y t o p a t h o l o g y 1981, 71, 297-301. L i n , H. Ph. D. T h e s i s , University of Illinois, Urbana-Champaign, Illinois, 1989. Karban, R., Am. Mid. Nat. 1988, 119, 77-82.

RECEIVED May

16,

1990

In Naturally Occurring Pest Bioregulators; Hedin, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.