4 Plant Bioregulators in Cereal Crops
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
A c t i o n a n d Use
JOHANNES JUNG BASF Aktiengesellschaft, Landwirtschaftliche Versuchsstation, D-6703 Limburgerhof, Federal Republic of Germany
Of the substances with bioregulatory action (PBRs) that have so far become known, only three have been used i n cereal crops to any s i g n i f i c a n t extent. However, partic u l a r l y i n European a g r i c u l t u r e , it has been possible to solve a big problem, namely the reduction of lodging in wheat, rye, barley and oats through treatment with growth retardants of the onium type (chlormequat chlor i d e , CCC; mepiquat c h l o r i d e , DPC) as well as the ethylene generator, ethephon. The successful a p p l i c a t i o n of these PBRs leads to the question of further possibilities of optimization induced by changes i n the phytohormone status of the various cereal species. There i s p a r t i c u l a r i n t e r e s t i n the favourable effect on the number of ear-bearing stems per area, the number of grains per ear, and the average grain weight. Further ways of optimizing production i n cereals using PBRs can be seen i n the increased stress tolerance and the improved utilization of water and plant nutrients v i a better root development. The s p e c i f i c development of PBRs relevant to practice presupposes not only further knowledge about phytohormone control mechanisms i n yield-determing factors and stress behaviour i n cereal plants but also sensible projection into the p a r t i c u l a r cereal cultivation system. In the discussion on the possibilities of using plant growth or bioregulators (PBRs) i n intensive cereal c u l t i v a t i o n , a picture i s frequently presented that might better fit into the period immediately preceding the turn of the millennium. On the other hand, we already have such highly e f f i c i e n t production models a v a i l a b l e for cereal c u l t i v a t i o n , and not only i n research 1aboratories and growth chambers. These have already been put into practice i n some of the areas worldwide under cereal c u l t i v a t i o n , which i s why they can be offered to other sectors of agriculture for a critical examination of t h e i r suitability under given c u l t i v a t i o n conditions. 0097-6156/84/0257-0029S06.00/0 © 1984 American Chemical Society
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
30
BIOREGULATORS: CHEMISTRY AND USES
The y i e l d p o t e n t i a l o f wheat i s s t a t e d by Aufhammer (1_) t o be about 22,500 kg/ha. Thus the g e n e t i c p o t e n t i a l o f t h i s most i m p o r t a n t c e r e a l i s by no means b e i n g f u l l y e x p l o i t e d , whereas t h i s e x p l o i t a t i o n i s o f c o u r s e o n l y f e a s i b l e w i t h a p p r o p r i a t e p r o d u c t i o n methods and a h i g h o u t l a y on o p e r a t i n g s u p p l i e s , the use o f which s o l e l y makes sense when t h e r e i s an adequate economic r e t u r n . The y i e l d components t h a t can be i n f l u e n c e d i n the c e r e a l p l a n t and the a c t i v e compounds t h a t a r e p r e s e n t l y a v a i l a b l e f o r t h i s a r e the s u b j e c t o f t h i s c o n t r i b u t i o n . The t o p i c s c o n c e r n i n g the uses t o which b i o r e g u l a t o r s have a l r e a d y been put and t h e i r p o t e n t i a l a p p l i c a t i o n s are o r i e n t e d m a i n l y t o c e r e a l growing i n C e n t r a l Europe.
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
Y i e l d s t r u c t u r e and y i e l d - d e t e r m i n i n g components i n c e r e a l s The g r a i n y i e l d o f an area r e s u l t s from the y i e l d o f each i n d i v i d u a l p l a n t . The l a t t e r y i e l d depends, i n i t s t u r n , on the s u c c e s s w i t h which the c e r e a l p l a n t passes through the v a r i o u s development s t a g e s . T a k i n g t h e s e development s t a g e s i n t o a c c o u n t , F i g u r e 1 shows the y i e l d components f o r the i n d i v i d u a l c e r e a l p l a n t and f o r the t o t a l plant population. P a r t i c u l a r importance a t t a c h e s t o : the number o f shoot per p l a n t and the d e n s i t y o f s h o o t s , the number o f e a r s and g r a i n s per p l a n t and a r e a , and the average g r a i n w e i g h t . A t t e n t i o n must a l s o be drawn t o a phenomenon t h a t has found p a r t i c u l a r i n t e r e s t i n c o n n e c t i o n w i t h the f o r m a t i o n o f y i e l d i n c r o p p h y s i o l o g y : t h i s i s the r e d u c t i o n o f the number o f s h o o t s , s p i k e l e t s and f l o r e t s t h a t form a t an e a r l y development s t a g e . I t i s c h a r a c t e r i s t i c f o r the development o f a c e r e a l p l a n t t h a t the number o f shoots approaches a maximum between emergence and the b e g i n n i n g o f stem e l o n g a t i o n t o drop a g a i n i n the r e d u c t i o n phase as the r e s u l t o f c o m p e t i t i o n and s t r e s s s i t u a t i o n s . The f o r m a t i o n o f e a r s w i t h the number o f f l o r e t s per e a r a l r e a d y determined i n the t i l l e r i n g phase i s , a f t e r q u i c k l y p a s s i n g through a maximum, a l s o s u b j e c t t o a r e d u c t i o n depending on the p a r t i c u l a r development c o n d i t i o n s . As the t h i r d i m p o r t a n t y i e l d component, the average g r a i n w e i g h t i s d e c i s i v e l y i n f l u e n c e d by the d e p o s i t i o n o f a s s i m i l a t e s d u r i n g the g r a i n f i l l i n g phase. P o s s i b i l i t i e s of i n f l u e n c i n g y i e l d formation with b i o r e g u l a t o r s cereal crops
in
I t i s s u f f i c i e n t l y w e l l known t h a t c u l t i v a t i o n measures ( i n p a r t i c u l a r sowing d e n s i t y ) , c r o p n u t r i t i o n measures ( e s p e c i a l l y the l e v e l o f n i t r o g e n f e r t i l i z a t i o n ) , and c r o p p r o t e c t i o n measures ( m a i n l y the e l i m i n a t i o n o f competing weeds and p h y t o p a t h o g e n i c f u n g i ) l e a d t o o p t i m i z a t i o n o f the y i e l d components mentioned and t o m a x i m i z a t i o n o f the o v e r a l l y i e l d . T h i s has i n c r e a s i n g l y r a i s e d the q u e s t i o n as t o what e x t e n t s u b s t a n c e s w i t h phytohormone o r a l s o m e t a b o l i c a c t i o n , which are grouped t o g e t h e r under the term p l a n t b i o r e g u l a t o r s , can be a d d i t i o n a l l y used f o r e x e r t i n g a p o s i t i v e i n f l u e n c e on the y i e l d of various cereal s p e c i e s .
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
4.
JUNG
Individual plant Seedling Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
31
Plant Bioregulators in Cereal Crops
Number of shoots/ plant
Stages Emergence
. Tillering f Spikeiet formation
Total plant population Number of seedlings/ area
Density of shoots/ area
Reduction Ear-bearing stems/ area = grains initiated/area
Inflorescences/ plant grains initiated/plant
and Pollination ' Number of grains/ area
Number of grains/ plant Grain formation
ι
Single grain weight
Thousand grain weight
Grain yield/plant
Grain yield/area
I
F i g u r e 1. Y i e l d d e t e r m i n i n g components f o r the i n d i v i d u a l p l a n t and f o r the t o t a l p l a n t p o p u l a t i o n i n r e l a t i o n to d i f f e r e n t stages — t e r m s and survey.
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
32
BIOREGULATORS: CHEMISTRY AND USES
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
General c h a r a c t e r i z a t i o n of r e l e v a n t substances w i t h a e f f e c t in cereal species
bioregulatory
C l a s s i f i c a t i o n i n t o groups a c c o r d i n g t o p r i n c i p l e of a c t i o n . Of some 60 c o m m e r c i a l l y a v a i l a b l e substances w i t h a b i o r e g u l a t o r y e f f e c t a p a r t from the much l a r g e r number o f a c t i v e compounds d e s c r i b e d i n the l i t e r a t u r e s c a r c e l y more than t h r e e have so f a r a c t u a l l y been used i n p r a c t i c e i n c e r e a l growing (2J. To p r o v i d e an o v e r v i e w o f the most i m p o r t a n t substances t h a t have become known so f a r , a c l a s s i f i c a t i o n i n t o groups can be c a r r i e d out on the b a s i s o f the p r i n c i p l e of a c t i o n . In most cases the l a t t e r i s the i n t e n d e d i n f l u e n c i n g o f the p l a n t ' s hormone s t a t u s a c c o r d i n g t o the f o l l o w i n g p o s s i b i l i t i e s : s u p p l y o f a phytohormone p a r t i c i p a t i n g i n the e x i s t i n g e q u i l i b r i u m o r o f an analogous compound; - enhancing o r i n h i b i t i n g the hormone b i o s y n t h e s i s w i t h exogenous compounds ( p r e c u r s o r s o r s y n e r g i s t s , and a n t a g o n i s t s or i n h i b i t o r s ) ; v a r y i n g a v a i l a b i l i t y o f a phytohormone a t the s i t e o f a c t i o n by i n f l u e n c i n g i t s t r a n s p o r t and c a t a b o l i s m . On t h i s b a s i s , Table 1 l i s t s some o f the substances t h a t are r e l e v a n t to c e r e a l c r o p s , t o g e t h e r w i t h the phytohormones known so f a r c o n s i d e r i n g t h e i r r e l a t i o n i n terms o f a c t i o n o f the l a t t e r . At the p r e s e n t t i m e , the compounds i n t e r f e r i n g w i t h g i b b e r e l l i n b i o s y n t h e s i s (GA a n t a g o n i s t s ) and e t h y l e n e g e n e r a t o r s are worth o f s p e c i a l i n t e r e s t because they have a l r e a d y found e x t e n s i v e a p p l i c a t i o n i n some areas o f w o r l d c e r e a l c u l t i v a t i o n . In the case o f the o t h e r g r o u p s , i n t e r e s t i s c o n c e n t r a t e d on the q u e s t i o n o f t h e i r p o t e n t i a l use. Mechanisms and s p e c t r a of a c t i o n . An i n d i c a t i o n o f the mechanism o f a c t i o n o f the v a r i o u s b i o r e g u l a t o r s has a l r e a d y been g i v e n w i t h t h e i r c l a s s i f i c a t i o n i n Table 1 . However, the g i b b e r e l l i n a n t a g o n i s t s w i l l be d e a l t w i t h i n a l i t t l e more d e t a i l ; on the one hand, on account o f t h e i r importance i n p r a c t i c e , b u t , on the o t h e r hand, because we have been w o r k i n g on them f o r some t i m e . For GA a n t a g o n i s t s o f the onium t y p e , which i n c l u d e CCC ( c h l o r mequat c h l o r i d e ) and DPC (mepiquat c h l o r i d e ) as growth r e t a r d a n t s , i t i s assumed t h a t they i n h i b i t the c y c l i z a t i o n o f g e r a n y l g e r a n y l p y r o phosphate t o c o p a l y l pyrophosphate i n the c o u r s e o f GA b i o s y n t h e s i s ( s u r v e y see 3). A n c y m i d o l , t e t c y c l a c i s (NDA) and t r i a z o l e s i n h i b i t the s e q u e n t i a l o x i d a t i o n o f e n t - k a u r e n e t o e n t - k a u r e n o i c a c i d (4-, 5_, 6). These r e l a t i o n s h i p s are shown i n F i g u r e 2. I t must be s t a t e d i n c o n n e c t i o n w i t h the spectrum o f a c t i o n o f the GA a n t a g o n i s t s t h a t onium compounds have a d e c l i n i n g i n t e n s i t y o f a c t i o n from wheat, v i a r y e , b a r l e y , o a t s t o r i c e and m a i z e . T e t c y c l a c i s , however, a f t e r being taken up by the r o o t s , has an a p p r o x i m a t e l y comparable e f f e c t i n a l l c e r e a l s p e c i e s . An example of the e f f e c t on r i c e o f the v a r i o u s substances mentioned can be seen i n F i g u r e 3 . P a r t i c u l a r a t t e n t i o n s h o u l d be drawn t o the pronounced d i f f e r e n c e i n a c t i o n between the two groups o f c y c l i z a t i o n and o x i d a t i o n i n h i b i t o r s of GA b i o s y n t h e s i s .
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
JUNG
Plant Bioregulators in Cereal Crops
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
Table I . Overview o f r e l e v a n t substances w i t h a b i o r e g u l a t o r y e f f e c t i n c e r e a l s c l a s s i f i e d a c c o r d i n g t o t h e i r phytohormona1 interaction. Reference phytohormone
Compounds with homologuous or synergistic activity
Compounds with an antagonistic activity or inhibitors of biosynthesis
Auxins
Synthetic Auxins (NAA, Z4-D..)
Triiodobenzoic acid (TIBA)
Gibberellins Steroids Phthalimides StevioJ
Cytokinins
Benzyl- and Furfurylaminopurine Phenylurea derivatives
Abscisins
Terpenoic analogues of ABA Farnesol Jasmonic acid
Ethylene
Chloroethyl phosphonic acid (Ethephon) Aminocyclopropane carboxylic acid (ACC) (Auxins)
Onium compounds (CCC, CMH, DMC, DPC) Pyrimidine derivatives (Ancymidol) Norbornenodiazetine derivatives (NDA = Tetcyclacis) Triazoles
Aminoethoxivinyl glycine (AVG)
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
BIOREGULATORS: CHEMISTRY AND USES
34 M V A - » - -IPP-
GPP-
. FPP—GGPP CPP
X
--'
ent-Kaurene J . ent-Kaurenoi \ _l _ ent-Kaurenal
Onium compounds (CCC, DPC)
Ancymidoi NDA (Tetcydacis) Triazoies
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
ent-Kaurenoic acid ent-7a-OH-Kaurenoic acid i GA Aldehyde ir
i n Gibberellins F i g u r e 2. I n t e r f e r e n c e of some growth r e t a r d a n t s w i t h g i b b e r e l l i n b i o s y n t h e s i s . ( A b b r e v i a t i o n s : MVA, m e v a l o n i c a c i d ; I P P , i s o p e n t e n y l pyrophosphate; GPP, t r a n s - g e r a n y 1 pyrophosphate; FPP, t r a n s f a r n e s y 1 pyrophosphate; GGPP, t r a n s - g e r a n y l g e r a n y l pyrophosphate; CPP, c o p a l y l pyrophosphate).
Ε θ
1ος concentration of active ingredient ( M )
F i g u r e 3. A c t i o n of v a r i o u s c o n c e n t r a t i o n s of growth r e t a r d a n t s (GA a n t a g o n i s t s ) on the growth of r i c e s e e d l i n g s . ΕΓΆ = CCC; φ - φ = DPC; Q-ty = t r i a z o l e 117 682; V ^ V = t r i a z o l e 130 827; #>-+'·== a n c y m i d o i ; Cr&O = t e t c y c l a c i s (NDA). KI^Q = c o n c e n t r a t i o n of a c t i v e i n g r e d i e n t by means of which a s h o r t e n i n g of 507 i s a c h i e v e d (see a l s o 1 1 ) . o
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
4. J U N G
Plant Bioregulators in Cereal Crops
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
A s p e c t s o f the use o f b i o r e g u l a t o r s stages o f c e r e a l s p e c i e s
i n the v a r i o u s
35
development
G e r m i n a t i o n and s e e d l i n g development. In t h e s e r i e s o f v a r i o u s d e velopment s t a g e s o f t h e c e r e a l p l a n t up t o t h e r e a l i z a t i o n o f g r a i n y i e l d , t h e q u e s t i o n o f i n f l u e n c i n g them a p p r o p r i a t e l y by t h e use o f b i o r e g u l a t o r s a l r e a d y a r i s e s a t t h e s t a g e o f g e r m i n a t i o n {]_). I t i s known t h a t g i b b e r e l l i n s s t i m u l a t e t h e g e r m i n a t i o n o f a l l c e r e a l s p e c i e s v i g o r o u s l y , which i s why, f o r example, GA3 i s used i n t h e p r o d u c t i o n o f m a l t . However, t h e r e have n o t up t o now been any s i g n i f i c a n t p o s s i b i l i t i e s o f a p p l i c a t i o n i n c e r e a l c r o p s f o r t h i s type o f r e g u l a t i o n . On t h e o t h e r hand, s u b s t a n c e s w i t h an o p p o s i t e a c t i o n t o g i b b e r e l l i n have met w i t h c o n s i d e r a b l y g r e a t e r i n t e r e s t both e x p e r i m e n t a l l y and i n p r a c t i c e . In t h i s c o n n e c t i o n a t t e n t i o n must be drawn, i n p a r t i c u l a r , t o t h e seed t r e a t m e n t o f w i n t e r wheat w i t h CCC, as i s p r a c t i s e d i n some r e g i o n s t o i n c r e a s e t h e w i n t e r r e s i s t a n c e o f wheat s e e d l i n g s . The improved o v e r w i n t e r i n g o f wheat t r e a t e d w i t h CCC was a l r e a d y shown by us i n model t r i a l s i n t h e m i d - s i x t i e s (8). The t r e a t ment o f both t h e seed and t h e s o i l w i t h CCC produced a c l e a r growth advantage f o r t h e t r e a t e d p l a n t s up t o the end o f t i l l e r i n g i n s p r i n g . Concerning t h e use o f CCC as a seed t r e a t m e n t , Zadoncev e t a l . (9) emphazise t h e l o w e r i n g o f t h e t i l l e r i n g node a f t e r seed t r e a t m e n t w i t h CCC as t h e reason f o r improved o v e r w i n t e r i n g . There i s apparent j u s t i f i c a t i o n f o r r e g a r d i n g t h e t r e a t m e n t o f seed w i t h b i o r e g u l a t o r s h a v i n g GA a n t a g o n i s t i c a c t i o n as a p o s s i b i l i t y f o r e x e r t i n g a s i g n i f i c a n t i n f l u e n c e on the development and s t r e s s p h y s i o l o g i c a l b e h a v i o u r o f c e r e a l p l a n t s . In p a r t i c u l a r , newer compounds such as t e t c y c l a c i s (_10, \l) can cause a change i n t h e s h o o t : r o o t r a t i o . A c c o r d i n g t o t h e model t r i a l s t h a t we have c a r r i e d o u t so f a r , t h e change i n t h e s h o o t : r o o t r a t i o can be a c h i e v e d u s i n g t h e s e substances n o t o n l y by a r e d u c t i o n o f both organ p a r t s v a r y i n g i n degree b u t a l s o by an a b s o l u t e promotion o f r o o t growth w i t h a s i m u l taneous r e d u c t i o n o f shoot l e n g t h . The example g i v e n i n F i g u r e 4 i l l u s t r a t e s t h i s e f f e c t . I t may be assumed t h a t t h e s e compounds can be used t o o p t i m i z e water and n u t r i e n t u t i l i z a t i o n and thus t o o p t i mize y i e l d i n c e r e a l c r o p s . Tillering. T i l l e r i n g assumes s p e c i a l importance w i t h i n t h e v e g e t a t i v e development o f a c e r e a l p l a n t . On t h e one hand, t h e number o f t i l l e r s developed determines t h e d e n s i t y o f t h e t o t a l crop t o a d e c i s i v e e x t e n t . On t h e o t h e r hand, even d u r i n g t h e t i l l e r i n g s t a g e , t h e d i f f e r e n t i a t i o n p r o c e s s e s f o r t h e f o r m a t i o n o f t h e g e n e r a t i v e organs b e g i n , t h i s f i x i n g , f o r example, t h e number o f s p i k e l e t s i n the i n d i v i d u a l e a r . What i s d e c i s i v e f o r t h e number o f e a r - b e a r i n g stems p e r area and f o r t h e number o f g r a i n s p e r e a r i s t h e q u a n t i t a t i v e r e s u l t o f t h e f o r m a t i o n o f these y i e l d components and o f t h e i r r e d u c t i o n d u r i n g t h e subsequent phase o f stem e l o n g a t i o n . I t i s known t h a t d a y l e n g t h , temperature and s u p p l y o f n u t r i e n t s have a s i g n i f i c a n t i n f l u e n c e on t h e c o u r s e o f these p r o c e s s e s . Less i n f o r m a t i o n i s a v a i l a b l e , however, about t h e phytohormone c o o r d i n a t i o n i n v o l v e d and t h e p o s s i b i l i t y o f u t i l i z i n g i t i n p r a c t i c e by u s ing appropriate a c t i v e substances. A p i c a l dominance, which i s determined p r i m a r i l y by t h e a u x i n l e v e l , but n o t s o l e l y by i t , no doubt has an i m p o r t a n t i n f l u e n c e on
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
36
BIOREGULATORS: C H E M I S T R Y A N D USES
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
t i l l e r i n g (12). T h e r e f o r e , the l a t t e r can be promoted by substances having an a u x i n - a n t a g o n i s t i c a c t i o n , such as t r i i o d o b e n z o i c a c i d (TIBA) ( Γ 3 , 1 4 ) . P l a n t b i o r e g u l a t o r s w i t h a G A - a n t a g o n i s t i c e f f e c t a l s o have a s t i m u l a t i n g i n f l u e n c e on t i l l e r i n g o r the number o f e a r b e a r i n g stems per a r e a , whereas g i b b e r e l l i n t r e a t m e n t reduces t h i s (15). G i b b e r e l l i n t r e a t m e n t tends t o hasten development, t o s h o r t e n the i n t e r v a l s between p a r t i c u l a r morphogenetic events and t o reduce the number o f organs l a i d down i n s u c c e s s i v e phases o f development, whereas r e t a r d a n t s g e n e r a l l y have the o p p o s i t e e f f e c t . S t a n d i n g a b i l i t y and l o d g i n g . A f t e r stem e l o n g a t i o n and heading the c e r e a l p l a n t reaches a v e r y c r i t i c a l phase f o r the f o r m a t i o n o f y i e l d , namely g r a i n f i l l i n g . The e f f e c t i v e and l o n g e s t p o s s i b l e f u n c t i o n i n g o f the a s s i m i l a t i n g organs i s e s s e n t i a l . The a s s i m i l a t e s r e q u i r e d f o r g r a i n f i l l i n g are produced d u r i n g a r e l a t i v e l y s h o r t p e r i o d . A c c o r d i n g t o Evans ( 1 6 J , o n l y 5 t o 10% o f the t o t a l a s s i m i l a t e s d e p o s i t e d i n the g r a i n o r i g i n a t e from the p r e - f l o w e r i n g p e r i o d . Any d i s t u r b a n c e i n the p h o t o s y n t h e t i c a c t i v i t y o f the a s s i m i l a t i n g p l a n t organs i n t h i s phase o f development - i n s u f f i c i e n t i n s o l a t i o n , l a c k o f w a t e r and n u t r i e n t s , l o d g i n g o r p a r a s i t i c a t t a c k - i s bound t o have an a d v e r s e e f f e c t on g r a i n f o r m a t i o n and y i e l d ( 1 7 ) . Lodging i s one o f the p r i n c i p a l problems i n i n t e n s i v e c e r e a l c u l t i v a t i o n t h a t has an u n f a v o u r a b l e e f f e c t , p a r t i c u l a r l y when i t o c c u r s i n the e a r l y r e p r o d u c t i v e s t a g e o f development. On the b a s i s o f fundamental i n v e s t i g a t i o n s c a r r i e d out by T o l b e r t ( 1 8 , 19_) on the a c t i o n o f v a r i o u s q u a t e r n a r y ammonium compounds on the growth o f wheat, i t was p o s s i b l e t o develop chlormequat (CCC) i n t o a v e r y e f f e c t i v e a n t i - l o d g i n g agent and t o i n t r o d u c e i t t o l a r g e areas o f wheat growing a l l o v e r the w o r l d ( 2 0 , 21). In West Germany, by f a r the g r e a t e s t p a r t o f a r e a under wheat c u l t i v a t i o n has been t r e a t e d w i t h CCC f o r many y e a r s now. H e r e , as i n a number o f o t h e r European c o u n t r i e s , t h i s p l a n t b i o r e g u l a t o r i s an i n t e g r a l element o f the wheat production system. As a g i b b e r e l l i n a n t a g o n i s t , CCC i n c r e a s e s the s t a n d i n g a b i l i t y o f wheat, on the one hand by r e d u c i n g the stem l e n g t h - e s p e c i a l l y i n the lower i n t e r n o d e s - a n d , on the o t h e r hand, by i n c r e a s i n g the s t e m ' s d i a m e t e r and by s t r e n g t h e n i n g i t s w a l l ( F i g u r e 5 ) . A l l the wheat v a r i e t i e s which have so f a r been t e s t e d r e a c t e d t o t h i s PBR, a l t h o u g h w i t h d i f f e r e n c e s i n d e g r e e . G e n e r a l l y the s h o r t straw v a r i e t i e s r e a c t more v i g o r o u s l y than the l o n g - s t r a w ones. In o r d e r t o a c h i e v e an optimum e f f e c t , the r a t e o f a p p l i c a t i o n must be a d j u s t e d t o the v a r i e t y a n d , i n a d d i t i o n , the growth s t a g e and the l o c a l c u l t i v a t i o n c o n d i t i o n s must be taken i n t o c o n s i d e r a t i o n . Only t h i s c a r e f u l h a r m o n i z a t i o n can e x p l o i t the p o s s i b i l i t i e s which t h i s growth r e g u l a t o r o f f e r s i n wheat growing f o r i n c r e a s i n g y i e l d , e s p e c a l l y on the b a s i s o f a h i g h e r s u p p l y o f n i t r o g e n . In o t h e r c e r e a l s p e c i e s - p a r t i c u l a r l y i n the v e r y l o d g i n g - s u s c e p t i b l e w i n t e r b a r l e y - the s t e m - s t a b i l i z i n g e f f e c t o f CCC i s c o n s i d e r a b l y weaker. A s e a r c h has t h e r e f o r e been c a r r i e d out f o r f u r t h e r s u b s t a n c e s . I t has emerged t h a t , i n a d d i t i o n t o CCC, a l a r g e number o f d i f f e r e n t compounds w i t h a charged c e n t r a l atom (onium compounds) a l s o have a b i o r e g u l a t o r y e f f e c t . Some o f the compounds of t h i s c l a s s o f s u b s t a n c e s are g i v e n i n F i g u r e 6 . However, i n s p i t e of an i n c r e a s e d
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
JUNG
Plant Bioregulators in Cereal Crops
F i g u r e 4. Example f o r the change o f the s h o o t : r o o t r a t i o a f t e r treatment of wheat w i t h t e t c y c l a c i s (NDA). L e f t : u n t r e a t e d ; r i g h t 15.0 mg a. i./100 kg seeds.
F i g u r e 5. E f f e c t s of i n c r e a s i n g CCC r a t e s (0.1-3 mg/pot) on the growth of wheat.
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
38
BIOREGULATORS: C H E M I S T R Y A N D USES
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
e f f e c t i n some cases compared w i t h CCC, the i n t e n s i t y o f stem s h o r t e n i n g and s t a b i l i z i n g i n w i n t e r b a r l e y i s not q u i t e a c h i e v e d . T h e r e f o r e , c o m b i n a t i o n s o f onium compounds w i t h the e t h y l e n e g e n e r a t o r ethephon were i n v e s t i g a t e d (22^ 23^, 2 4 ) . The two compounds complement each o t h e r . The e t h y l e n e g e n e r a t o r ensures p a r t i c u l a r l y t h a t stem s h o r t e n i n g c o n t i n u e s i n t o the g e n e r a t i v e p h a s e , s i n c e the c o n s i d e r a b l e r e d u c t i o n i n growth h e i g h t a c h i e v e d by the onium compounds i n the veget a t i v e stage i s o f t e n compensated l a t e r by the b a r l e y p l a n t t o a s u r p r i s i n g d e g r e e . Ethephon can be used as a s t a l k s t a b i l i z e r i n b a r l e y not o n l y i n c o m b i n a t i o n but a l s o on i t s own ( 2 5 ) . Ear and g r a i n development. The e a r s t r u c t u r e o f c e r e a l s , e s p e c i a l l y t h a t o f wheat, e x h i b i t s d i f f e r e n c e s due both t o v a r i e t y and d e v e l o p ment. In p a r t i c u l a r , the f a c t t h a t the number o f f e r t i l e f l o r e t s i n the d i f f e r e n t l y i n s e r t e d s p i k e l e t s i n the e a r can v a r y as can the w e i g h t o f the i n d i v i d u a l g r a i n s deserves s p e c i a l a t t e n t i o n w i t h r e f e r ence t o the f o r m a t i o n o f y i e l d . A c c o r d i n g t o Aufhammer and Bangerth ( 2 6 ) , the p r o p o r t i o n o f f l o r e t s t h a t form g r a i n s v a r i e s between 40 and 80% w i t h i n the e a r , the tendency d e c r e a s i n g upward and downward from the c e n t r a l r e g i o n ( F i g u r e 7 ) . At the base o f the e a r one t o f o u r s p i k e l e t s are o f t e n s t e r i l e . The w e i g h t o f the i n d i v i d u a l g r a i n s w i t h i n i n d i v i d u a l s p i k e l e t s may f l u c t u a t e between 30 and 60 mg. W i t h i n a s p i k e l e t , the b a s a l f l o r e t s g e n e r a l l y develop b i g g e r o r h e a v i e r g r a i n s than the d i s t a l ones. There i s much t o suggest t h a t these d i f f e r e n c e s i n e a r and g r a i n development a r e c o n t r o l l e d by phytohormones, a p p a r e n t l y a l o n g the l i n e s o f a dominance p r i n c i p l e . W i t h i n an i n f l o r e s c e n c e , the o l d e s t " d o m i nant" f l o r e t i n f l u e n c e s the development o f each subsequent one ( p r i m i g e n i a l dominance). I t i s t h e r e f o r e not s u r p r i s i n g t h a t GA a n t a g o n i s t s such as CCC and ancymidoi reduce the c o m p e t i t i v e a c t i o n o f v a r i o u s s i n k s and i m prove the synchrony o f e a r and g r a i n f o r m a t i o n ( 2 7 ) . B e s i d e s t h i s c o r r e l a t i v e i n f l u e n c e , attempts are b e i n g made t o promote g r a i n f o r m a t i o n by i n c r e a s i n g the s i n k c a p a c i t y . M i c h a e l and S e i l e r - K e l b i t s c h (28) have a l r e a d y e s t a b l i s h e d c o n n e c t i o n s between w e i g h t per g r a i n and the c y t o k i n i n c o n t e n t o f c e r e a l s . However, the exogenous s u p p l y o f c y t o k i n i n s i n the g r a i n f o r m a t i o n p h a s e , which has been i n v e s t i g a t e d by Herzog and G e i s l e r ( 2 9 ) , has so f a r shown o n l y l i m i t e d e f f e c t i v e n e s s , which may be l i n k e d t o the t r a n s p o r t b e h a v i o u r o f the phytohormone a p p l i e d . I t i s , however, p o s s i b l e t h a t compounds o f the c y t o k i n i n t y p e and o t h e r s u b s t a n c e s having a s e n e s c e n c e - r e t a r d i n g e f f e c t i n d i r e c t l y have a p o s i t i v e i n f l u e n c e on g r a i n f i l l i n g , i n t h a t they extend the f u n c t i o n i n g o f the p a r t s o f the p l a n t t h a t are m a i n l y a s s i m i l a t i n g i n t h i s phase ( 3 0 ) . On the o t h e r hand, any s p e c i f i c promotion o f the a s s i m i l a t i o n r a t e by o p t i m i z i n g the f i x a t i o n o f CO2, as has been f o r m u l a t e d by v a r i o u s a u t h o r s as the aim f o r C3 p l a n t s ( 3 1 , 3 2 , 3 3 ) , i s p r o b a b l y s t i l l f a r from r e a l i z a t i o n i n a c t u a l p r a c t i c e . B i o r e g u l a t o r s i n the c e r e a l c u l t i v a t i o n concept assessment
prospective
A p a r t from the p h y s i o l o g i c a l and t e c h n i c a l a s p e c t s , an i m p o r t a n t e c o nomic f a c t must be taken i n t o account i n the use o f b i o r e g u l a t o r s i n c e r e a l c r o p s , which i s a l r e a d y b e i n g p r a c t i s e d o r s h o u l d be s u b j e c t e d
In Bioregulators; Ory, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
JUNG
Plant Bioregulators in Cereal Crops
s
Ν
ν", _ cl
Cl-CH^CH -N-CH CH 2
N
3
/
Ρ
C H
3
S-CH / \ CH CH 3
3
Br"
• 3 Cl" Cl-CH -CH -N-NH
v * « ci c
C l 2
H
4
3
Phosphon
DJS
CCC
w
CI-ryCH ^-C Hg
C H
2
2
2
Downloaded by UNIV OF AUCKLAND on May 3, 2015 | http://pubs.acs.org Publication Date: July 6, 1984 | doi: 10.1021/bk-1984-0257.ch004
CH
(^S-CH
3
3
Thian
CMH
CH, cr