14 Asymmetric Synthesis via Lithium Chelates
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
THOMAS A. WHITNEY and ARTHUR W. LANGER, JR. Corporate Research Laboratories, Esso Research and Engineering C o . , L i n d e n , N . J . 07036
Reactions of a variety of prochiral carbonyl substrates with Chel* · LiR, where Chel* = trans-N.N,N',N'-tetramethyl1,2-cyclohexanediamine (TMCHD), were studied. Optically active carbinols were obtained and had an enantiomeric excess of up to 30% without sacrificing one asymmetric center to create a new one. Either of the absolute configurations of the product can be readily obtained by changing the absolute configuration of the chewing agent or by interchanging the R groups in the reaction of Chel* · LiR + R'COR". For example: ( - ) - T M C H D · LiC4H9
+ C H C H O --> ( - ) - C 6 H 5 C H ( O H ) C 4 H 9
( - ) - TMCHD·LiC6H5
+ C H C H O --> ( + ) - C H C H ( O H ) C H
6
4
5
9
6
5
4
9
trans-1,2-Diaminocyclohexane (DACH) is a particularly attractive entry into optically active chelating agents for lithium reagents. Both enantiomers were obtained readily by an improved resolution procedure.
A symmetric synthesis has been investigated since Emil Fischer's classic publication on sugar chemistry in 1894 (I) and has since been the subject of numerous studies (2, 3). Marckwald (4) defined asymmetric synthesis as "those reactions which produce optically active substances from symmetrically constituted compounds with the intermediate use of optically active materials but with the exclusion of all other analytical processes." A broader definition of asymmetric synthesis is "a process which converts a prochiral unit into a chiral unit so that unequal amounts of stereoisomeric products result" (see Ref. 3, p. 5). Of the various schemes for achieving asymmetric syntheses in reactions other than polymerizations, two have received considerable atten270 In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
WHITNEY
AND
271
Lithium Chelates
LANGER
t i o n : e n z y m a t i c reactions ( 5 )
a n d reactions i n v o l v i n g h y d r i d e transfer
f r o m the a l p h a or b e t a p o s i t i o n of a n o p t i c a l l y a c t i v e
organometallic
reagent:
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
• Biochemical methods Y e a s t f e r m e n t a t i o n or > Purified enzyme system
A) R-CT
(±)
X I R—C—Y I Ζ
X Enzyme |* • R—C—Y I Ζ
OH |* R - C - D | H
5 0 % y i e l d generally stereospecific
• H y d r i d e transfer A l ( O R * ) or R * M g X + 3
R1CR2
•
Ο
Η I* Rx—C—R I OH
2
+
ketone or olefin
B o t h methods, h o w e v e r , h a v e disadvantages.
B i o c h e m i c a l transfor
mations c a n h a v e l i m i t e d a p p l i c a t i o n , a n d there is a l w a y s the p r o b l e m of finding
the p r o p e r b a c t e r i a , a n i m a l p r e p a r a t i o n , or e n z y m e a n d c u l t u r e
m e d i u m to effect a n e w synthesis. I n a d d i t i o n , p r o d u c t i s o l a t i o n — s u c h as i n t h e p r o d u c t i o n of a n o p t i c a l l y active a - d e u t e r o a l c o h o l , w h e r e a s m a l l a m o u n t of p r o d u c t m u s t be i s o l a t e d f r o m a large q u a n t i t y of spent f e r m e n t a t i o n l i q u o r — c a n present f o r m i d a b l e separation p r o b l e m s .
Product
i s o l a t i o n f r o m e n z y m e systems, e s p e c i a l l y i m m o b i l i z e d e n z y m e s , c o u l d be m u c h simpler, however. Hydride-transfer
reactions
suffer
from
the
several
shortcomings.
First, a conventional optical resolution must usually be performed
to
o b t a i n a n o p t i c a l l y active c a r b i n o l , w h i c h is t h e n c o n v e r t e d to the h a l i d e w h e n the G r i g n a r d m e t h o d is to be used.
T h e a c t u a l r e d u c t i o n is g e n
e r a l l y not the o n l y r e a c t i o n p a t h w a y ; h e n c e c a r b i n o l b y - p r o d u c t is p r o duced.
M o r e undesirable, however,
is the fact
that t h e
asymmetric
center of the o r g a n o m e t a l l i c reagent is sacrificed w h e n the n e w center is created.
chiral
U n l e s s the r e a c t i o n is stereospecific, w h i c h is r a r e l y
the case, a net o v e r a l l decrease i n c h i r a l i t y results.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
272
POLYAMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
W h i l e this w o r k w a s i n progress a n alternate m e t h o d of a s y m m e t r i c synthesis via h y d r i d e transfer w a s r e p o r t e d , i n w h i c h the a s y m m e t r i c c e n ter of the c h i r a l m o i e t y is not sacrificed (3, p. 2 0 4 ) . T h i s m e t h o d uses the r e a c t i o n p r o d u c t of L i A l H
a n d v a r y i n g amounts of o p t i c a l l y a c t i v e a m i n o
4
c a r b i n o l s , s u c h as ( — ) - q u i n i n e , ( + ) - c i n c h o n i d i n e , a n d ( — ) - e p h e d r i n e , to r e d u c e p r o c h i r a l substrates. I n this system the h y d r i d e a n i o n species
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
is s i g m a b o n d e d to the o p t i c a l l y a c t i v e r e s i d u e , a n d a m a x i m u m of t h r e e h y d r i d e s are a v a i l a b l e for f u r t h e r r e a c t i o n .
T h e aminocarbinols
could
sometimes b e r e c o v e r e d for reuse. I n t h e instant system the c h i r a l c h e l a t i n g agent forms c o o r d i n a t e b o n d s to the l i t h i u m cation, a n d f o u r h y d r i d e s are a v a i l a b l e for subsequent r e a c t i o n . Conceptually, a n optically active, asymmetric l i t h i u m
compound,
C h e l * · L i R ( w h e r e C h e l * denotes the o p t i c a l l y a c t i v e , c h e l a t i n g a g e n t ) s h o u l d i n d u c e stereoselective reactions at the L i - R b o n d .
This should
o c c u r since r e a c t i o n c a n p r o c e e d via t w o d i a s t e r e o m e r i c t r a n s i t i o n states of u n e q u a l energy. be achieved, 1 0 0 %
I f a n e n e r g y difference of a b o u t 2 k c a l / m o l e c o u l d o p t i c a l bias c o u l d b e r e a l i z e d .
Nevertheless, the
o p t i c a l l y active chelates c o u l d thus b e u s e d to p r e p a r e o p t i c a l l y active p r o d u c t s i n e l e c t r o p h i l i c reactions w i t h o u t d e s t r o y i n g one center to create a n e w one as t h e c h e l a t i n g agent c o u l d be
asymmetric recovered
unchanged and recycled:
* Chel-LiR +
Ο
OH
II R'—C—R'
* R^-C—R" +
Chel*
LiR Chel*
Precursor
B e f o r e a t t e m p t i n g a s y m m e t r i c syntheses via the a b o v e scheme, c a r e f u l t h o u g h t w a s g i v e n to t h e c h o i c e of the C h e l * precursor. It w a s d e e m e d t h a t ( a ) the c o m p o u n d s h o u l d b e a r a c e m i c m i x t u r e ( 6 ) ;
(b)
resolution
s h o u l d b e e a s y — t h a t is, v e r y h i g h o p t i c a l p u r i t y s h o u l d b e o b t a i n e d f r o m o n l y one c r y s t a l l i z a t i o n of a n a p p r o p r i a t e salt; ( c )
inexpensive resolving
agents
the C h e l *
{e.g., t a r t a r i c a c i d )
s h o u l d be u s e d ;
(d)
precursor
s h o u l d b e easily resolvable e v e n w h e n grossly c h e m i c a l l y i m p u r e ; ( e )
both
enantiomers s h o u l d b e o b t a i n a b l e i n v e r y h i g h o p t i c a l p u r i t y ; a n d ( f ) a b solute c o n f i g u r a t i o n of the c o m p o u n d s h o u l d b e k n o w n . T h e s e considerations l e d to the c h o i c e of i r a n s - l , 2 - d i a m i n o c y c l o h e x ane ( D A C H ) as t h e o p t i m u m i n i t i a l C h e l * p r e c u r s o r since b o t h
(R,R)-
( — ) - D A C H a n d ( S , S ) - ( + ) - D A C H m a y be o b t a i n e d f r o m the r a c e m i c m i x t u r e via the ( + )-tartrate a n d ( + ) - b i t a r t r a t e salts, r e s p e c t i v e l y
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(7,
14.
WHITNEY
8, 9 ) .
AND
273
Lithium Chelates
LANGER
T h e l i t e r a t u r e p r o c e d u r e s w e r e f o l l o w e d i n i t i a l l y to separate
a n d trans-OACH
(10)
cis-
a n d to resolve the latter. V a r i a t i o n s of the p u b -
l i s h e d p r o c e d u r e ( 8 ) w e r e s t u d i e d to d e t e r m i n e the effect o n o p t i c a l y i e l d of the ( — ) -antipode.
T h e best results w e r e o b t a i n e d w h e n the r e a c t i o n
w a s r u n w i t h no s p e c i a l precautions.
P u r i f i c a t i o n of the D A C H
was
( S , S ) - ( + ) - D A C H is less r e a d i l y a v a i l a b l e t h a n ( - ) - D A C H .
The
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
f o u n d to be
unnecessary.
f o r m e r is i n i t i a l l y o b t a i n e d f r o m the m o t h e r l i q u o r as a n o p t i c a l l y i m p u r e ( + ) - b i t a r t r a t e , w h i c h is c o n v e r t e d to the d i h y d r o c h l o r i d e ; the latter salt is f r a c t i o n a l l y c r y s t a l l i z e d r e p e a t e d l y f r o m w a t e r a n d , finally t h e ( + ) D A C H - 2 H C 1 salt is m e c h a n i c a l l y separated f r o m the f e a t h e r l i k e aggregates of t h e r a c e m i c salt ( 8 ) .
T h i s c u m b e r s o m e p r o c e d u r e was f o u n d to
be unnecessary to secure ( - f ) - D A C H of h i g h o p t i c a l p u r i t y . B y t a k i n g advantage
of the r a c e m i c m i x t u r e p r o p e r t y of D A C H , less t h a n
50%
c h e m i c a l l y a n d o p t i c a l l y p u r e ( - f ) - D A C H is r e a d i l y u p g r a d e d b y f r a c t i o n a l c r y s t a l l i z a t i o n f r o m the m e l t or h y d r o c a r b o n
solution.
Further-
more, ( + ) - D A C H of v e r y h i g h o p t i c a l p u r i t y c o u l d b e o b t a i n e d b y a single c r y s t a l l i z a t i o n of the n e u t r a l salt of u n n a t u r a l ( — ) - t a r t a r i c a c i d . T h u s f a c i l e p r o c e d u r e s w e r e d e v e l o p e d for p r e p a r i n g b o t h D A C H
anti-
podes i n e x p e n s i v e l y a n d i n q u a n t i t y . E s c h w e i l e r - C l a r k e (11) ( R,R ) - ( - ) -
and
[( + ) - a n d ( - ) - T M C H D ] Results and Previous
m e t h y l a t i o n of ( + ) - a n d ( — ) - D A C H gave
( S,S ) - ( - f ) - N ^ ^ ^ N ' - t e t r a m e t h y l c y c l o h e x a n e d i a m i n e in high yield.
Discussion investigations
have
shown
that
chelated
organolithium
reagents are h i g h l y reactive a n d s y n t h e t i c a l l y v e r s a t i l e (12, a d d i t i o n , the c h e m i s t r y of c h e l a t e d
In
13, 14).
c o m p l e x m e t a l h y d r i d e s has
been
i n v e s t i g a t e d , i n c l u d i n g t h e i r use for r e d u c i n g c a r b o n y l c o m p o u n d s
(15).
T h e results of this i n v e s t i g a t i o n of the r e a c t i o n of o p t i c a l l y active c h e l a t e d l i t h i u m c o m p o u n d s a n d p r o c h i r a l c a r b o n y l substrates are s u m m a r i z e d i n T a b l e I. T h e results s u m m a r i z e d i n t h e table w e r e o b t a i n e d w i t h o u t our t r y i n g to o p t i m i z e r e a c t i o n c o n d i t i o n s f o r m a x i m u m stereospecificity. the reactions w e r e b e g u n at — 7 5 ° to — 8 0 ° C . combined,
Generally,
A f t e r a l l reactants w e r e
the r e a c t i o n m i x t u r e w a s h e l d at t h a t t e m p e r a t u r e
m i n u t e s , t h e n a l l o w e d to w a r m to r o o m temperature.
for
30
This procedure
was f o l l o w e d m a i n l y to s t u d y the effect of ketone structure o n the o p t i c a l y i e l d of the c a r b i n o l p r o d u c t . r e a c t i o n stereospecificity
A l t h o u g h the effect of t e m p e r a t u r e
was not s t u d i e d i n d e t a i l , c o m p a r i s o n
results of runs 6 a n d 9 suggest that l o w e r temperatures
of
should
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
on the give
274
POLYAMINE-CHELATED
Table I.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
Run
ALKALI
M E T A L
COMPOUNDS
Summary of Reactions of Optically Active Chelate
Substrate
1
(-)-TMCHD-LiC H
9
C H CHO
2
(-)-TMCHD.LiC H
5
C H CHO
3
(—)-TMCHD-LiAlH
4
C H COCH »
4
(—) - T M C H D ·LiAlH
4
C H
5
(—)-TMCHD ·LiAlH
4
C H COC H
6
(+)-TMCHD-LiAlH
7
(—)-TMCHD ·LiAlH
8
(—)-TMCHD-LiAlH
9
( — ) - T M C H D ·L i A l H
10
(—)-TMCHD · LiAlD
4
6
6
4
6
6
d
9
1 3
6
4
5
1 3
3
COCH
5
C H 6
4
1 3
COCH
c
3
9
3
c
a-Tetralone*
4
4
β-Tetralone
C H
4
e
4
1 3
COCBV
CeH CH0 5
6
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
WHITNEY
A N D
LANGER
Lithium Chelates
275
Chelated Lithium Compounds and Prochiral Substrates [OL]25
Product OH I
Purity
- 2 . 6 8 ° ( C , 14.3, B )
8.65
+ 2 . 9 8 ° ( C , 13.3, B « )
9.5
3
- 1 . 0 7 ° ( C , 13.5, Β · )
10.7
3
- 1 . 1 7 ° ( C , 13.5, B " )
9
+ 1 . 7 5 ° ( C , 13.7, Β · )
5.6
3
+ 1 . 0 6 ° ( C , 14.4, Β · )
10.6
α-Tetralole
- 0 . 9 7 ° ( C , 2.50, C )
3.9
β-Tetralole
- 2 . 3 2 ° ( C , 7.8, C O
8.2
- 0 . 4 0 ° ( C , 13.3, Β · )
4.0
C6H5C-C4H9 1 Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
Optical
589 e
H OH
I C H CC H9 e
5
4
H OH
I C H 6
CCH
1 3
H OH
I C H e
1 3
CCH
11.7
H OH
I C H CC H 6
5
4
H OH
I C H 6
l 3
CCH H
C H 6
1 3
OH CCH
e
3
6
H OH C H C-D 6
6
- 0 . 1 6 ° (Neat)
10.3
H
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
%
276
POLYAMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
Table I.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
Run
Substrate
Chelate
11
(—)-TMCHD«LiAlH
4
CeHsCOCHCM
12
( — ) - T M C H D ·L i A l H
4
13
(—) - T M C H D · L1AIH4
HO(CH ) COCH
14
( — ) - T M C H D · L1AIH4
C H COCH i
HOCH CH COCH 2
2
2
e
6
3
3
3
f c
f c
3
Β = benzene. Molar ratio of chelate to subtrate = 1:2. Molar ratio of chelate to substrate = 1:4. " T h e (+) - T M C H D had [ ]* 89 + 51.4° (C, 5.35, 95% E t O H ) or 97%opticai;purity. Rotation taken at 17°C.
α
b c
a
5
e
h i g h e r o p t i c a l y i e l d s . P a r t i c u l a r a t t e n t i o n w a s p a i d to c o m p l e t e r e m o v a l of the r e s i d u a l o p t i c a l l y a c t i v e c h e l a t i n g agent f r o m the p r o d u c t . C o m p a r i s o n of the results f r o m runs 1, 2, a n d 5 shows that the abso l u t e c o n f i g u r a t i o n of the p r o d u c t c a n b e v a r i e d w i t h o u t c h a n g i n g the absolute c o n f i g u r a t i o n of the c h e l a t i n g agent. T h e same result is a c h i e v e d w i t h the latter c h a n g e chelated
(cf. r u n 3 w i t h 6 ) .
L1AID4 constitutes
deuteroalcohols
(run 10).
T h e use of o p t i c a l l y active
a v e r y f a c i l e route to o p t i c a l l y a c t i v e
p a r e d b y r e d u c t i o n of d e u t e r o a l d e h y d e s
i n actively fermenting media
w i t h i s o l a t e d e n z y m e systems, a n d b y a s y m m e t r i c r e d u c t i o n s
(16),
«-
α-Deuteroalcohols h a v e p r e v i o u s l y b e e n p r e
a l d e h y d e s b y c h i r a l G r i g n a r d reagents via h y d r i d e transfer (17).
of
Both
m e t h o d s suffer f r o m the disadvantages discussed at the b e g i n n i n g of this paper. T h e size of the R groups i n R ' C O R " influences the degree of stereospecificity of these reactions, as the results of runs 5 , 1 0 , a n d 14 s h o w w h e n
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
WHITNEY
AND
277
Lithium Chelates
LANGER
(Continued) [OL]25
Product
Optical
589
Punty
%
OH
I C H CCH OH Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
6
5
+ 4 . 9 1 ° ( C , 4.03, Ε )
8.3
Λ
2
Η OH HOCH CH CCH 2
2
3
+ 3 . 3 4 ° ( C , 4.03, E )
~30
A
Ή OH
I
HO(CH ) CCH 2
3
I
3
+0.257° (Neat)
Η
OH
I
C H -CCH 6
5
I
3
+ 2 . 9 4 ° ( C , 13.14, Β · )
7.4
Η C = chloroform. Reaction run at room temperature. Ε = 95% ethanol. * Molar ratio of chelate to substrate = 3.2. » Runs 1 and 2 were in pentane; all others were in toluene. f
0
h
R " is v a r i e d f r o m Η to C H
3
to n - C H . 4
9
seems that the greater the difference greater w i l l b e the stereospecificity.
F r o m these l i m i t e d results i t
i n size b e t w e e n
R ' a n d R " , the
H o w e v e r , other v a r i a b l e s — s u c h as
the structure of the a s y m m e t r i c c h e l a t i n g a g e n t — a l s o h a v e a n i m p o r t a n t influence o n r e a c t i o n stereospecificity.
T h i s v a r i a b l e is u n d e r study.
T h e difference i n t h e o p t i c a l y i e l d u p o n r e d u c t i o n of α-tetralone vs. β-tetralone w i t h ( — ) - T M C H D · L i A l
4
indicates that the s t e r e o c h e m i c a l
o u t c o m e of a g i v e n r e a c t i o n m a y be v e r y sensitive to s m a l l changes i n the steric e n v i r o n m e n t a r o u n d t h e p r o c h i r a l center.
N o t e w o r t h y is the
result of r u n 12, w h e r e 3 0 % o p t i c a l p u r i t y w a s a c h i e v e d , w h i c h is c o n s i d e r a b l y h i g h e r t h a n t h a t of a l l the other runs ( w i t h the possible excep t i o n of r u n 1 3 ) . T h e result of r u n 12 suggests t h a t w h e n other f u n c t i o n a l groups c a p a b l e of r e a c t i n g w i t h C h e l * · L i R are present i n the substrate, t h e y c a n h a v e a strong influence o n the o v e r a l l stereochemical o u t c o m e . I n the r e d u c t i o n of l - h y d r o x y - 3 - b u t a n o n e the r e a c t i o n c a n b e
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
en-
278
POL YAMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
v i s i o n e d as p r o c e e d i n g i n t r a m o l e c u l a r l y via a s i x - m e m b e r e d r i n g i n t e r m e d i a t e f o r m e d b y a n e a r l i e r r e a c t i o n of the h y d r o x y l g r o u p w i t h A 1 H ~ , 4
giving a H A 1 0 C H 3
2
species.
T h e a c t i v a t i o n energy difference
between
t h e t w o d i a s t e r e o m e r i c t r a n s i t i o n states f o r i n t r a m o l e c u l a r c a r b o n y l r e d u c t i o n m i g h t t h e n be greater t h a n that for d i r e c t attack o n the c a r b o n y l in an intermolecular reduction.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
A n a t t e m p t to o b t a i n e v i d e n c e for this hypothesis w a s m a d e . t i o n of
l-hydroxyl-4-pentanone
m i g h t p r o c e e d via a
Reduc
stereochemically
less f a v o r a b l e , s e v e n - m e m b e r e d r i n g i n t e r m e d i a t e , a n d the p r o d u c t pentanediol)
of
much
less
than 3 0 %
(1,4-
o p t i c a l l y p u r i t y m i g h t result.
A l t h o u g h o p t i c a l l y active d i o l was o b t a i n e d , n o assignment of o p t i c a l p u r i t y c o u l d be m a d e since the d i o l c o u l d not b e t r a n s f o r m e d
stereo-
specifically, despite several attempts, i n t o 2 - m e t h y l - t e t r a h y d r o t h i o p h e n e 1-dioxide, w h o s e m a x i m u m r o t a t i o n is k n o w n (18).
T h e v a l i d i t y of the
a b o v e hypothesis thus r e m a i n s moot. O n e r e a c t i o n i n the l i t e r a t u r e w i t h w h i c h the T M C H D chelates c a n b e d i r e c t l y c o m p a r e d i n terms of o p t i c a l y i e l d is t h a t s t u d i e d b y N o z a k i (19), i n w h i c h sparteine · L i - n - C H r e a c t e d w i t h b e n z a l d e h y d e . 4
9
1-Phenyl-
1-pentanol w a s o b t a i n e d i n 6 % o p t i c a l p u r i t y . T h e o p t i c a l y i e l d s o b t a i n e d i n the present s t u d y w e r e g e n e r a l l y h i g h e r .
I n a d d i t i o n , sparteine is
a n a t u r a l p r o d u c t o c c u r r i n g i n a p l a n t c a l l e d " b r o o m t o p s " a n d is a v a i l a b l e i n o n l y one absolute c o n f i g u r a t i o n , t h e r e b y l i m i t i n g its u t i l i t y . Summary T h e results of this s t u d y suggest t h a t o p t i c a l l y active c h e l a t e d l i t h i u m reagents m a y be u s e d g e n e r a l l y for a s y m m e t r i c synthesis a c c o r d i n g
to
the s c h e m e : Ε
II
Chel*-LiR +
R'-C-R'
R H+
1
R-C*-EH +
Chel*
R" T h e c h e l a t i n g agent m a y t h e n b e r e c o v e r e d u n c h a n g e d a n d r e u s e d , as w a s d o n e m a n y times d u r i n g this w o r k . E i t h e r of the absolute c o n f i g u artions of the c h i r a l p r o d u c t m a y b e o b t a i n e d at w i l l , either b y v a r y i n g t h e a b s o l u t e c o n f i g u r a t i o n of C h e l * or b y v a r y i n g t h e m o d e of synthesis. As
a d d i t i o n a l results are a c c u m u l a t e d o n a v a r i e t y of substrates
types of reactions, i t m a y b e possible to p r e d i c t w i t h confidence
and the
s t e r e o c h e m i c a l o u t c o m e of a p a r t i c u l a r r e a c t i o n . A s a d d i t i o n a l i n s i g h t is g a i n e d into the factors c r i t i c a l to stereospecificity, p e r h a p s o p t i c a l y i e l d s approaching enantiomeric purity w i l l be realized.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
WHITNEY
AND
279
Lithium Chelates
LANGER
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
Experimental Resolution of trans-1,2 -Diaminocyclohexane ( D A C H ) . A t o t a l of 1000 grams (8.76 m o l e s ) D A C H ( A d a m s C h e m i c a l C o . ) , 1323 grams (8.76 m o l e s ) ( + ) - t a r t a r i c a c i d , a n d 6 liters w a t e r w e r e u s e d w i t h the A s p e r g e r p r o c e d u r e ( 8 ) . C r o p 1 tartrate separated, 542 grams, u p o n c o o l i n g to 0 ° C . T h e m o t h e r l i q u o r w a s c o n c e n t r a t e d to a b o u t 4.5 liters, a n d c r o p 2 separated, 267 grams. F u r t h e r c o n c e n t r a t i o n of the m o t h e r l i q u o r to a b o u t 2.5 liters gave c r o p 3, 180 grams. O p t i c a l l y active ( — ) - D A C H was r e c o v e r e d f r o m the tartrate salt b y a d d i n g the latter to a n excess of a q u e o u s N a O H a n d c o n t i n u o u s l y e x t r a c t i n g t h e m i x t u r e w i t h b e n z e n e u n d e r n i t r o g e n . C r o p 1 g a v e 216 grams d i s t i l l e d ( - ) - D A C H , b p 7 1 ° - 7 3 ° C / 8 m m , [ a ] 9 -40.3° (C, 5.23, b e n z e n e ) , c o r r e s p o n d i n g to 9 7 % o p t i c a l p u r i t y as d e t e r m i n e d f r o m a s a m p l e of o p t i c a l l y p u r e ( - ) - D A C H · 2 H C 1 h a v i n g [ α ] 9 -15.6° ( C , 0.20 g r a m p e r m l H 0 ) (8). T h e m o t h e r l i q u o r r e m a i n i n g after c r o p 3 ( — ) - D A C H tartrate sepa r a t e d w a s t r e a t e d as d e s c r i b e d for c r o p 1 tartrate, a n d 540 grams of d i s t i l l e d ( + ) - D A C H w e r e r e c o v e r e d [a] M O + 20.3° ( C , 5.05, b e n z e n e ) . T h e m a t e r i a l w a s p l a c e d i n a S c h l e n k t u b e , w h i c h was t h e n p l a c e d i n a constant t e m p e r a t u r e b a t h at 20 ° C . T h e t e m p e r a t u r e of t h e b a t h w a s l o w e r e d s l o w l y to 9 ° C o v e r 19 days as crystals g r e w . T h e t u b e was i n v e r t e d , a n d t h e solids w e r e f i l t e r e d f r o m t h e m o t h e r l i q u o r . T h e a r m of the S c h l e n k t u b e c o n t a i n i n g t h e solids w a s h e a t e d , a n d the m o l t e n ( + ) - D A C H w a s r e m o v e d f r o m the t u b e w i t h a p i p e t t e . It d i s p l a y e d [ + 8.22° ( C , 5.09, b e n z e n e ) . Preparation of ( + )- and ( — ) - 2 V , N , N ' , ] V ' - T e t r a m e t h y l - l , 2 - c y c l o hexanediamine (( + )- and ( — ) - T M C H D ) . The Eschweiler-Clarke (11) p r o c e d u r e was u s e d w i t h f o r m a l d e h y d e a n d f o r m i c a c i d . A 9 0 % y i e l d of ( + ) a n d ( - ) - T M C H D w a s o b t a i n e d , h a v i n g [ « L s o ± 17.2° ( n e a t ) , d = 0.888; [ « L e o ± 20.0 ( C , 5.06, b e n z e n e ) . Asymmetric Syntheses ( R u n 14). A c h a r g e of 0.19 g r a m ( 5 m m o l e s ) L i A l H , 25 m l t o l u e n e , a n d 0.85 g r a m ( 5 m m o l e s ) ( - ) - T M C H D , [ a ] . ™ — 17.2° ( n e a t ) ( 1 0 0 % o p t i c a l l y p u r e ) w a s s t i r r e d i n a b e a k e r for one h o u r at r o o m t e m p e r a t u r e . T h e t u r b i d g r a y m i x t u r e was c o o l e d to — 80 ° C , a n d a s o l u t i o n of 1.20 grams (10 m m o l e s ) a c e t o p h e n o n e i n 10 m l of toluene w a s a d d e d d r o p w i s e w h i l e t h e r e a c t i o n m i x t u r e w a s m a i n t a i n e d at — 7 0 ° to — 8 0 ° C . W h e n a c e t o p h e n o n e a d d i t i o n w a s c o m p l e t e , t h e r e a c t i o n m i x t u r e w a s m a i n t a i n e d at —70° to — 8 0 ° C for a b o u t 30 m i n u t e s , t h e n a l l o w e d to w a r m to 0 ° C . W a t e r , 5 m l , w a s a d d e d , f o l l o w e d b y 30 m l of I N H C 1 . T h e l i q u i d phases w e r e separated, a n d the a q u e o u s phase w a s e x t r a c t e d w i t h 15 m l p e n t a n e . T h e c o m b i n e d o r g a n i c p h a s e w a s t h e n e x t r a c t e d w i t h 15 m l IN H C 1 , 15 m l 1 0 % N a H C 0 s o l u t i o n , 15 m l H 0 , d r i e d o v e r N a S 0 , a n d f i n a l l y c o n c e n t r a t e d o n a r o t a r y evaporator. B y 5 8
2 5
Δ 8
2 5
2
2 5
25
5
R
2 5
2 5
25
2 5
2 5
2 5
4
3
2
4
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2
280
POLY AMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
V P C analysis, the p r o d u c t w a s 9 2 % 1 - p h e n y l - l - e t h a n o l a n d 7.4% t o l u e n e ; n o ( — ) - T M C H D w a s present. T h e o p t i c a l a c t i v i t y o f t h e p r o d u c t w a s m e a s u r e d w i t h a P e r k i n E l m e r m o d e l 141 p o l a r i m e t e r : [ a ] 9 + 2.94° ( C , 13.14, b e n z e n e ) , c o r r e s p o n d i n g t o 7 . 4 % o p t i c a l p u r i t y b y d i r e c t c o m p a r i s o n w i t h a n a u t h e n t i c sample o f o p t i c a l l y p u r e 1 - p h e n y l - l - e t h a n o l . T h e other reactions s u m m a r i z e d i n the t a b l e w e r e r u n s i m i l a r l y , w i t h n o a t t e m p t m a d e t o o p t i m i z e r e a c t i o n c o n d i t i o n s t o o b t a i n m a x i m u m stereo specificity. 2 5
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on October 15, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch014
5 8
Literature Cited 1. Fischer, E., Ber. (1894) 27, 3231. 2. Ritchie, P. D., "Asymmetric Synthesis and Asymmetric Induction," Oxford University Press, London, 1933. 3. Morrison, J. D., Mosher, H . S., "Asymmetric Organic Reactions," PrenticeHall, Englewood Cliffs, N.J.,1971. 4. Marckwald, W., Ber. (1904) 37, 1368. 5. Bentley, R., "Molecular Asymmetry in Biology," Academic, New York, Vol. I, 1969; Vol. II, 1970. 6. Eliel, E . L . , "Stereochemistry of Carbon Compounds," McGraw-Hill, New York, 1962. 7. Jaeger, F . M., Bijkerk, L . , Proc. Kon. Ned. Akad. Wetensch. (1937) 40, 12. 8. Asperger, R. G., Liu, C. F., Inorg. Chem. (1965) 4, 1492. 9. Woldbye, F., Rec. Chem. Progr. (1964) 24, 197. 10. Smith, A. J., U.S. Patent 3,163,675 (1964). 11. Clarke, H . T., Gillespie, H . B., Weisshaus, S. Z., J. Amer. Chem. Soc. (1933) 55, 4571. 12. Langer, Jr., A. W., Trans. N.Y. Acad. Sci. (1965) 27 (7), 741. 13. Langer, Jr., A. W., U.S. Patent 3,451,988 (1969); 3,541,149 (1970). 14. Rausch, M . D., Sarnelli, A. J., ADVAN. C H E M . SER. (1973) 130, 248. 15. Langer, Jr., A. W., Whitney, Τ. Α., U.S. Patent 3,734,963 (1973). 16. Althouse, V. E . , Feigl, D. M . , Sanderson, W. Α., Mosher, H . S.,J.Amer. Chem. Soc. (1966) 88, 3595. 17. Clark, D. R., Ph.D. Thesis, Stanford University, D. A. No. 71-19,662 (1970). 18. Cram, D. J., Whitney, Τ. Α., J. Amer. Chem. Soc. (1967) 89, 4651. 19. Nozaki, H . , Aratani, T., Toraya, T., Tetrahedron Lett. (1968) 4097. RECEIVED February 12, 1973.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.