Plasmons for Energy Conversion - ACS Energy Letters (ACS

Publication Date (Web): May 31, 2018. Copyright © 2018 American Chemical Society. Cite this:ACS Energy Lett. 3, XXX, 1467-1469. View: ACS ActiveView ...
6 downloads 0 Views 1MB Size
Plasmons for Energy Conversion

T

charge carriers for photocatalytic reduction processes (Figure 2).2 Understanding the factors that control these different

he surface plasmon phenomenon of metal nanoparticles has remained an active area of research in nanoscience. Of particular current interest is its role in influencing energy conversion processes. The fundamental aspects of plasmonic (Au, Ag, or Al) nanoparticles of different sizes and shapes have been extensively investigated to understand their role in light energy harvesting assemblies, catalysis, photocatalysis, and solar cells.1−9 Of particular interest is the electric field created by plasmons at the surface under selective excitation with photons, which significantly enhances the performance of catalytic or photoinduced processes (Figure 1). This virtual issue (https://pubs.acs.org/page/aelccp/vi/

Figure 2. Creation of surface plasmons and hot electrons during the excitation of metal nanoparticles. From ref 2. Copyright American Chemical Society.

processes and how the plasmons themselves are affected by the molecular interactions12,17 is a significant challenge for both experiments and theory. The performance of plasmon-enhanced photovoltaic cells has also been explored for dye-sensitized solar cells,18 organic photovoltaic solar cells,19 and metal halide perovskite solar cells.20 Improvements in performance usually result from improved charge separation and/or increased absorptivity of the active layer of solar cells. Another important aspect of plasmon-enhanced light energy conversion is in the area of solar fuels.18−24 This includes CO2 reduction into fuels5,21 and the water splitting reaction to produce hydrogen.22−25 There has also been recent interest in using plasmon resonances to influence electrocatalytic,26,27 metal organic framework,28 and catalytic reactions.29−31 Increased reaction yields as well as improved selectivity have been the focus of many of these catalytic reactions. Although major breakthroughs in energy conversion efficiencies are yet to be realized, the initial success of modulating the energy conversion process provides sufficient motivation to further explore the novelties of plasmonic nanostructures.

Figure 1. Plasmon nanoparticle activated by photons. From ref 5: DOI: 10.1021/acsenergylett.7b00640. Copyright American Chemical Society.

plasmon.html) is a collection of Perspectives, Reviews, and research articles published in ACS Energy Letters, The Journal of Physical Chemistry Letters, The Journal of Physical Chemistry C, and The Journal of American Chemical Society that highlight recent developments in employing plasmons for energy harvesting. The papers included in this virtual issue cover key topics ranging from fundamental aspects of plasmon dynamics to the use of plasmons to increase the performance of photovoltaic solar cells and solar fuels generation. The common theme of the papers in the fundamental aspects section is how plasmons interact with molecular species.10−17 The coupling between plasmons and molecules can result in electron transfer from the metal to the unoccupied states of the molecule,15−17 which is the fundamental process in plasmon-induced photocatalysis.2,3,5,6 Plasmon−molecule interactions can also enhance FRET processes between molecules9,13,14 and create exotic hybrid plasmon−exciton systems.10,11 Another interesting aspect is the creation of highly excited electron−hole pairs2,15 and utilization of these hot © XXXX American Chemical Society



RELATED READINGS Perspectives/Reviews. (1) Cushing, S. K.; Wu, N. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion. J. Phys. Chem. Lett. 2016, 7, 666−675. DOI: 10.1021/acs.jpclett.5b02393. (2) Hartland, G. V.; Besteiro, L. V.; Johns, P.; Govorov, A. O. What’s so Hot about Electrons in Metal Nanoparticles? ACS Energy Lett. 2017, 2, 1641−1653. DOI: 10.1021/acsenergylett.7b00333. (3) Panayotov, D. A.; Frenkel, A. I.; Morris, J. R. Catalysis and Photocatalysis by Nanoscale Au/TiO2: Perspectives for Received: May 3, 2018 Accepted: May 18, 2018

1467

DOI: 10.1021/acsenergylett.8b00721 ACS Energy Lett. 2018, 3, 1467−1469

Energy Focus

Cite This: ACS Energy Lett. 2018, 3, 1467−1469

Energy Focus

ACS Energy Letters Renewable Energy. ACS Energy Lett. 2017, 2, 1223−1231. DOI: 10.1021/acsenergylett.7b00189. ́ (4) Carretero-Palacios, S.; Jiménez-Solano, A.; Miguez, H. Plasmonic Nanoparticles as Light-Harvesting Enhancers in Perovskite Solar Cells: A User’s Guide. ACS Energy Lett. 2016, 1, 323−331. DOI: 10.1021/acsenergylett.6b00138. (5) Yu, S.; Wilson, A. J.; Kumari, G.; Zhang, X.; Jain, P. K. Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Lett. 2017, 2, 2058−2070. DOI: 10.1021/acsenergylett.7b00640. (6) Zhao, S.; Jin, R.; Jin, R. Opportunities and Challenges in CO2 Reduction by Gold- and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Lett. 2018, 3, 452−462. DOI: 10.1021/acsenergylett.7b01104. (7) Abbas, M. A.; Kamat, P. V.; Bang; J. H. Thiolated Gold Nanoclusters for Light Energy Conversion. ACS Energy Lett. 2018, 3, 840−854. DOI: 10.1021/acsenergylett.8b00070. (8) Thomas, R.; Kumar, J.; George, J.; Shanthil, M.; Naidu, G. N.; Swathi, R. S.; Thomas, K. G. Coupling of Elementary Electronic Excitations: Drawing Parallels between Excitons and Plasmons. J. Phys. Chem. Lett. 2018, 9, 919−932. DOI: 10.1021/acs.jpclett.7b01833. (9) Hsu, L.-Y.; Ding, W.; Schatz, G. C. Plasmon-Coupled Resonance Energy Transfer. J. Phys. Chem. Lett. 2017, 8, 2357− 2367. DOI: 10.1021/acs.jpclett.7b00526. Fundamental Aspects. (10) Rodarte, A. L.; Tao, A. R. Plasmon−Exciton Coupling between Metallic Nanoparticles and Dye Monomers J. Phys. Chem. C 2017, 121, 3496−3502. DOI: 10.1021/acs.jpcc.6b08905. (11) Beane, G.; Brown, B. S.; Johns, P.; Devkota, T.; Hartland, G. V. Strong Exciton−Plasmon Coupling in Silver Nanowire Nanocavities. J. Phys. Chem. Lett. 2018, 9, 1676− 1681. DOI: 10.1021/acs.jpclett.8b00313. (12) Donati, G.; Lingerfelt, D. B.; Aikens, C. M.; Li, X. Molecular Vibration Induced Plasmon Decay. J. Phys. Chem. C 2017, 121, 15368−15374. DOI: 10.1021/acs.jpcc.7b04451. (13) Wang, L.; May, V. Control of Intermolecular Electronic Excitation Energy Transfer: Application of Metal Nanoparticle Plasmons. J. Phys. Chem. C 2017, 121, 13428−13433. DOI: 10.1021/acs.jpcc.7b04712. (14) Steele, J. M.; Ramnarace, C. M.; Farner, W. R. Controlling FRET Enhancement Using Plasmon Modes on Gold Nanogratings. J. Phys. Chem. C 2017, 121, 22353−22360. DOI: 10.1021/acs.jpcc.7b07317. (15) Tan, S.; Liu, L.; Dai, Y.; Ren, J.; Zhao, J.; Petek, H. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions. J. Am. Chem. Soc. 2017, 139, 6160−6168. DOI: 10.1021/jacs.7b01079. (16) Sprague-Klein, E. A.; McAnally, M. O.; Zhdanov, D. V.; Zrimsek, A. B.; Apkarian, V. A.; Seideman, T.; Schatz, G. S.; Van Duyne, R. P. Observation of Single Molecule PlasmonDriven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. J. Am. Chem. Soc. 2017, 139, 15212−15221. DOI: 10.1021/jacs.7b08868. (17) You, X.; Ramakrishna, S.; Seideman, T. Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles. J. Phys. Chem. Lett. 2018, 9, 141−145. DOI: 10.1021/acs.jpclett.7b03126. Solar Cells. (18) Jang, Y. H.; Rani, A.; Quan, L. N.; Adinolfi, V.; Kanjanaboos, P.; Ouellette, O.; Son, T.; Jang, Y. J.; Chung, K.; Kwon, H.; Kim, D.; Kim, D. H.; Sargent, E. H. Graphene

Oxide Shells on Plasmonic Nanostructures Lead to HighPerformance Photovoltaics: A Model Study Based on DyeSensitized Solar Cells. ACS Energy Lett. 2017, 2, 117−123. DOI: 10.1021/acsenergylett.6b00612. (19) Song, S.; Heo, J.; Lee, T. K.; Park, S.; Walker, B.; Kwak, S. K.; Kim, J. Y. Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells. J. Phys. Chem. C 2017, 121, 17569−17576. DOI: 10.1021/acs.jpcc.7b03763. (20) Kim, G. M.; Tatsuma, T. Photocurrent Enhancement of Perovskite Solar Cells at the Absorption Edge by ElectrodeCoupled Plasmons of Silver Nanocubes. J. Phys. Chem. C 2017, 121, 11693−11699. DOI: 10.1021/acs.jpcc.7b02799. Solar Fuels/Photocatalysis. (21) Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P.; Yaghi O. M. Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal Organic Frameworks under Visible Light. J. Am. Chem. Soc. 2017, 139, 356− 362. DOI: 10.1021/jacs.6b11027. (22) Li, H.; Li, Z.; Yu, Y.; Ma, Y.; Yang, W.; Wang, F.; Yin, X.; Wang, X. Surface-Plasmon-Resonance-Enhanced Photoelectrochemical Water Splitting from Au-Nanoparticle-Decorated 3D TiO2 Nanorod Architectures. J. Phys. Chem. C 2017, 121, 12071−12079. DOI: 10.1021/acs.jpcc.7b03566. (23) Naya, S.-I.; Kume, T.; Akashi, R.; Fujishima, M.; Tada, H. Red-Light-Driven Water Splitting by Au(Core)−CdS(Shell) Half-Cut Nanoegg with Heteroepitaxial Junction. J. Am. Chem. Soc. 2018, 140, 1251−1254. DOI: 10.1021/jacs.7b12972. (24) Wang, S.; Gao, Y.; Miao, S.; Liu, T.; Mu, L.; Li, R.; Fan, F.; Li, C. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. J. Am. Chem. Soc. 2017, 139, 11771− 11778. DOI: 10.1021/jacs.7b04470. (25) Yan, L.; Xu, J.; Wang, F.; Meng, S. Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water. J. Phys. Chem. Lett. 2018, 9, 63−69. DOI: 10.1021/acs.jpclett.7b02957. Electrocatalysis/Catalysis. (26) Shanker, G. S.; Markad, G. B.; Jagadeeswararao, M.; Bansode, U.; Nag, A. Colloidal Nanocomposite of TiN and N-Doped Few-Layer Graphene for Plasmonics and Electrocatalysis. ACS Energy Lett. 2017, 2, 2251−2256. DOI: 10.1021/acsenergylett.7b00741. (27) Choi, C. H.; Chung, K.; Nguyen, T.-T. H.; Kim, D. H. Plasmon-Mediated Electrocatalysis for Sustainable Energy: From Electrochemical Conversion of Different Feedstocks to Fuel Cell Reactions. ACS Energy Lett. 2018, 3, 1415−1433. DOI: 10.1021/acsenergylett.8b00461. (28) Wen, M.; Mori, K.; Kuwahara, Y.; Yamashita, H. Plasmonic Au@Pd Nanoparticles Supported on a Basic Metal− Organic Framework: Synergic Boosting of H2 Production from Formic Acid. ACS Energy Lett. 2017, 2, 1−7. DOI: 10.1021/ acsenergylett.6b00558. (29) Yin, Z.; Wang, Y.; Song, C.; Zheng, L.; Ma, N.; Liu, X.; Li, S.; Lin, L.; Li, M.; Xu, Y.; Li, W., Hu, G.; Fang, Z.; Ma, D. Hybrid Au−Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2018, 140, 864−867. DOI: 10.1021/jacs.7b11293. (30) Li, H.; Qin, F.; Yang, Z.; Cui, X.; Wang, J.; Zhang, L. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. J. Am. Chem. Soc. 2017, 139, 3513−3521. DOI: 10.1021/jacs.6b12850. (31) Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y.; Mideksa, M. F.; Hou, K.; Zhao, W.; Wang, D.; Zhao, M.; Zhang, X.; Lv, J.; 1468

DOI: 10.1021/acsenergylett.8b00721 ACS Energy Lett. 2018, 3, 1467−1469

Energy Focus

ACS Energy Letters Zhang, J.; Wang, X.; Tang, Z. Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis. J. Am. Chem. Soc. 2017, 139, 17964−17972. DOI: 10.1021/ jacs.7b08903.

Prashant V. Kamat, Editor-in-Chief, ACS Energy Letters

University of Notre Dame, Notre Dame, Indiana 46556, United States

Gregory V. Hartland, Senior Editor, The Journal of Physical Chemistry



University of Notre Dame, Notre Dame, Indiana 46556, United States

AUTHOR INFORMATION

ORCID

Prashant V. Kamat: 0000-0002-2465-6819 Gregory V. Hartland: 0000-0002-8650-6891 Notes

Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. The authors declare no competing financial interest.

1469

DOI: 10.1021/acsenergylett.8b00721 ACS Energy Lett. 2018, 3, 1467−1469